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Abstract Aflatoxins are carcinogenic fungal secondary
metabolites produced by Aspergillus flavus and other
closely related species. Levels of aflatoxins in agricultural
commodities are stringently regulated by many countries
because of the health hazard, and thus, aflatoxins are of
major concern to both producers and consumers. A cluster
of genes responsible for aflatoxin biosynthesis has been
identified; however, expression of these genes is a
complex and poorly understood phenomenon. To better
understand the molecular events that are associated with
aflatoxin production, three separate nonaflatoxigenic A.
flavus strains were produced through serial transfers of
aflatoxigenic parental strains. The three independent
aflatoxigenic/nonaflatoxigenic pairs were compared via
transcription profiling by microarray analyses. Cross
comparisons identified 22 features in common between
the aflatoxigenic/nonaflatoxigenic pairs. Physical mapping
of the 22 features using the Aspergillus oryzae genome

sequence for reference identified 16 unique genes.
Aflatoxin biosynthetic and regulatory gene expression
levels were not significantly different between the
aflatoxigenic/nonaflatoxigenic pairs, which suggests that
the inability to produce aflatoxins is not due to decreased
expression of known biosynthetic or regulatory genes. Of
the 16 in common genes, only one gene homologous to
glutathione S-transferase genes showed higher expression
in the nonaflatoxigenic progeny relative to the parental
strains. This gene, named hcc, was selected for over-
expression in an aflatoxigenic A. flavus strain to deter-
mine if it was directly responsible for loss of aflatoxin
production. Although hcc transformants showed six- to
ninefold increase in expression, no discernible changes in
colony morphology or aflatoxin production were
detected. Possible roles of hcc and other identified genes
are discussed in relation to regulation of aflatoxin
biosynthesis.

Introduction

Aflatoxins are polyketide-derived carcinogenic secondary
metabolites produced primarily by two fungal species,
Aspergillus flavus and Aspergillus parasiticus (Payne and
Brown 1998). A. parasiticus isolates are typically aflatoxi-
genic with the percentage of naturally occurring A. para-
siticus isolates not producing aflatoxins ranging from 3 to 6%
(Barros et al. 2006; Horn et al. 1996; Vaamonde et al. 2003).
In contrast, A. flavus isolates collected in many parts of the
world vary considerably in their ability to produce aflatoxins.
The percentage of aflatoxin-nonproducing A. flavus isolates
ranges from zero to nearly 80% (Giorni et al. 2007; Horn et
al. 1996; Pildain et al. 2004; Razzaghi-Abyaneh et al. 2006;
Takahashi et al. 2004; Vaamonde et al. 2003). A. flavus
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produces aflatoxin B1 and B2, whereas A. parasiticus
produces aflatoxins G1 and G2 in addition to B1 and B2.
Aflatoxins pose a great risk to human and animal health, and
significant economic losses can result from the contamination
of agricultural commodities such as corn, peanut, cotton, and
tree nuts (Guzman-de-Pena and Pena-Cabriales 2005).

Biosynthesis of aflatoxins by A. flavus and A. parasiticus
involves proteins encoded by genes in a 70-kb gene cluster
(Ehrlich et al. 2005; Yu et al. 2004a). A defect in the cypA
gene of A. flavus is responsible for the loss of G1 and G2

aflatoxin production (Ehrlich et al. 2004). The production
of aflatoxins is influenced by environmental and nutritional
factors, such as water activity (Ribeiro et al. 2006;
Vaamonde et al. 2006), temperature (Giorni et al. 2007),
pH (Keller et al. 1997), and nitrogen source and carbon
source (Chang and Hua 2007; Ehrlich and Cotty 2002;
Luchese and Harrigan 1993).

Wild-type A. flavus strains often degenerate after serial
transfers on culture media, resulting in loss of aflatoxin
production accompanied by morphological changes such as
increased floccose growth, reduced sporulation, and sclero-
tial production, and a shift in conidial color from green to
brown (Bilgrami et al. 1988; Horn and Dorner 2002; Torres
et al. 1980). Strain instability associated with laboratory
subculturing is common even in the absence of external
mutagens. In spite of these observations, we have virtually
no molecular understanding of the loss of aflatoxin produc-
tion in clonal derivatives of aflatoxigenic A. flavus strains.

Determination of how many gene expression differences
are associated with a phenotype is important for under-
standing the molecular basis of complex traits. In this study,
we sought to identify genes differentially expressed by
aflatoxigenic A. flavus and nonaflatoxigenic progenies
using the recently available A. flavus cDNA microarray
(Wilkinson et al. 2007a) that represents approximately 40%
of the A. flavus transcriptome.

