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Abstract Enzymes are able to perform reactions under mild
conditions, e.g., pH and temperature, with remarkable chemo-,
regio-, and stereoselectivity. Because of this feature, the
number of biocatalysts used in organic synthesis has rapidly
increased during the last decades, especially for the production
of chiral compounds. The present review highlights biotech-
nological processes for the production of chiral alcohols by
reducing prochiral ketones. These reactions can be catalyzed
by either isolated enzymes or whole cells that exhibit ketone-
reducing activity. The use of isolated enzymes is often
preferred because of a higher volumetric productivity and
the absence of side reactions. Both types of catalysts have also
deficiencies limiting their use in synthesis of chiral alcohols.
Because reductase-catalyzed reactions are dependent on
cofactors, one major task in process development is to provide
an effective method for regeneration of the consumed
cofactors. In this paper, strategies for cofactor regeneration
in biocatalytic ketone reduction are reviewed. Furthermore,
different processes carried out on laboratory and industrial
scales using isolated enzymes are presented. Attention is
turned to process parameters, e.g., conversion, yield, enantio-
meric excess, and process strategies, e.g., the application of
biphasic systems or methods of in situ (co)product recovery.
The biocatalytic production of chiral alcohols utilizing whole

cells is presented in part II of this review (Goldberg et al., Appl
Microbiol Biotechnol, 2007).
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Introduction

Today, chiral compounds are the most important building
blocks in the chemical and pharmaceutical industry for the
production of, for example, chemical catalysts, liquid crystals,
flavors, agrochemicals, or drugs (Daußmann et al. 2006a).
Optical active secondary alcohols are especially widely used
as intermediates for the introduction of chiral information
into the product. In the industry, usually well-established
chemical methods are used (Blaser et al. 2003), but in the
last decades, the interest for creating stereogenic centers by
applying biocatalytic methods has risen (Honda et al. 2006).
In particular, the number of industrial processes using
alcohol dehydrogenases (ADHs) is increasing (Breuer et al.
2004; Buchholz and Gröger 2006; Liese et al. 2006). These
biocatalysts, used as isolated enzymes or whole cells,
catalyze the stereoselective reduction of prochiral ketones
with remarkable chemo-, regio-, and stereoselectivity (Fig. 1;
Wandrey 2004).

Biocatalytic production of chiral alcohols

The biocatalytic production of chiral alcohols is possible
following several pathways. Examples with enzymes from
the classes oxidoreductases (EC 1), hydrolases (EC 3), and
lyases (EC 4) are described in literature (Fig. 2).

Oxidoreductases catalyze redox reactions; thus, the
transfer of electrons from or to the substrate. The reduction
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of ketones by, for example, ADHs (Peters 1998; also
referred to as carbonyl reductases [CR] or ketone reduc-
tases) is the issue of this review and will be explained in
detail later. Moreover, alcohols can also be obtained by
oxidation of CH bonds by monooxygenases (van Beilen
et al. 2003).

Hydrolases play the most important role in industrial
enzymatic processes (Liese et al. 2006). Between 1987
and 2003, around 60% of the published articles were
dealing with enzymes of this class (Faber 2004). The
lipases as a subgroup of the hydrolases catalyze the
hydrolytic cleavage of the carbon–oxygen single bonds
in esters or analogous carboxylic derivatives to produce
acids and alcohols (Bornscheuer et al. 1994; Jaeger et al.
1997; Reetz et al. 1997; Jaeger and Eggert 2002; Detry et
al. 2006; Elend et al. 2006). In most cases, chiral products
are obtained by the (dynamic) kinetic resolution of
racemic mixtures.

Alcohols can also be obtained by using phosphate or
sulphate esters as a substrate for phosphatases or sulpha-
tases (Wallner et al. 2005), respectively. However, these

enzymes are only rarely used for the production of alcohols
(Faber 2004).

Lyases catalyze the formation of carbon–carbon bonds.
By setting ketones or aldehydes as a substrate, alcohols are
available (Adam et al. 1999; Pohl and Liese 2006). A
widespread catalyst for this reaction is the benzaldehyde
lyase (BAL), which produces hydroxyketones from two
aldehydes (Demir et al. 2002; Kihumbu et al. 2002;
Kurlemann and Liese 2004; Domínguez de María et al.
2006; Hildebrand et al. 2006; Stillger et al. 2006).

