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Abstract Based on the original thermostable alpha-amylase
gene from Bacillus licheniformis, two amino acids were
site-directed mutagenised by polymerase chain reaction to
obtain a new gene. This gene, with Leu134→Arg and
Ser320→Ala, was substituted for acid-resistant capability
previously. To favor purification of the product, high-level
expression and secretion of mature, authentic and stable
recombinant mutagenised alpha-amylase were achieved
with protease-deficient strain Bacillus subtilis WB600 as
the host. The recombinant mutagenised alpha-amylase with
the activity of 4,700 U/mL was then purified by ammonium
sulphate fractionation, anion exchange and gel filtration,
consecutively. By multi-step purification, the specific activ-
ity of the recombinant protein was up to 916.7 U/mg with a
187.1-fold purification. The mutagenised protein was found
to be more acid resistant than the native protein. The
optimum pH and stable range of pH with the mutagenised
protein was 4.5 and 4.0 to 6.5, respectively, compared with
pH 6.5 and 5.5 to 7.0 as the favorite pH and pH stability
range of the native protein.
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Introduction

Alpha-amylase (α-1,4-glucan 4-glucanohydrolase, EC
3.2.1.1) catalyses the hydrolysis of the α-1,4 glycosidic
linkages of starch, found in amylose and amylopectin. It is
currently used in such a broad array of industrial applica-
tions as starch hydrolysis for the production of ethanol and
high fructose corn syrup, starch soil removal in laundry
washing powders and dish-washing detergents, textile de-
sizing, the production of modified starches, baking,
hydrolysis of oil-field drilling fluids and paper recycling
(Richardson et al. 2002). Alpha-amylase isolated from the
ubiquitous mesophilic soil bacterium Bacillus licheniformis
was widely used in these areas (Saito 1973; Yuuki et al.
1985; Matsuzaki et al. 1974). This enzyme operates
optimally at 90°C and pH 6, and it requires addition of
calcium ions for its thermostability (Violet and Meunier
1989). Although B. licheniformis alpha-amylase (BLA) was
utilised widely for its thermostable character (Machius et al.
2003), it is sensitive to acidic circumstances, and this could
result in the loss of its hydrolysis ability (Lee et al. 2006).
Because several industrial processes take place at lower pH
values than those where the alpha-amylase perform opti-
mally (Nielsen and Borchert 2000), this entails significant
raw material and processes operating costs for pH adjust-
ments at a large scale (Crabb and Shetty 1999).

In the case of alpha-amylase, most of the protein
engineering work has been devoted to its operative pH
range (Nielsen et al. 1999; Shaw and Bott 1996), based on
the thermostable property considerations. Therefore, to
improve the acid-resistant property of BLA, in our previous
research, the BLA gene that codes for Leu134 and Ser320
was modified to code for Arg and Ala, respectively (Cai et
al. 2005). Then, the mutagenised BLA was expressed in
Bacillus subtilis DB403 under the control of the promoter
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with sacB gene. However, recombinant protein has low
yield and low activity while its enzyme properties were not
analysed, so that whether the mutagenised gene could resist
acid was not sure.

Although the B. subtilis expression–secretion system
was an effective expression system, there was still a major
limitation in that B. subtilis produced and secreted high
levels of extracellular proteases, which degraded the
secreted foreign proteins (Wong et al. 1986). In a previous
experiment, the B. subtilis DB403 deficient in three major
extracellular proteases was used as the host, but the
expressed mutagenised BLA was limited by the remaining
proteases of B. subtilis DB403. To overcome the degrada-
tion problem caused by B. subtilis proteases, B. subtilis
WB600, which was deficient in six extracellular proteases,
was used for the expression of the heterologous genes (Wu
et al. 1991). In addition, the vector pWB980 with a high
plasmid copy number (121 copies per cell) contained a P43
promoter, a sacB signal sequence, a multiple cloning site
and a kanamycin resistance marker from B. subtilis (Wu
and Wong 1999). The P43 promoter was a strong and
constitutively expressing promoter for direction with the
transcription of the amylase genes in B. subtilis during
growth. That the recombinant protein secreted into the
culture broth was allowed by the sacB signal sequence.