Materials and methods

Fungal strains and spore production

A. flavus NRRL 29459, NRRL 29474, and NRRL 29499 are
aflatoxigenic strains originating from soil collection in a
peanut field (Terrell, Georgia, USA) and belong to vegetative
compatibility groups 6, 23, and 28, respectively (Horn and
Greene 1995; Horn et al. 1996). Nonaflatoxigenic strains
29459B-20-2 (NRRL 35742), 29474A-20 (NRRL 35743),
and 29499A-20 (NRRL 35744) were single spored from
cultures after 20 serial transfers of the parental aflatoxigenic
strains on potato dextrose agar slants (Horn and Dorner
2002). Wild-type aflatoxigenic A. flavus CA14 was the
recipient used in the overexpression experiments. Fungal

strains were grown at 30°C on V8 agar plates for 5 days for
spore production. V8 medium consists of 5% V8 juice [a
commercial beverage (Campbell Soup, Camden, NJ, USA)
containing eight vegetable juices] and was adjusted to pH 5.2
before autoclaving. Harvested spores from plates were
resuspended in 0.01% Triton X-100 solution.

RNA isolation and first-stranded cDNA synthesis

An aliquot of spore suspension from each fungal strain was
added to 100 ml potato dextrose broth (PDB, Becton and
Dickinson Company, Sparks, MD) to give a final concen-
tration of 5×106 per milliliter. The medium containing
spores was dispensed (20 ml) onto five Petri dishes (100×
15 mm). Stationary cultures were incubated at 30°C in
darkness. After 48- and 72-h growth, mycelium from each
of the five culture plates was harvested by filtration, pooled,
and rinsed with sterilized distilled water. Mycelia were
pulverized to a fine powder with a mortar and pestle in the
presence of liquid nitrogen. Total RNA was prepared using
TRIzol® reagent (Invitrogen, Carlsbad, CA). Three micro-
grams of total RNA was used to generate cDNA using
Genispheres RT primers with Supercript II, Dithiotreitol,
and 5× SuperScript II First Strand Buffer (Invitrogen)
following the manufacturer’s instructions.

Microarray design

The microarrays used in this study were constructed at The
Institute for Genome Research (TIGR, Rockville, MD) with
genomic DNA amplicons (approximately 530 bp) amplified
using sequence-specific primers designed according to A.
flavus expressed sequence tag (EST) sequence information
(Yu et al. 2004b). A total of 5,002 genes were arrayed at least
three times each for a total of 17,991 features. A gene can be
represented on the array by more than one sequence, and thus,
features are not a direct representation of genes. The arrays
were printed by TIGR using a protocol adapted from Hegde et
al. (2000) with minor modifications. Polymerase chain
reaction (PCR) amplicons were purified using Millipore 96-
well size exclusion vacuum filter plates. The purified PCR
products were resuspended in water and diluted at a 1:1 ratio
with dimethyl sulfoxide (DMSO) before printing. The PCR
products were arranged in triplicate at high density on
Telechem Superamine aminosilane-coated microscope slides
using an Intelligent Automation Systems spotting robot.

Hybridization

Pre-hybridization was performed according to TIGR’s
protocols (http://pga.tigr.org/sop/M005_1a.pdf) and washed
according to post-hybridization instructions for the 3DNA
Array 900™ Kit (Genisphere, Hatfield, PA). Hybridizations
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were performed using the 3DNA Array 900™ Kit
(Genisphere) according to the manufacturer’s protocol. Each
experiment consisted of one aflatoxigenic parental strain and
its 20th generation, nonaflatoxigenic progeny, compared
after 48- or 72-h growth. Each comparison was repeated
with duplicate dye-flip. cDNA hybridizations were
performed overnight at 49°C in Hybridization Cassette’s
(ArrayIt, TeleChem International, Sunnyvale, CA) using
the 2× formamide-based hybridization buffer. Unbound
cDNA was removed by washing following Genisphere’s
instructions. Hybridization of the 3DNA Capture reagent
containing the fluorescent dyes were performed using the
2× formamide-based hybridization buffer at 49°C for 4 h in
Hybridization Cassette’s, followed by washes to remove
nonspecific background. Hybridized slides were scanned
using a ScanArray5000XL (GSI Lumonics, Packard Biochip,
Packard BioScience, Billerica, MA) and the independent TIFF
images from each channel were analyzed using TIGR
Spotfinder (http://www.tm4.org/spotfinder.html) software
program and deposited with NCBI (GSE 8185).