Other examples are the pyruvate decarboxylase, which
couples, for example, acetaldehyde and benzaldehyde to
phenylacetylcarbinol (Rosche et al. 2002; Leksawasdi et al.
2004) or the deoxyriboaldolase that is able to catalyze the
aldol condensation with chloroacetaldehyde with two
molecules of acetaldehyde in the industrial production of
statines (Liu et al. 2004; Müller 2005).

Another group of enzymes to be mentioned are the
hydroxynitrile lyases. The coupling of ketones with
hydrogen cyanide leads to nitrile substituted alcohols
(Griengl et al. 1997; Avi et al. 2004; Fechter and Griengl
2004; Gaisberger et al. 2004).

Cofactor regeneration

The majority of ADHs are dependent on the nicotinamide
cofactors β-1,4-nicotinamide adenindinucleotide (NADH)
or β-1,4-nicotinamide adenindinucleotide phosphate
(NADPH). Rarely, enzyme-bound cofactors from the group
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of the flavines (FAD; Walsh 1980) or methoxatines
(pyrroloquinoline quinine, PQQ; McWhirter and Klapper
1990) are found. Because all these cofactors are too
expensive to be used stoichiometrically—with prices
ranging from €1,300 per mol for NAD+ to more than
€2,700,000 per mol for PQQ (Leonida 2001)—there has
been significant interest in developing efficient cofactor
regeneration processes (Wichmann and Vasic-Racki 2005;
Lütz 2006). FAD- and PQQ-dependent enzymes are
seldomly used in preparative synthesis (Liese et al. 2006)
and thus not considered in this review.

Cofactor regeneration is carried out parallel to the
conversion of substrate to product (Fig. 3). In the case of
the ADHs, the production of NADPH can be carried out by
means of chemical, electrochemical, photochemical, and
enzymatic methods. A further approach to cofactor regener-
ation in whole-cell biotransformation processes is the usage
of the metabolism of cultivated or resting cells utilizing
glucose or other compounds as nutrient (Haberland et al.
2002).

Electrochemical regeneration

Cofactors only switch between the oxidized and reduced
state, so electrochemical methods are appealing. Direct
cathodic reduction (Simon et al. 1985; Biade et al. 1992) of
NADP+ suffer from low regioselectivity and side reactions
because of high overpotentials (Hollmann and Schmid
2004). Therefore, organic and metal containing electron
shuttles for the transfer of electrons between electrode and
NADP+ or NADPH, respectively, were developed (Steckhan
et al. 1990, 1991).

Typical organic electron shuttles (Fig. 4) are based on large
conjugated systems. In the case of methyl viologen (MV, 1),
enzymes like ferredoxin NADP+ reductase for NADPH or
diaphorase for NADH are necessary to transfer the reduction
equivalents from the viologen to NADP+ (Yuan et al. 1997).

In the glycerol dehydrogenase-catalyzed oxidative reso-
lution of racemic 1,2-diols 2,2′-azino-bis(3-ethylbenzothia-
zoline-6-sulfonate (2) is applied to regenerate NAD+

(Schröder et al. 2003; Degenring et al. 2004). Further
examples are 1,10-phenanthroline-5,6-dione (3) or its N-
monomethylated derivatives (Hilt et al. 1997).

Besides the application of organic reduction equivalents,
metal-containing electron shuttles were described: for
example, [Cp*Rh(bpy)(H2O)]

2+ (Cp*=C5Me5, bpy=2,2′-
bipyridine) performs fast and quantitative reductions of
NADP+ to NADPH (Steckhan et al. 1990; Vuorilehto et al.
2004; Hollmann et al. 2006).

Chemical regeneration

Inorganic salts like sodium dithionite (Na2S2O4; Jones et al.
1972) offer easy handling but suffer at the same time from
enzyme deactivation processes at higher salt concentrations
(Raunio and Lilius 1971).

Since the 1980s, the first examples utilizing hydrogen and
metal complexes (Abril and Whitesides 1982; Wagenknecht
et al. 2003) were described. More often than not, late
transition metals like rhodium, ruthenium, and platinum and
their complexes are applied.