Based on these reasons, the mutagenised gene was
inserted into the B. subtilis expression plasmid pWB980
for high-yield recombinant protein expressed in B.subtilis
WB600 in the present study. High productivity with little
extracellular protein was advantageous to the downstream
purification of the target protein. Meanwhile, high produc-
tivity of the target protein was convenient for the
determination of enzyme activity. The properties of the
purified mutagenised BLA was analysed exactly, when
native BLA characteristics was used as a control. Detailed
characterisation was exhibited to determine whether some
superior properties such as acid resistance were expressed
in the mutagenised protein.

Materials and methods

Recombinant plasmid construction

pUAM was constructed by inserting a 1.9-kb deoxyribonu-
cleic acid (DNA) fragment that contained a BLA gene with
signal peptide to pUC19, while pUAMD was constructed by
inserting a 1.9-kb DNA fragment that contained a mutage-
nised BLA gene with a signal peptide to pUC19. DNA
fragments encoding for mature peptide of native BLA (amy)
and mutagenised BLA (amyd) were amplified using the
plasmid pUAM and pUAMD as templates with a pair of
polymerase chain reaction (PCR) primers, respectively,

primer 1: 5 ′-CCCAAGCTTGCAAATCTTAATGG
GACGCT-3 ′ and primer 2: 5 ′ -CGGGGTACCA
GAAACTTGTATTTAACTTT-3′. amy and amyd had a
HindIII site at the 5′ end and a BamHI site at the 3′ end.
The DNA fragments digested by HindIII and BamHI were
then cloned into HindIII–BamHI-linearised pWB980, to
give pWB-amy and pWB-amyd using standard procedures
(Sambrook et al. 1989). The recombinant plasmids were
transformed into the expression host, B. subtilis WB600.

Transformation of B. subtilis

Competence media (GMI and GMII) and minimal media
were prepared and used as described (Yasbin et al. 1975).
Cells were grown in GMI overnight at 30°C. To 45 mL GMI
medium, 5 mL overnight culture grown in GMI was added
and incubated at 37°C with shaking at 250 rpm for 4 h. Five
millilitres of the early stationary phase culture was then
mixed with 45 mL GMII medium, and the incubation
continued at 37°C for 1 h. DNA samples (about 1–3 μg)
and 0.5 mL competent cells were mixed and incubated at
37°C for 30 min. The cells were plated on a Luria–Betani (LB)/
agar plate containing kanamycin (20 μg/mL) and incubated at
37°C for 12 h. The vector without inserts were transformed
into the strains of B. subtilis WB600 and used as control.

Expression of recombinant protein AMY and AMYD

B. subtilis WB600 cells harbouring pWB-amy and pWB-
amyd were cultivated overnight and 50 times diluted in LB
broth (50 mL) supplemented with kanamycin (20 μg/mL),
and the cells were grown for 36 h at 37°C. The liquid culture
was centrifuged at 10,000 rpm for 10 min to remove cells.
Culture supernatant was collected for activity determination
and sodium dodecyl sulphate (SDS)–polyacrylamide gel
electrophoresis (PAGE) analysis of recombinant protein.

Sodium dodecyl sulphate–polyacrylamide gel
electrophoresis

The sample for SDS-PAGE was mixed with 2× SDS loading
buffer (100 mmol/L Tris–HCl, pH 6.8, 200 mmol/L
dithiothreitol, 0.4 g/L SDS, 0.02 g/L bromophenol blue
and 20% [v/v] glycerol) in 1:1 (v/v) ratio. Then, the mixture
was boiled for 5 min and centrifuged for 10 min at
12,000 rpm. The supernatant was used for SDS-PAGE
(5% [v/v] stacking gel and 10% [v/v] resolving gel).
Proteins were visualised with Coomassie Brilliant Blue.