Data analysis

To remove the nonspecific background signals, the raw data
were normalized with local regression technique LOWESS
(LOcally WEighted Scatterplot Smoothing) using the
MIDAS software tool (http://www.tm4.org/midas.html).
The LOWESS normalized dye-flips were then combined
to minimize any artifacts introduced by the Cy3 or Cy5
dyes. The resulting data were averaged over duplicate gene
features on each array for each replicate experiment. As
some genes are represented by two separate non-over-
lapping fragments, a gene may be detected by each
fragment. Therefore, they are defined as features so that
gene counts will not be over reported. All calculated gene
expression ratios were log2-transformed, and aflatoxin
biosynthetic gene expressions were examined by cross
comparison between experiments using TIGR MeV (http://
www.tm4.org/mev.html). Differentially expressed genes at
the 95% confidence level for each reference set were
determined by assuming the log2 ratios for each data set
from a normal distribution and by selecting genes with log2
(ratio) values >1.96 SDs from the mean. This filtration of
the significantly expressed genes was conducted using
MIDAS, and the resulting lists of the genes were examined
further by cross comparison between experiments using
TIGR MeV (http://www.tm4.org/mev.html).

Identification of the NAFDI04TV corresponding full-length
gene

NAFDI04TV, a glutathione S-transferase related gene, was
the only gene expressed at higher levels in the non-

aflatoxigenic progenies (see Results). BLAST search of
the A. flavus and Aspergillus oryzae EST and genome
sequence databases and BLASTX analysis were carried out
to identify the putative full-length gene (hcc). A 1.8-kb
region containing the hcc gene was amplified using High
Fidelity Platinum Supermix (Invitrogen) with primers
ATTGGTACCTCCAGTGGTTAGT AAGTAT (the KpnI
site is underlined) and TATAAGCTTCACTAAACAGA
CATCTAGC (the HindIII site is underlined). The PCR
products were digested with KpnI and HindIII and cloned
into the corresponding sites of pPTRII (TaKaRa, Japan),
which is an Escherichia coli–Aspergillus shuttle vector that
replicates autonomously in Aspergillus cells (Kubodera et
al. 2002). Clones containing the correct insert were verified
by PCR and sequencing.

Overexpression of hcc in aflatoxigenic A. flavus

Vectors containing pPTRII plus the hcc gene (pPTRII-hcc)
or pPTRII alone as a control were transformed into
A. flavus CA14. For protoplast preparation, spores were
inoculated into 100 ml of modified (2× glucose) Czapek
Dox (CD) broth at a concentration of 107 per milliliter. The
cultures were shaken at 200 rpm for 17 h at 30°C. The
resulting mycelia were harvested using a 40-µm nylon cell
strainer (BD Biosciences, Bedford, MA) and washed
several times with a sterile 0.8 M NaCl solution. Approx-
imately 2 g mycelium was resuspended in 40 ml enzyme
digestion solution and incubated in a rotary incubator
(65 rpm) at 30°C. The filter-sterilized enzyme solution
consisting of 400 mg of lysing enzymes, 100 mg driselase,
β-glucuronidase, 0.8 ml cell wall degrading complex (all
purchased from Sigma), and 800 µl of 1 M CaCl2 to 40 ml
0.8 M NaCl solution buffered with 10 mM sodium
phosphate at pH 6.0. The digestion was allowed to progress
for 4 h before protoplasts were harvested by filtering through
a 40-µm nylon cell strainer. The protoplasts were pelleted at
2,000 rpm for 5 min, washed twice with the 0.8 M NaCl
solution, and resuspended in 200 µl of solution no. 1 (0.8 M
NaCl, 10 mM CaCl2, 10 mM Tris–HCl, pH 8.0) followed by
the addition of 40 µl of solution no. 2 [40% (w/v) PEG4000,
50 mM CaCl2, 50 mM Tris–HCl, pH 8.0]. Approximately,
0.5 g plasmid DNA (pPTRII-hcc or pPTRII) was used in
each transformation experiment. The resulting transforma-
tion mixtures were mixed gently and placed on ice for
30 min before 1 ml of solution no. 2 was added. The
mixtures were then incubated at room temperature for
15 min before 8.5 ml of solution no. 1 was added. The
tubes were centrifuged for 5 min at 2,000 rpm to remove
PEG. A soft-agar overlay method was used for protoplast
regeneration. The protoplasts were incorporated into 8 ml of
warm soft CD selection media (CD in 0.8 M NaCl with
0.5% agar and pyrithiamine added at a final concentration of
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0.1 µg/ml). Two milliliters of the protoplast-containing
medium was loaded on top of each of four prepared CD
selection (1.5%) agar plates. The solidified plates were
incubated at 30°C. Pyrithiamine resistant transformants were
single spored using a transfer needle and streaked onto fresh
CD selection medium plates.