A similar approach is the combination of a platinum
carbonyl cluster with the dye safranine (4, Fig. 5) in a two-
phase system (Bhaduri et al. 1998; Lütz 2006).

Photochemical regeneration

Homogeneous photosensitizers such as ruthenium or zinc
complexes, dyes like methylene blue, and heterogeneous
semiconductor powders and colloids like cadmium sulfide
or titanium dioxide have been used for the light-induced
production of methyl viologen and subsequent regeneration
of NADPH in the presence of dihydrolipoamide dehydro-
genase or ferredoxin reductase, respectively (Julliard 2004;
Willner et al. 1990; Rickus et al. 2002).

Enzymatic regeneration

For this method, there are two different approaches: the
enzyme-coupled and the substrate-coupled process
(Hummel and Kula 1989).

The enzyme-coupled approach uses a sacrificial cosub-
strate that is converted by a second enzyme in the opposite
redox direction. Several methods are established in litera-
ture, some examples are explained in detail:

– Formate oxidation by formate dehydrogenase (FDH)
A widespread NADPH regeneration system is the

oxidation of formate to carbon dioxide by FDH
(Hummel and Kula 1989; Seelbach et al. 1996;
Tishkov et al. 1999). A process for the production
and purification of FDH from Candida boidinii in large
scale has been developed (Weuster-Botz et al. 1994),
and the enzyme is used in the industrial production of
L-tert-leucine (Bommarius et al. 1995). Advantages are
inertness, readily removal of the coproduct carbon
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dioxide and thereby a favorable thermodynamic equi-
librium, good availability, low cost of the FDH, and the
cheap cosubstrate formate. In some cases, the change
of pH during the cofactor regeneration causes inhibi-
tory effects (Nidetzky et al. 1996); this can be
overcome by applying a fed-batch process (Neuhauser
et al. 1998). Most of the FDHs are NADH dependent,
while many ADHs are NADPH dependent. In most
cases, the lower activity of the FDH towards NADPH
is tolerated (Ernst et al. 2005). An approach to
overcome this drawback is the use of transhydroge-
nases that can move reduction equivalents between
NADH and NADPH (Weckbecker and Hummel 2004).

– Glucose dehydrogenase (GDH) or glucose-6-phosphate
dehydrogenase (G6PDH)
The GDH or G6PDH oxidizes the cosubstrates

glucose or glucose-6-phosphate, respectively, and is
suited for the regeneration of NADPH (Kizaki et al.
2001; Weckbecker and Hummel 2005). Both enzymes
are rather inexpensive, highly active, and stable.
Because of the hydrolysis of the coproducts glucono-
lactone or 6-phosphogluconolactone to the corres-
ponding acids, the reaction is nearly irreversible. The
natural preference for NADP+ is a benefit for the use of
these enzymes as cofactor-regenerating enzymes. A
drawback is the high cost of glucose-6-phosphate and
the demand for permeabilization when whole cells are
applied as biocatalysts (Makino et al. 1989; Kataoka
et al. 1998).

– Alcohol oxidation by ADH
For the enzyme-coupled cofactor regeneration ap-

plying a second ADH, only few examples are known
(Leonida 2001). The reduction of pyruvate to L-lactate
can also be used for the cofactor regeneration in
enzyme-coupled processes (Kim and Whitesides
1988; Liese et al. 1996).

– Direct reduction of NADP+ with hydrogen/hydrogenase

Hydrogenases are bidirectional enzymes that catalyze
the production and oxidation of molecular hydrogen. The
direct regeneration of NADPH using this enzyme is
probably the most elegant solution, as the molecule is
consumed completely and no coproduct is formed
(Klibanov and Puglisi 1980; Wong et al. 1981; Greiner
et al. 2003; Mertens et al. 2003; Mertens and Liese 2004).

– Phosphite dehydrogenase (PTDH)
The oxidation of phosphite to phosphate with the

concomitant reduction of NAD+ to NADH is another
approach to cofactor recycling (Vrtis et al. 2002). This
enzyme can also use NADP+ as a cofactor but with a
lower activity (Costas et al. 2001). PTDH has been
combined with several dehydrogenases such as lactate
dehydrogenase, horse liver alcohol dehydrogenase
(HLADH), malate dehydrogenase (Vrtis et al. 2002),
xylose reductase, and ADH (Johannes et al. 2007).