Purification of recombinant protein AMY and AMYD

Culture supernatant (100 mL) was salted out with ammo-
nium sulphate at 70% saturation. The precipitate was
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centrifuged at 6,000 rpm for 10 min and dissolved into
100 mL of 20 mmol/L Tris–HCl buffer (pH 7.0) and then
applied onto a diethylaminoethyl-Sepharose fast flow
column (2.5×20 cm) equilibrated with 20 mmol/L Tris–
HCl buffer (pH 7.0) and eluted with 20 mmol/L Tris–HCl
buffer (pH 7.0) containing a linear gradient from 0 to 1 mol/L
NaCl solution. The active fractions were loaded on a
Sephadex G-75 gel column (1.6×80 cm) equilibrated with
20 mmol/L phosphate buffer (pH 7.0) in 0.15 mol/L NaCl
solution, then eluted by the same buffer (pH 7.0) at a rate of
0.5 mL/min. The active fraction obtained from the gel
filtration column was dialysed against 20 mmol/L phosphate
buffer (pH 7.0). One-millilitre fractions were collected to
determine enzyme activity. Protein was monitored as
described by Lowry et al. (1951).

Analysis of the enzyme activity

The definition of alpha-amylase is described below. One
unit of enzyme is the amount of amylase needed to
complete the liquefaction of starch into dextrin per minute
at 70°C and pH 6.0. The measurement was done according
to Chinese Industrial Standard (QB/T 2306-97). The
calculation of the enzyme activity was based on the formula
below. X=c×n×16.67, where X is the enzyme activity of
the sample (U/mL), c is the concentration of the control
enzyme (U/mL) corresponded with the absorbance and n is
the dilution fold.

Enzyme activity assay

The optimal temperature for amylase activity was deter-
mined by assaying activity between 30 and 100°C.
Thermostability of the amylase was performed by main-
taining the purified enzyme solution in water bath at
different temperature (40, 60, 80 and 100°C) for 20, 40,
60, 80, 100 and 120 min, respectively, and then running the
activity assay. Measurement of optimum pH for amylase
activity was carried out by running the activity assay
between the pH range of 3.0 and 7.0. Under several pH
conditions (3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7.0), the
pH stability was determined by incubating purified enzyme
in a water bath at 70°C for 1 h, and then the residual
enzyme activity was showed to analyse the pH stability All
measurements were undergone at least in triplicate. In
addition, to identify the influence of metal ions on the
enzyme activity, the amylase was dialysed against
10 mmol/L Tris–HCl buffer (pH 7.0) containing 1 mmol/L
ethylenediamine tetraacetic acid to remove excess ions first,
and then the amylase activity was measured at pH 6.0 and
70°C for 1 h with 1 mmol/L various metal ions (Cu2+, Zn2+,
Ba2+, Mg2+, Mn2+, Ca2+, Co2+, Cs2+, Cd2+, Fe2+, Hg2+, Ni2+

and Sr2+). Then thermostability of the enzyme in the presence

and absence of various metal ions was investigated by
incubating it with different concentration of the metal ion
solution (1–6 mmol/L and a control group without metal ions
present) at 95°C for 1 h.

The determination of dextrose equivalents value

The dextrose equivalents (DE) measurement was done
according to Chinese Industrial Standard (QB 1216-91).
The calculation of DE value was based on the formula
below, DE ¼ 1�V1�10

V2�m�G, where DE is the DE value of the
sample, V1 is the volume of standard glucose solution
during titration (1 g/L), V2 is the volume of sample, m is the
mass of sample and G is the content of solid property.

Application of recombinant protein AMY and AMYD

Purified protein was added as quantity of 30 U/(g starch)
into 100 mL starch solution (20%, w/v), which was
adjusted to pH 4.5. After incubation at 95°C for 90 min,
pH was adjusted to 2.0 using 1 mol/L HCl to inactivate
enzymes for termination reaction. The starch solution was
quickly cooled to room temperature. The transmittance was
measured using distilled water as control at the wavelength
of 640 nm. Subsequently, the solution was added with
adequate NaOH solution to adjust pH to 4.5, and then DE
value was measured.

Computer modeling methods

To obtain the theoretical structure of mutant (L134R and
S320A) and native BLA, we built models using a public
website, Swiss-Model (Peitsch et al. 1995, 1996; Peitsch
1996; Guex and Peitsch 1997), using the coordinates of the
wide type from BLA (1VJS pdb entry) as a template, which
was received from the Protein Databank (PDB; Bernstein
et al. 1977).