Quantitation of the hcc gene expression in A. flavus
transformants

The expression levels of four pPTRII-hcc transformants and
four pPTRII control transformants were determined by real-
time reverse transcriptase (RT)-PCR in an iCycler iQ5
Multicolor Real Time PCR Detection System (Bio-Rad,
Hercules, CA). Stationary cultures were grown for 48 and
72 h on Cove’s liquid medium (Cove 1976) supplemented
with 0.5% casamino acids and containing pyrithiamine at a
final concentration of 0.1 µg/ml. Total RNA was extracted
using TRIzol® reagent (Invitrogen) and treated with DNase
I. First stranded cDNA was synthesized with a Super-
Script™ III First Strand kit (Invitrogen). The quantitative
real-time RT-PCR was performed using SYBR Green I. The
sequences of the 18S ribosomal RNA primers are CA
TTACCGAGTGTAGGGTTCCTAG and CCGCCGAA
GCAACTAAGG. The sequences of the hcc gene primers
are HCC-383F: TTGTGACGACTGATGGGTTT and
HCC-499R: TTCTGTCAGACGGAGTTTGG. Amplifica-
tion conditions were as follows: an initial denaturation step
at 95°C for 3 min, followed by 40 cycles, each consisting of

denaturation at 95°C for 10 s, annealing at 55°C for 30 s
and extension at 72°C for 15 s. A melt curve analysis
consisting of one step at 95°C for 1 min, one step at 55°C
for 1 min, and one step of 81 cycles at 55°C for 30 s was
carried out to confirm the specificity of the PCR products.
All samples were determined in triplicate. Gene expression
levels were normalized to A. flavus 18S rRNA gene
expression levels at each time point.

Results

Transcription profile of the aflatoxin genes

A total of 5,086 features were expressed across all
experiments of the aflatoxigenic parental strains and
nonaflatoxigenic progenies. Included in these 5,086 are
representative fragments from all aflatoxin biosynthetic
and regulatory genes, except aflA (fas1) and aflY (hypA),
designed from the previously reported aflatoxin gene
cluster (Ehrlich et al. 2005; Yu et al. 2004a). To determine
whether loss of aflatoxin production by the progenies was
related to changes in the expression levels of genes
involved in aflatoxin biosynthesis, we analyzed the
microarray expression data of these aflatoxin biosynthetic
and regulatory genes using TIGR MeV. As seen in Table 1,
the aflatoxin pathway genes aflC (pksA), aflF (norB), aflG
(avnA), aflI (avfA), aflJ (estA), aflK (vbsA), aflL (verB),

Table 1 Log2 values of aflatoxin biosynthetic and regulatory genes detected across all experimentsa

Geneb 48 h D vs Ac 48 h G vs Bc 48 h J vs Cc 72 h D vs Ac 72 h G vs Bc 72 h J vs Cc

aflC (pksA) −0.207 0.108 −0.033 0.197 −0.051 −0.071
aflF (norB) −0.200 0.240 −0.024 0.080 0.063 −0.320
aflG (avnA) 0.146 0.155 0.412 0.243 0.133 0.302
aflI (avfA) −0.328 −0.090 0.042 −0.067 0.029 −0.297
aflJ (estA) 0.230 0.116 0.090 0.199 0.070 −0.025
aflK (vbsA) 0.114 0.049 −0.038 0.079 0.066 −0.117
aflL (verB) 0.053 0.291 −0.215 0.073 0.501 −0.402
aflN (verA) −0.001 0.221 −0.092 −0.082 0.161 0.056
aflO (omtB) −0.072 0.124 −0.495 0.190 0.015 −0.201
aflQ (ordA) −0.145 −0.063 0.146 −0.046 −0.001 -0.002
aflW (moxY) −.246 0.128 −0.056 −0.071 0.220 −0.026
glcA −0.290 −0.094 −0.106 0.228 −0.011 0.091
hxtA 0.027 −0.052 −0.016 0.030 −0.062 −0.051
nadA 0.075 −0.042 −0.716 −0.168 −0.231 0.221
aflS (aflJ) −0.053 −0.190 0.142 0.029 −0.081 −0.109
aflT −0.027 0.006 −0.123 0.103 0.172 0.123
laeAd −0.032 −0.404 −0.102 0.334 −0.199 −0.001