The enzyme-coupled process requires the application of
two enzymes at the same time. The substrate-coupled
approach, thus applying only one enzyme for the produc-
tion of the desired compound and the cofactor regeneration,
is a powerful alternative in comparison to the enzyme-
coupled approach (Tishkov et al. 1999; Stillger et al. 2002).

The auxiliary cosubstrate in the substrate-coupled pro-
cess for the production of chiral alcohols is in most cases 2-
propanol, which is oxidized to the coproduct acetone.
Because there is a competition between substrate, product,
cosubstrate, and coproduct, a thermodynamic equilibrium is
present; hence, the maximum conversion is limited by the
thermodynamics of the system. In situ (co)product removal
(ISPR) processes like organophilic pervaporation, gassing
out, reduced pressure, destillation, or crystallization can be
applied to shift the equilibrium (Lye and Woodley 1999;
Stark and von Stockar 2003; Takors 2004; von Scala et al.
2005; Buque-Taboada et al. 2006; Goldberg et al. 2006).

Reduction of prochiral ketones catalyzed by isolated
enzymes

The use of isolated enzymes as biocatalysts offers some
advantages in comparison to whole cells. Because of the
presence of only one or two enzymes (in case of enzyme-
coupled cofactor regeneration approaches), side reactions
can be avoided and thus the reduction of enantioselectivity.
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Therefore, downstream processing can be simplified. In
comparison to processes catalyzed by whole cells, diffusion
limitations do not occur. On the other hand, there is a need
for an addition of cofactors to the process when isolated
ADHs are applied. Furthermore, isolated enzymes may
show high sensibility towards high concentrations of
substrates and organic solvents (Liese et al. 1998; Schmid
et al. 2001; Villela et al. 2003). Advantages of isolated
dehydrogenases over their natural whole-cell biocatalysts
have been reviewed several times (Kula and Kragl 2000;
Hummel et al. 2003; Faber 2004). The decision on the
application of isolated enzymes or whole cells depends on
the specific requirements of the industrial reaction system.

The following section shows processes carried out in
industrial and laboratory scales using isolated ADHs in a
substrate-coupled approach or in combination with a second
enzyme for cofactor regeneration. Different strategies for
overcoming limitations and improving process parameters
like conversion and space–time yield as well as for
increasing the stability of biocatalysts should be pointed out.

Enzyme-coupled cofactor regeneration

Bristol-Myers Squibb uses an ADH from Acinetobacter
calcoaceticus as catalyst for the production of 6-benzyloxy-
(3R,5S)-dihydroxy-hexanoic acid ethyl ester, which is a key
chiral intermediate for anticholesterol drugs. Cofactor
NAD+ is added to the reaction medium together with
GDH that catalyzes the regeneration of NADH. The
producing ADH is applied as crude cell extracts. The
process is carried out in a batch process with a yield of 92%
and an enantiomeric excess (ee) of 99% (Patel et al. 1993).
Furthermore, Codexis published the use of ADH and
GDH, for example, for the production of ethyl-(S)-4-
chloro-3-hydroxybutyrate. The process is carried out with
almost complete conversion (>99.5%) and an ee greater than
99.9%. In this case, the enzymes have been optimized by
directed evolution to achieve the process goals (Davis et al.
2005).

There are several examples for the use of FDH as a
cofactor-regenerating enzyme in industrial biocatalysis.
Ciba Spezialitätenchemie AG uses (R)-lactate-NAD oxido-
reductase from Staphylococcus epidermis together with
FDH from C. boidinii for the synthesis of (R)-2-hydroxy-4-
phenyl-butyric acid. The process is carried out in a
continuously operated stirred tank reactor equipped with
an ultrafiltration membrane to retain the enzymes. To avoid
degassing of the side product CO2, which causes mechan-
ical force, a pressure of 3 bar is applied. The reaction is
carried out in a scale of 0.2 L with a space–time yield of
410 g L−1 day−1 and an ee of 99.9% (Schmidt et al. 1992).
The company Pfizer makes use of the same combination of
enzymes to produce (R)-3-(4-fluorophenyl)-2-hydroxypro-