Results

Cloning, sequencing and characterisation of the amy gene
and amyd gene from the insert

The amplified amy gene and amyd gene by PCR was
cloned into HindIII–BamHI restriction sites of the pWB980
vector to construct recombinant plasmids pWB-amy and
pWB-amyd. Competent B. subtilis WB600 cells were
transformed with the recombinant plasmids and screened
on a LB/agar plate containing kanamycin (20 μg/mL).
Confirmed by nucleotide-sequencing analysis, the muta-
genesis of two sites, Leu134→Arg and Ser320→Ala, were
obtained. The DNA fragments containing the amy gene and
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amyd gene comprised 1,449 nucleotides, respectively,
which encoded a protein of 483 amino acids whose
molecular weight was calculated as 53,130 Da (Fig. 1).

Expression of recombinant protein AMY and AMYD
in B.subtilis

For the pWB-amy and pWB-amyd expression vectors, the
activity of native protein AMY and mutagenised protein
AMYD in the supernatant of the culture medium reached a
maximum of 4,500 and 4,700 U/mL, respectively, after
36 h at 37°C. AMY and AMYD were analysed by SDS-
PAGE (Fig. 2). In SDS-PAGE, the molecular weight of the
expressed protein was about 53 kDa, which was in good
agreement with that (53,130 Da) calculated from the amino
acid sequence.

Purification of recombinant protein

A general summary of the alpha-amylase purification
protocol was presented in Table 1. It was evident that
being subjected to ammonium sulphate fractionation, anion
exchange and gel filtration, consecutively, the crude
supernatant of AMY and AMYD yielded a highly enriched
alpha-amylase preparation. AMY was purified 202.5-fold
with a specific activity of 836.4 U/mg, while AMYD was
purified 187.1-fold with a specific activity of 916.7 U/mg.
The molecular weight of the purified enzymes, which
appeared as a single band on SDS-PAGE, was found to be
53 kDa (Fig. 2).

AMY and AMYD activity assay

The purified AMYD displayed its optimum activity at 95°C.
Besides it, remarkable thermal stability was also shown in
AMYD. Rather, little loss of the activity was observed at 40,
60 and 80°C after incubating for 2 h. Around 65% of the
enzyme activity was still detectable after incubating in a
boiling water bath for 1 h. AMY has the same characters in
optimal temperature and thermal stability. Thus, there was no
change in the thermostable property after mutation.

The optimum pH for AMYD and AMY was 4.5 and 6.5,
respectively (Fig. 3). When the pH was below 4.5,
compared with AMY, which had a rapid decline with the
activity, AMYD could maintain its activity strongly. Even
AMYD had 50% of the highest activity at pH 3.5. It was
obvious that AMYD also had a well activity in an acidic
environment, where pH ranged from 4.0 to 6.5 (Fig. 4). On
the contrary, AMY showed activity stability in a pH range
between 5.5 and 7.0. Acid stability of AMYD was rather
trustful even if pH was lower than 4.0, and only minor
activity was lost. In contrast, AMY was sensitive to acidic
circumstance and showed a decreasing activity when the
pH was adjusted to below 5.0. It was concluded that
AMYD was ready for use in liquefaction processes, which
would occur in low pH value.

For the investigation of the impact of different metal ions,
Cu2+, Zn2+, Ba2+, Mg2+, Mn2+, Ca2+, Co2+, Cs2+, Cd2+,
Fe2+, Hg2+, Ni2+ and Sr2+ at 1 mmol/L was incubated with
purified AMYD and AMY. The addition of some metal ions
(Table 2) caused enzyme inhibition. Hg2+ completely

Fig. 1 Alignment of mature pep-
tide between native protein AMY
and mutagenised protein AMYD.
Different amino acids
(Leu134→Arg and Ser320→Ala)
substituted are shown in grey
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inhibited enzyme activity at 1 mmol/L. Cu2+, Zn2+, Ba2+,
Mg2+, Mn2+, Cd2+ and Ni2+, respectively, showed 49, 37,
28, 5, 15, 48 and 24% inhibition to the AMYD activity,
respectively. Similar effects on the AMY were obtained when
the same metal ions were added separately. Meanwhile, Ca2+

displayed the highest thermostability-assistant property at a
concentration of 2 mmol/L for AMYD and AMY. However,
when the concentration exceeded 2 mmol/L, it showed a
decrease with activity as a result. As the concentration of the
other metal ions was increased, there was no significant
influence on the activity of AMYD and AMY. The results
indicated that mutation sites had no change to the effects of
metal ions on the alpha-amylase activity.