a Values are log2-transformed data of expression ratios after data normalization, average of dye-flip, and in-slide replications.
b Nomenclature from Yu et al. (2004a), named first according to location on cluster and secondary (in parentheses) by function
c Strain names are abbreviated A, B, and C respectively for the aflatoxigenic Aspergillus flavus NRRL 29459, NRRL 29474, and NRRL 29499,
and D, G, and J, respectively, for the nonaflatoxigenic progeny strains A. flavus 29459B-20-2, 29474A-20 and 29499A-20.
d laeA is short for lack of aflR expression (Bok and Keller 2004).
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aflN (verA), aflO (omtB), aflQ (ordA), aflS (aflJ), and aflW
(moxY) were detected in all experiments. The immediately
adjacent sugar cluster genes glcA, hxtA, and nadA (Yu et
al. 2000), the transporter gene aflT located in the aflatoxin
gene cluster (Chang et al. 2004), and the global regulator
laeA (Bok and Keller 2004) were also detected in all
experiments (Table 1). Several genes detected in most, but
not all, experiments were aflE (norA), aflH (adhA), aflU
(cypA), aflV (cypX), aflX (ordB), aflB (hexB), and hypB.
The aflatoxin biosynthetic gene aflM (ver1) was not
detected in any experiment. Also detected were several
aflatoxin biosynthetic and regulatory gene EST sequences
that are assigned function based upon the A. oryzae
genome. These sequences include three representations
of aflD (nor1) NAFAD40TV (TC8486), NAGAV36TV
(TC8486), and NAGBP59TV (TC8487); two aflJ-like
sequences NAFDK34TV (TC10671) and NAFFA10TV;
two tentative norsolorinic acid reductase genes
NAFCL59TV (TC9797) and NAFER13TV (TC8710) that
do not correspond to nor1, norB, or norA,; a hypB-like
sequence NAGDO61TV; and an aflR-like sequence
NAFCO59TV (TC9969) (data not shown).

Genes differentially expressed in aflatoxigenic parents
and their nonaflatoxigenic progenies

The distribution of the overlapping ESTs among the three
aflatoxigenic parental/nonaflatoxigenic progeny sets is
shown in Fig. 1. After filtration of the ESTs and

examination by cross comparison using TIGR MeV, 22
significantly expressed features were identified as being in
common for the three parental/progeny combinations
(Table 2). Of the 22 features, several are located on the
same TC (tentative consensus) sequence. For example,
NAFBK48TV and NAGAT11TV are on TC8344,
NAFDM52TV and NAFBX71TV are on TC8370, and
NAFAG10TV and NAGAH49TV are on TC10579. The
chromosomal map of A. flavus is not yet available;
however, due to the high similarity between A. oryzae and
A. flavus, it is possible to map these genes using the A.
oryzae chromosomal map (Payne et al. 2006). Using the A.
oryzae RIB40 genome sequence (http://www.bio.nite.go.jp/
dogan/MicroTop?GENOME_ID=ao), we confirmed that
some of the TCs reside on the same physical spots or
are located in the same vicinity on certain chromosomes
(Table 3). The three TCs (8341, 8344, and 8352) and the
two TCs (8370 and 11819) are at identical locations on
chromosomes 2 and 1, respectively. TC9625 and the
singleton NAFDK60TV are less than 3 kb apart. Others
on chromosomes 1 and 6 are scattered within 300–400 kb
regions (Table 3). After consolidation by physical
mapping, the number of unique genes was reduced to 16.

Overexpression of a glutathione S-transferase relative gene
in aflatoxigenic A. flavus

Of the 16 unique genes, the functions of the majority are
not clear. Only the singleton NAFDI04TV showed in-
creased expression levels in the nonaflatoxigenic progenies
relative to the aflatoxigenic parental strains. To determine if
NAFDI04TV plays a direct role in regulation of aflatoxin
biosynthesis, the full-length gene was isolated and se-
quenced (GenBank Accession No. EF512548).

The full length gene corresponding to NAFDI04TV
contains three introns and encodes a polypeptide of 217
amino acids. This predicted protein is homologous to
members in the glutathione (GSH) S-transferase kappa
(GSTK) subfamily and is closely related to the bacterial
enzyme, 2-hydroxychromene-2-carboxylate isomerase. Due
to this similarity, the gene NAFDI04TV was tentatively
named hcc. To characterize the role of hcc in relation to
morphological changes and/or aflatoxin production, we
overexpressed hcc in aflatoxigenic A. flavus CA14. Com-
pared to the averages of the four pPTRII control strains, the
average hcc expression levels from the four pPTRII-hcc
transformants were 6.0- and 8.7-fold at 48 and 72 h,
respectively. No discernible changes in culture morphology
or aflatoxin production were observed between the control
and the hcc overexpression transformants when grown on
agar plates of CD, CD supplemented with 0.5% casamino
acids, or Cove’s medium containing ammonium as the sole
nitrogen source (data not shown).