panoate in an industrial scale. This reaction is also carried
out in a continuously operated enzyme membrane reactor
(EMR) with a scale of 2.2 L. This process is also
characterized by a good space–time yield of 560 g L−1

day−1 and an ee of 99.9% (Tao and McGee 2002).
The two described industrial processes with enzyme-

coupled regeneration of cofactors via FDH are both
characterized by a simple reactor setup and an easy reaction
strategy. Some interesting processes dealing with enzyme-
coupled cofactor regeneration via FDH and two phase
systems had been published, which are described in detail
below. The main goal of applying biphasic systems is the
feasibility of increasing the amounts of hydrophobic
substrates to reach higher productivities. Beside biphasic
systems, other methods like the usage of cyclodextrin-
containing buffers as reaction medium have been applied to
achieve higher concentrations of poorly soluble substrates
(Zelinski et al. 1999).

A simple way to create an aqueous/organic biphasic
system is the formation of microemulsions. Depending on
the mixture and temperature, small droplets of the non-
aqueous phase are dispersed in water, or in case of an oil-
rich emulsion, reverse micelles of water can be dispersed in
oil. Orlich et al. (2000) reported the application of reverse
micelles for ADH-catalyzed reduction of ketones in a
enzyme-coupled approach (Fig. 6). The microemulsion
contained water, cyclohexane, and Marlipal 013-16 as the
surfactant. The stability of the investigated ADHs and FDH
where both increased in comparison to former aqueous/
organic biphasic systems known from literature so far.
Furthermore, it was possible to perform successful semi-
batch experiments reducing a prochiral ketone (2-butanone)
in full conversion and enantioselectivity.

Liese et al. (1998) reported the enantioselective reduc-
tion of 2-octanone catalyzed by Candida parapsilosis CR
(CPCR). To increase the substrate solubility, an emulsion
membrane reactor was developed, which consists of two
reactor units. The first one was a stirred emulsion vessel in
which the aqueous phase was separated from the organic
phase by a hydrophilic ultrafiltration membrane. The
organic phase was pure substrate. The substrate saturated

Fig. 6 Reaction scheme in a reverse micelle
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the aqueous phase then entered an EMR where the substrate
2-octanone was reduced to (S)-2-octanol by the CPCR
(Fig. 7). By this reactor design, the product can by
extracted into the organic phase, which is beneficial for
the driving force of the reaction equilibrium and for
downstream processing. Furthermore, there is no direct
contact between the enzyme and an organic interphase. By
applying this reactor design, poorly soluble ketones can be
supplied in higher concentrations compared to reactor
systems with only one aqueous phase. In the emulsion
membrane reactor, conversion of 91%, a space–time yield
of 11 g L−1 day−1, and an ee greater than 99.5% were
obtained. In contrast to the latter two-phase reactor system,
a continuously operated EMR could be operated over a
period of more than 4 months at a space–time yield of
21.1 g L−1 day−1 (97% conversion, total turnover number
[ttn]=13.6) in the range of solubility of the reactants. In the
case of the emulsion reactor, the ttn could be increased to
124, because of the higher concentration of substrate that
can be applied. Furthermore, downstream processing was
simplified because the product is concentrated in the
organic phase.

To avoid direct contact between the aqueous and the
organic phase, biphasic systems can be operated with
membrane modules. Kruse et al. (1996) developed a
continuously operated reactor system of three main cycles.
The EMR cycle represents a continuously operated loop
reactor supplied with a hollow-fiber ultrafiltration mem-
brane. The hydrophobic product of the enzyme-catalyzed
process is extracted by means of a hydrophobic membrane
into the hexane cycle, making the recycling of the
hydrophilic cofactor possible in the NAD+ cycle. Thus,
the residence time of the cofactor can be decoupled from
the residence time of the substrate (Fig. 8). Chiral
hydrophobic alcohols like (S)-1-phenylpropan-2-ol, (S)-4-
phenylbutan-2-ol, and (S)-6-methylhept-5-en-2-ol have

been produced in this reactor setup by using ADH from
Rhodococcus erythropolis together with FDH from
C. boidinii. For the three processes, conversions of 72,
80, and 65% could be achieved. The ee was higher than
99% in all cases. The described reactor setup led to ttns for
NAD+ up to 1,350 molP mol�1

NAD; which means a 25-fold
increase in comparison to standard techniques without
cofactor retention (Kruse et al. 1996).