Experiment for application

The purified AMY and AMYD were applied into starch
hydrolysis assays. At pH 4.5 and 95°C, the DE value of the

liquefaction solution caused by AMYD was higher than
the counterpart control of AMY significantly (Fig. 5). The
aggregation of the impurity in the liquefaction solution was
reflected by the transmittance directly. The better aggrega-
tion, the higher the transmittance was. Then, transmittance
was another parameter for the liquefaction. As shown in
Fig. 6, the transmittance of liquefaction solution with
AMYD was higher than the control one. It was concluded
that the aggregation degree of AMYD was better than
AMY at pH 4.5 and 95°C. All the results showed that
compared with AMY, excellent acid-resistant ability was
existed in AMYD.

Discussion

A thermophilic and acid-resistant enzyme was obtained by
expression with mutagenised gene in B. subtilis WB600.
Compared with recombinant protein expressed in harbour-
ing pHPSM plasmid of the recombinant B. subtilis DB403
(Cai et al. 2005), this recombinant protein had a 1.5-fold
higher activity. The specific activity of this new enzyme
was then up to 916.7 U/mg after purification with
ammonium sulphate fractionation, anion exchange and gel
filtration, consecutively. Incubated at 100°C for 60 min,
70% enzyme activity could still be maintained showing
there were no obvious differences in thermal stability
between the native enzyme and the mutagenised enzyme.
However, the mutagenised enzyme was more acid resistant.
Its optimum pH was 4.5, and the stable pH range was 4.0
and 6.5, which was superior to the native enzyme with the
optimum pH of 6.5 and the stable pH range of 5.5 to 7.0.
Meanwhile, at the starch hydrolysis experiment, mutage-
nised enzyme was more effective than the native enzyme
under the circumstance of pH 4.5 and temperature 95°C.

As a host for heterologous expression, B. subtilis, which
was an aerobic and mesophilic bacterium, has many attrac-
tive features (Wong 1995). These features included the
ability to secrete extracellular proteins, ease of genetic

Fig. 2 SDS-PAGE analysis of proteins secreted by B. subtilis
WB600. Lane M, molecular weight markers; lane 1, culture
supernatant of B. subtilis WB600 harbouring pWB-amy; lane 2,
purified native protein AMY; lane 3, culture supernatant of B. subtilis
WB600 harbouring pWB-amyd; lane 4, purified mutagenised protein
AMYD; lane 5, culture supernatant of B. subtilis WB600 harbouring
pWB980

Table 1 Summary of purifica-
tion of recombinant protein of
AMY and AMYD

Treatment Total protein
(mg)

Total activity
(U)

Specific activity
(U/mg)

Recovery
(%)

Purification
fold

AMY
Extract supernatant 104,000 430,000 4.13 100 1.0
Ammonium sulfate 12,500 380,000 30.4 88.4 7.4
DEAE-Sepharose fast flow 1,060 230,000 217.0 53.5 52.5
Sephadex G-75 gel 110 92,000 836.4 21.1 202.5
AMYD
Extract supernatant 96,000 470,000 4.9 100 1.0
Ammonium sulfate 8,600 410,000 47.7 87.2 9.7
DEAE-Sepharose fast flow 740 250,000 337.8 53.2 69.0
Sephadex G-75 gel 120 110,000 916.7 23.4 187.1
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manipulation and fast growth. However, one major problem
was the presence of high levels of extracellular proteases.
Although we used a mutant deficient in three major
extracellular proteases (Cai et al. 2005), the expressed protein
was truncated by the remaining proteases of B. subtilis
DB403. To solve the degradation caused by B. subtilis
proteases, we used B. subtilis WB600, which was deficient
in six proteases for enhancing the effect without over-
producing extracellular proteases. Moreover, it was in the
interest of the biotechnological application and industry
to seek new strong promoters. A lot of information of
B. subtilis promoter had been acquired, and several of
them had been exploited to be used as a control element
in the construction of expression vector in B. subtilis, of
which some constitutive promoters, such as the P43
promoter, was widely investigated and characterised (Hartl
et al. 2001; Meijer and Margarita 2004; Zhang et al. 2005).