67

3095

22

D vs. A

G vs. BJ vs. C

2612

10

Fig. 1 Venn diagram representing genes showing differential expres-
sion from microarray experiments comparing aflatoxigenic parental
strains A. flavus NRRL 29459, NRRL 29474, and NRRL 29499 (A, B,
and C, respectively) and nonaflatoxigenic progenies A. flavus 29459B-
20-2, 29474A-20, and 29499A-20 (D, G, and J, respectively). Genes
are expression ratios of log2-transformed data differentially expressed
at the 95% confidence level. Cross comparison using TIGR MeV
corresponds to the 22 significantly expressed features identified as
being in common for the three combinations (all shown in Table 2)
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Discussion

Gene expression difference among individuals within a
population can vary significantly (Oleksiak et al. 2002;
Townsend et al. 2003). These individual variations when
considered with the multiple environmental factors that can
modulate aflatoxin biosynthesis make the task of identify-
ing and isolating regulatory factors a difficult prospect. In
our efforts to understand the important phenomena of
aflatoxin regulation, we have investigated three indepen-
dent sets of the A. flavus parent/progeny combination in
which the progenies had lost their ability to produce
aflatoxins after serial transfers. By examining three inde-
pendently derived nonaflatoxigenic strains, we avoided
biases that result from single-strain comparisons.

By comparing multiple strains and minimizing variation
due to environmental factors, we have reduced the number
of common features (ESTs) between parental and progeny
strains (Fig. 1, Table 2). This is clearly seen when numbers
of significant common features are compared to other
recent microarray studies using the same platforms.
Numbers of common features reported in other studies are
77 (Wilkinson et al. 2007a), 56 (Wilkinson et al. 2007b),

144 (O’Brian et al. 2007), 136 (Cary et al. 2007), and over
80 (Wilkinson et al. unpublished data). Only the studies on
the aflR deletion strain of A. parasiticus by Price et al.
(2006) was a small, but significant group of 23 genes
detected as differentially expressed, with 18 identified
within the aflatoxin cluster itself.

These microarray analyses (Price et al. 2006) comparing
wild-type and aflR-deleted A. parasiticus strains showed
that expression of aflatoxin biosynthetic genes were at least
fourfold higher in the wild type. Our comparisons of the A.
flavus parental strains to the nonaflatoxigenic progenies
showed multiple changes in expression of both biosynthetic
and regulatory genes (Table 1). Examinations of maximal
changes of expression between experiments at the log2
scale showed that omtB expression at 48 h for J vs C to be
−0.495 and verb at 72 h for G vs B to be 0.501, and
changes in the majority of other expressed aflatoxin genes
are far below this level (Table 1). However, none of these
aflatoxin biosynthetic genes were found to be significantly
different by our defined parameters. These results suggest
that loss of aflatoxin production by the progenies is not
caused directly by altered expression levels of the aflatoxin
biosynthesis genes. Serial transfers of non-sporulating

Table 2 Log2 values of the 22 significantly expressed features identified by TIGR MeVa

EST numberb TC
numberb

Putative function 48 h 72 h

D vs Ac G vs Bc J vs Cc D vs Ac G vs Bc J vs Cc

NAFCB55TV Unknown −1.46 −1.18 −1.07 −1.58 −1.06 −0.89
NAFDI04TV Related to glutathione S-transferase

subunit
0.81 1.72 2.39 0.85 1.31 2.04

NAFDK60TV Methylenetetrahydrofolate dehydrogenase −2.32 −2.10 −2.25 −2.49 −2.50 −2.09
NAGAU64TV TC8341 Unknown −2.68 −2.79 −3.18 −1.03 −2.37 −3.48
NAFBK48TV TC8344 Unknown −2.26 −3.04 −3.79 −2.53 −2.44 −3.61
NAGAT11TV TC8344 Unknown −2.12 −1.73 −1.78 −2.04 −1.46 −1.95
NAFDN77TV TC8352 Unknown −2.80 −2.65 −3.04 −2.59 −2.19 −3.55
NAFDM52TV TC8370 Unknown −2.14 −2.46 −3.07 −1.38 −1.77 −2.47
NAFBX71TV TC8370 Unknown −1.63 −2.06 −2.89 −1.79 −1.49 −2.42
NAFCD80TV TC8646 Unknown −1.19 −1.00 −0.65 −1.08 −0.65 −1.42
NAFCC04TV TC9110 Isocitrate lyase −2.74 −1.26 −1.29 −2.18 −1.32 −1.98
NAGDL82TV TC9112 Unknown −2.48 −1.52 −1.49 −2.19 −1.41 −1.10
NAFAH32TV TC9364 Integrin-like repeats −3.14 −3.37 −2.26 −2.37 −2.01 −2.16
NAFDK57TV TC9625 Unknown −2.54 −1.34 −1.53 −2.59 −1.74 −1.17
NAGDF31TV TC9632 Unknown −1.75 −1.06 −2.22 −1.87 −1.65 −2.13
NAFAG10TV TC10579 Unknown −1.10 −2.25 −2.44 −1.21 −2.34 −1.73
NAGAH49TV TC10579 Unknown −0.86 −1.92 −1.66 −1.07 −2.16 −1.98
NAGCY65TV TC10658 Unknown −1.90 −1.69 −2.12 −1.83 −2.12 −1.96
NAGEF45TV TC10748 Kinesin light chain −1.00 −1.16 −0.85 −0.50 −1.17 −1.58
NAFDR19TV TC11018 Cytochrome P450 −0.85 −0.79 −1.46 −0.51 −0.58 −1.64
NAFDY45TV TC11819 Unknown −1.67 −2.17 −1.99 −1.48 −1.44 −1.64
NAGDM14TV TC11938 EsdC (cell development) −2.67 −1.84 −1.66 −2.49 −2.06 −1.33