In a similar reactor performance the reduction of
acetophenone was carried out. The reaction was catalyzed
by CPCR in a enzyme-coupled approach with FDH. The
process has been compared to chemical borane reduction
using a homogeneously soluble polymer-bound oxazaboro-
lidine catalyst. The biological method yielded (S)-phenyl-
ethanol in ee >99% with a space–time yield of 88 g L−1 d−1.
Although the chemical methods provided higher space–time
yield (1,400 g L−1 d−1), it became obvious, that the chemical
method offers some disadvantages in terms of ee, which was
only 94%, and stability of the catalyst (Rissom et al. 1999).

Mertens et al. (2003) reported direct regeneration of
NADPH with a hydrogenase from Pyrococcus furiosus.
The enzyme is capable of generating the NADPH directly
from the oxidized NADP+ without producing any by-
products other than protons. Thus, the enzyme not only
offers the feasibility to catalyze the enzyme-coupled in situ
regeneration of NADPH but also the synthesis of NADPH.
By applying an ADH from Thermoanaerobium sp. together
with the hydrogenase from P. furiosus, acetophenone and
(2S)-hydroxy-1-phenyl-propanone have been reduced enan-
tioselectively to the corresponding alcohol with complete
conversion and an ee greater than 99.5%.

Substrate-coupled cofactor regeneration

For the use of isolated enzymes in biotransformation
processes with substrate-coupled cofactor regeneration, it

S

P

Stirred emulsion vessel Enzyme membrane reactor

Fig. 7 Flow scheme of the
emulsion reactor (EMR)
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is essential that the enzyme can withstand elevated
concentrations of cosubstrate. HLADH and ADH from
Lactobacillus brevis (LbADH; Hummel 1997) are known to
be able to operate at rather high alcohol concentrations. For
that reason, these enzymes were used as catalysts for the
enantioselective preparation of propargylic alcohols in a
substrate-coupled approach (Schubert et al. 2002). Recent-
ly, Kosjek et al. (2004) reported the purification and
characterization of a new chemotolerant ADH-‘A’ from
Rhodococcus ruber DSM 44541. This enzyme can with-
stand acetone concentrations up to 50% v/v and 2-propanol
concentrations even up to 80% v/v. Because of this feature,
this enzyme is a very interesting biocatalyst for synthesis in
a substrate-coupled process.

Successful efforts have been done to make biocatalysts
more stable against organic solvents. HLADH was crystal-
lized in the presence of NADH. The resulting crystals were
then treated with glutardialdehyde to yield cross-linked
enzyme crystals. These crystals exhibited high stability
towards organic solvents like 2-propanol in comparison to
solubilized HLADH (St. Clair et al. 2000).

A good operating stability can also be achieved by
immobilizing the ADHs. Hildebrand and Lütz (2006)
reported the reduction of acetophenone by immobilized
LbADH in a plug flow reactor. The enzyme has been
immobilized on Sepabeads®. By optimizing the immobili-
zation procedure, a 60-fold increase in stability in compar-
ison to soluble enzyme could be achieved. With the
immobilized LbADH, a plug-flow-reactor could be operat-
ed for more than 10 weeks. During that time, conversion
could be held constant at 60% with an ee greater than
99.5% and a space–time yield of 30 g L−1 day−1.

Isolated LbADH was also applied for the reduction of
more complex ketones in a substrate-coupled cofactor
regeneration approach. 5-Hydroxy-3-oxocarboxylates are
valuable intermediates in the synthesis of chiral building
blocks such as 3,5-dihydroxycarboxylates and β-keto
δ-lactones. A preparative-scale reduction of tert-butyl
3,5-dioxohexanoate resulted in 99.4% ee, complete regio-
selectivity, and 77% isolated yield of the corresponding
alcohol. Furthermore, a chloroderivate of the same com-

pound was reduced by LbADH. The product tert-butyl-(S)-
6-chloro-5-hydroxy-3-oxohexanoate could be produced
with greater than 99.5% ee and 72% isolated yield
(Wolberg et al. 2000).