Amongst them, the P43 promoter was used as a common
control element in the construction of expression vector in
B. subtilis and was considered as a strong promoter (Zhang
et al. 2005). The B. subtilis WB600 and vector pWB980
with P43 promoter were chosen in the present research
owing to their superior properties. The mutagenised gene
was cloned into pWB980 and expressed in B. subtilis
WB600 for high-yield recombinant protein. A high-level
expression of mutagenised BLA was achieved in the
recombinant B. subtilis with the activity 2.5 times to that
of the previous one (Cai et al. 2005). The target protein was
convenient to be purified and obtained because of fewer
influence caused by that fewer species of the extracellular
protein secreted by B. subtilis WB600.

Recently, although significantly different enzyme prop-
erties were researched by a collection of wild-type alpha-
amylase from different environments, no single enzyme

Fig. 3 Detemination of recom-
binant protein pH optima.
Relative enzyme activities
(% of maximum) of AMY and
AMYD at different pH levels
are shown. Enzyme activity was
assayed by incubating
the enzyme at different pH
levels for 5 min at 70°C. Filled
squares, AMY; empty squares,
AMYD

Fig. 4 Determination of recom-
binant protein pH stability.
The enzymes AMY
and AMYD were incubated
in buffers of differing pH
for 60 min at 70°C before
measuring the residual activity.
The counterpart incubated
for 5 min at 70°C was used
as a control. Filled squares,
AMY; empty squares, AMYD
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could possess all the desired properties for the targeted
industrial application process where there was considerable
need for thermophilic alpha-amylase expressed at high
levels in the acid environment (Richardson et al. 2002). As
a powerful tool to improve the properties of proteins,
directed evolution was utilised widely (Kuchner and Arnold
1997). Protein engineering work was applied to the BLA to
improve its thermal stability by rational protein engineering
(Svensson and Sogaard 1992; Svensson 1994; Declerck et
al. 1995; Declerck et al 1997; Declerck et al. 2000; Igarashi
et al. 1998). Lately, the tolerance of the BLA toward low
pH was enhanced by directed evolution (Shaw et al. 1999).
The performance of profile of BLA has been improved by
site-directed mutagenesis to change the dynamics of the

active site residues and the electrostatics of the active site
(Nielsen et al. 1999; Nielsen et al. 2001).

It was generally assumed that the stability of proteins
was not affected by the amino acid substitutions on the
surface with large amounts. This was because most surface
residues are involved in only a few often transient
interactions. Yet, we and others (Arnold and Volkov 1999;
Giver et al. 1998; Ness et al. 1999; Schmidt-Dannert and
Arnold 1999; Coco et al. 2001) have demonstrated that
directed evolution is an efficient tool for the improvement
of enzymes. The engineering work on BLA (Cai et al.
2005) showed that a few point mutations at the surface are
effective to drastically increase the resistance against acidic
conditions. In our previous paper, residues Leu134 and
Ser320 were replaced by Arg and Ala in BLA, respectively.
Surprisingly, the mutagenised enzyme showed outstanding
properties of well endurance in acidic environment.

It was shown (Fig. 7) that the alpha-amylase consisted of
three domains, which was the same to the result analysed
by X-ray crystallographic studies (Nielsen et al. 1999).
Domain A, which is a central (α/β)8 triosephosphateiso-
merase (TIM) barrel, forms the core of the molecule,
consists of residues 4–103 and residues 203–396 and
contains three active site residues Asp231, Glu261 and
Asp328 (BLA numbering). Asp231 and Glu261 are
believed to be the two catalytic groups. Asp231 is the
catalytic nucleophile, while evidence has been presented for
Glu261 being the catalytic hydrogen donor (Mc Carter and
Withers 1996; Uitdehaag et al. 1999). The third essential
acid (Asp328) is believed to assist catalysis by hydrogen
bonding to the substrate and by elevating the pKa of Glu261
(Klein et al. 1992; Knegtel et al. 1995; Strokopytov et al.
1995; Uitdehaag et al. 1999). The active site is located in a

Table 2 Effect of metal ions on the activity of the recombinant
protein AMY and AMYD

Metal ion Relative activity (%)