a Genes are expression ratios of log2-transformed data and are average of dye-flip replications differentially expressed at the 95% confidence level.
b DNA sequence labels correspond to expressed sequence tag (EST) and tentative consensus sequences (TC) as per the DFCI A. flavus Gene Index
(http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=a_flavus).
c Strain designations are same as Table 1.
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mycelial macerates of A. parasiticus sec+ (for secondary
metabolism plus) strains also yielded sec− variants that
exhibit altered phenotypes and an inability to produce
aflatoxin intermediates (Kale et al. 1996). As in the results
of the present study, these sec− variants still produce
transcripts of aflatoxin genes, such as aflR, aflD, and aflP
(Kale et al. 2003).

Although only a few microarray studies have been
conducted on A. flavus and A. parasiticus, it is important
to note that more than half of the differentially expressed
genes identified in this study are also described as
significant in several other studies (Table 3) (Wilkinson et
al. 2007a, b; Cary et al. 2007; O’Brian et al. 2007). Of
these, only three, TC9364, TC11018, and TC11938, have
been assigned tentative functions. In addition, of the 15
genes showing reduced expression in the progenies, many
are apparently located in very close physical proximity.

As seen in Table 3, the TC8341/8344/8352 gene and
TC9364 are in close proximity on chromosome 2, while the
TC8370/11819 forms a cluster on chromosome 1 with
NAFDK60TV, TC9625, TC10658, TC9110, and
NAFCB55TV. A second cluster of TC9112, NAFDI04TV
(hcc), TC8646, and TC11938 are found on chromosome 6.
Although most of the functions of these genes are not yet
known, some, if not all, genes in relatively close proximity
may be subject to similar levels of regulation or selection.

Of the genes with assigned functions, TC9364 encodes
an integrin-like protein. The expression of TC9364 in A.
flavus was significantly decreased when grown in YES
medium supplemented with tryptophan which decreases
aflatoxin production (Wilkinson et al. 2007a). It also was
differentially expressed by A. parasiticus sec− strains that
have lost the ability to produce aflatoxins (Wilkinson,
unpublished). Integrin is an integral membrane protein in
the plasma membrane of cells. A function of integrin
proteins is the signal transduction from the extracellular
matrix to the cell (Giancotti and Ruoslahti 1999). Nutritional
and physiological cues may trigger changes in primary
metabolism, cell cycle, and differentiation, and may indi-
rectly affect aflatoxin production. TC11938 is homologous to
esdC, a gene required for sexual development in Aspergillus
nidulans. Homologs of esdC also have been found in asexual
Aspergillus fumigatus, A. oryzae, Aspergillus niger, and A.
terreus. The findings of decreased expression of esdC by the
A. parasiticus sec− strains and the nonaflatoxigenic A. flavus
progenies suggest that esdC is involved in other processes
such as conidiation or growth.

Nonaflatoxigenic progenies A. flavus 29459B-20-2,
29474A-20, and 29499A-20 all exhibited a decrease in
conidiation on potato dextrose agar (PDA) plates (data not
shown). In addition, A. flavus 29474A-20 and 29499A-20
had white fluffy sectoring and reduced radial growth,
respectively. Loss of aflatoxigenicity has been correlated with
alterations in conidiation in A. parasiticus (Guzman-de-Pena
and Ruiz-Herrera 1997). In A. nidulans, conidiation increases
with each progressive step along the biosynthetic pathway to
sterigmatocystin, the penultimate precursor in aflatoxin
formation (Wilkinson et al. 2004). However, a decrease in
aflatoxin production by either A. flavus or A. parasiticus did
not cause changes in conidiation (Wilkinson et al. 2007a). No
known conidiation-specific genes or genes of the G-
protein signaling pathway that controls aflatoxin produc-
tion and conidiation (Hicks et al. 1997) were differentially
expressed in the nonaflatoxigenic A. flavus progenies. One
possibility that cannot be excluded is that some of these
genes might be overlooked because the A. flavus cDNA
microarray represents only about 40% of the total genes
transcribed.