AMY AMYD
Cu2+ 45±3.3 51±2.9
Zn2+ 72±3.8 63±4.1
Ba2+ 77±3.5 72±4.0
Mg2+ 89±4.2 95±4.3
Mn2+ 80±2.8 85±5.0
Ca2+ 135±3.7 124±3.4
Co2+ 92±4.7 100±3.7
Cs2+ 113±3.2 103±3.5
Cd2+ 67±4.4 52±4.0
Fe2+ 107±4.4 101±4.5
Hg2+ 0 0
Ni2+ 77±4.9 76±4.1
Sr2+ 111±3.1 100±4.8

Concentrations of metal ions (as chloride salts) were 1 mmol/L

Fig. 5 The determination of the
DE value. The DE of liquefied
syrups was determined by mea-
suring the quantity of reducing
sugars (as glucose) by the neo-
cuproine procedure. The amount
of glucose in the sample was
determined by comparison to a
known glucose standard (1 g/L).
Filled squares, AMY; empty
squares, AMYD
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cleft at the interface between domains A and B, where the
C termini of the β-strands and loops joining the β-strands
to the α-helix in the TIM barrel are found (Nagano et al.
2001). Domain B, formed by residues 104–202, is a
protrusion between the third strand and the third helix of
the TIM barrel (MacGregor 1993) and forms an irregular β-
like structure. The size and structure of domain B varies
substantially amongst the various members of the alpha-
amylase family. This domain is probably responsible for the
differences in substrate specificity and stability amongst the
alpha-amylases (Svensson 1994). Domain C formed by
residues 397–483 is located roughly at opposite sides of

this TIM barrel to domain B. It forms a Greek key motif
and contains the C terminus.

Alpha-amylase catalysis is thought to be limited by the
deprotonation of the nucleophile (D231) at low pH and the
protonation of the hydrogen donor (E261) at high pH (Fang
and Ford 1998; Qian et al. 1994; Strokopytov et al. 1995;
Krengel and Dijkstra 1996). The protonation state of D231
is therefore at least partly responsible for the low activity at
acidic pH. However, others (Nielsen et al. 1999) concluded
that the mutations aimed at the change of the pH-dependent
properties of enzymes by changing the hydrogen-bond
interactions and the solvent accessibility of the active site
residues should not be close to a catalytic residue. Mutations
(L134R and S320A) outside the active site (Fig. 7) were
designed away from the active site to influence the pKa

values. Significant changes with the outstanding acid-
resistant property were achieved in the mutagenised alpha-
amylase by site-directed mutagenesis. We speculated that
these mutations changed the net charge on the mutate
residues, and more than two heavy charges were introduced
or removed in the active site electrostatics, and then the pKa

values of E261 and/or D328 was disturbed.
In addition, enzymes could be stabilised by stabilising

the folding state, destabilising the unfolded state and
altering the kinetics of unfolding in the many researches
(Shaw and Bott 1996). And entropy increasing (ΔS) was an
important driving force in protein folding. It was deduced
that mutations that decreased the entropy of the system of
the unfolded protein or increased the entropy of the system
of the folded protein would lead to a larger ΔS for folding,
which could stabilise the structure without complementary
enthalpic contributions. It was of importance to protein
engineering by unfolding and folding kinetics manipula-
tion, and the insights to the structures of folding transition
states are very valuable.

Fig. 7 The position of the mutations further away from the active site
in the structure of BLA. The structure was yielded by homology
modelling based on the structure of BLA (1VJS pdb entry) using the
Swiss-Model server (http://www.expasy.ch/swissmod)

Fig. 6 The determination of
transmittance for liquefaction
solution. After reaction was
finished, the transmittance was
measured using distilled water
as control at the wavelength of
640 nm. Filled squares, AMY;
empty squares, AMYD
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To test this hypothesis, we are currently using the X-ray
diffraction technique to study the spatial structure of the
mutant (L134R and S320A) and native BLA. With
comparing the three-dimensional structures of them, we
would accurately achieve the factors affecting the acid
stability and catalytic activity on the structural level.

A thermophilic high-activity enzyme with excellent acid
resistance obtained in this research is beneficial to starch
hydrolysis in industrial production because of a convenient
manipulation and a lower cost. The result is paved for
substitution of the alpha-amylase used in current ferment
and commercial acid-resistant alpha-amylase production in
the future. Moreover, this study illuminates that protein
engineering can be extended to modify other residues, and
it also can improve their catalysis ability, with important
implications for the starch industrial process.
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