The singleton NAFDI04TV (hcc) corresponds to a gene
encoding a predicted protein belonging to glutathione

Table 3 A. oryzae chromosomal location of significantly expressed
microarray featuresa

A. flavusb A. oryzae
chromosome/
SC numberc

Position in SCc Other studiesd

TC11819 1/009 245,866–245,206
TC8370 1/009 245,888–245,206 Trp, sec−
NAFDK60TV 1/009 374,971–374,192
TC9625 1/009 377,760–378,200
TC10658 1/009 405,702–405,206 Trp, veA
TC9110 1/009 595,140–595,831
NAFCB55TV 1/009 794,785–794,182
TC8341 2/001 187,831–188,740 Trp, sec−
TC8344 2/001 187,878–188,571 Trp, sec−
TC8352 2/001 187,885–188,571 Trp, sec−
TC9364 2/003 2,540,207–2,539,082 Trp, sec−
TC9632 4/012 109,631–108,930
TC10579 4/102 412,057–412,784 Temp
TC10748 5/111 2,261,532–2,260,699
TC9112 6/020 1,121,773–1,122,740 sec−
NAFDI04TV 6/038 1,232,903–1,233,318
TC8646 6/038 1,383,256–1,383,890 veA
TC11938 6/038 1,547,898–1,548,640 sec−
TC11018 8/103 1,242,950–1,241,741 veA

a Location determined using A. oryzae RIB40 genome sequence
(http://www.bio.nite.go.jp/dogan/MicroTop?GENOME_ID=ao)
b DNA sequence labels correspond to expressed sequence tag (EST)
and tentative consensus sequences (TC) as per the DFCI A. flavus
Gene Index (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?
gudb=a_flavus).
c Chromosome number, supercontig (SC) number and the nucleotide
positions in A. oryzae SC corresponding to the indicated A. flavus TC
or singleton are shown.
d In previous and ongoing microarray studies, genes have been
detected as significant, Trp (Wilkinson et al. 2007a), sec−
(Wilkinson et al. unpublished), veA (Cary et al. 2007), and Temp
(O’Brian et al. 2007).
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(GSH) S-transferase kappa (GSTK) subfamily (Nebert and
Vasiliou 2004). GSTK is a member of the GST family but
has little sequence similarity to the other members of the
family. It catalyzes the transfer of the thiol group of GSH to
electrophilic substrates and is specifically located in the
mitochondria and peroxisomes. GSTK is presumed to have
a protective role during respiration when large amounts of
reactive oxygen species (ROS) are generated.

A series of oxidative steps are involved in the formation
of dihydrobisfuran that leads to the formation of highly
oxygenated aflatoxins by Aspergillus species. A lack of
exposure to competitive and stressed conditions in nature
may contribute to A. flavus losing aflatoxin production
and wild-type morphological characters in the laboratory
(Bilgrami et al. 1988). Horn and Dorner (2002) showed in
a series of laboratory experiments that adverse environ-
mental conditions (high temperature, low pH, and nutrient
deprivation), but not competition with yeast and fila-
mentous fungi, help maintain aflatoxigenicity over suc-
cessive generations during serial transfers. The adaptive
value of aflatoxin production is not fully understood, but
synthesis of aflatoxins may act as a defense mechanism
against oxidative stress. Studies have demonstrated that
antioxidants reduce aflatoxin production (Kim et al. 2006)
and that a positive correlation exists between ROS
accumulation and aflatoxin production by A. flavus and
A. parasiticus (Mahoney et al. 2006; Narasaiah et al.
2006; Reverberi et al. 2005). Thus, an elevated level of
GSTK activity may help to combat the oxidative stress
caused by ROS accumulation when the progenies have
lost the ability to synthesize aflatoxins after serial transfers
on nutrient-rich PDA medium.

Genome-wide comparison studies have shown that the
majority of differentially expressed genes identified are
apparently not correlated with a particular phenotype and
that a phenotype may be affected by interactions among
multiple genes (Fay et al. 2004; Lehner 2007; Yoshimoto et
al. 2002). Similarly, we showed that the single gene
(NAFDI04TV termed hcc), identified as exhibiting signif-
icantly increased expression in three separately derived
nonaflatoxigenic A. flavus progenies, does not directly
control aflatoxin biosynthesis, but instead, may play a role
in combating oxidative stress. However, confirmation of
this specific gene’s involvement in oxidative stress or other
physical adaptation must await further functional analyses.
In addition, we have identified a subset of genes that appear
significant through the various A. flavus and A. parasiticus
microarray experiments. These include multiple unknowns,
esdC (TC11938) and an integrin-like gene (TC9364) that
await future characterization to help resolve the complex
expression networks associated with A. flavus aflatoxin
biosynthesis.
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