Nevertheless, some biotransformation processes with
substrate-coupled cofactor regeneration demand removal
of the coproduct acetone because acetone not only affects
the activity of the enzyme but also causes a thermodynamic
limitation. Stillger et al. (2002) used two different strategies
for in situ acetone removal in the biocatalytic reduction of
ethyl 5-oxohexanoate to (S)-ethyl 5-hydroxyhexanoate
catalyzed by CPCR. In a first reactor setup, acetone has
been stripped out from the reactor system by gassing the
aqueous solution with humidified compressed air. Because
of its low volatility, acetone can be removed effectively
from a reaction system by this method. Compared to batch
reactions without acetone removal, the conversion could
be increased from 75% to more than 97%. In both cases,
an ee of 99.5% could be achieved. In another approach,
acetone was removed by a pervaporation step (Fig. 9)
resulting in a conversion of 95% with an ee of 99.5%
(Stillger et al. 2002).

Acetone removal is not restricted to biotransformation
processes on laboratory scale. It is also realized as an
important element in industrial processes. Wacker Fine
Chemicals produces several β-keto esters on ton scale
(Daußmann et al. 2006b). Isolated LbADH is used as
biocatalyst for the synthesis of (R)-ethyl-3-hydroxybutyrate
in a process with substrate-coupled cofactor regeneration

Perv
Acetone

Fig. 9 Flow scheme of the pervaporation reactor

Substrate

Product

Enzyme

membrane

reactor

NAD-cycle Hexane-

cycle

Fig. 8 Conceptional view of the
three-cycle reactor
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via oxidation of 2-propanol. The coproduct acetone is
removed by continuous stripping. This strategy shifts the
equilibrium reaction towards complete conversion and
simplifies downstream processing. Furthermore, it allows
a continuous reuse of the aqueous phase in standard reactor
vessels. The process is carried out with a yield of 96%, an
ee of 99.8%, and a space–time yield of 92 g L−1 day−1

(Rosen et al. 2004). The synthesis of (R)-methyl-3-
hydroxybutyrate is also catalyzed by LbADH in a sub-
strate-coupled approach. The process is performed in a
stirred batch reactor with a yield of 94% and an ee of
99.8%. Acetone is evaporated continuously under reduced
pressure (Daußmann et al. 2006c).

The main problem of using enzymes as biocatalysts for
the reduction of prochiral ketones is the low solubility of
many ketones in aqueous solutions. For that reason, the
creation of a biphasic system is preferable for the reduction
of some hydrophobic substrates. As the occurrence of
liquid–liquid interphases and presence of residual amounts
of organic solvent in water can lead to deactivation of the
biocatalyst, the low enzyme stability is a major drawback in
biphasic enzymatic reactions. Villela et al. (2003) investi-

gated the stability of three different ADHs in biphasic
systems. Several solvents with different properties have
been used as organic phase, e.g., nonane, cyclohexane,
toluene, dichloromethane, tert-butyl methyl ether (MTBE)
and ethyl acetate. It has been investigated if the logP value,
which characterizes the polarity of an organic solvent, can
be used as parameter to guide the solvent choice. It could
be shown that ADHs show good stability in biphasic
systems with MTBE as the organic solvent; in systems
containing dichloromethane as the organic solvent, the
stabilities of the enzymes were rather low. There was no
correlation found between the polarity of the organic
solvent and the influence on the stability of an enzyme. In
addition to the hydrophobicity of a solvent, its functionality
should be considered as well when screening for a solvent
that should be applied in a biphasic system.

When a biphasic system is applied for enzymatic
reactions, the nonaqueous phase cannot only be used as a
substrate reservoir but also for the continuous extraction of
products and the coproduct acetone. A novel approach is
the use of ionic liquids as the nonaqueous phase in
enzymatic biphasic systems (Eckstein et al. 2004). The
partition coefficients of 2-propanol and acetone in a
biphasic system containing buffer and the ionic liquid
[BMIM][(CF3SO2)2N] (1-butyl-3-methylimidazolium bis
((trifluoromethyl)sulfonyl)amide) significantly differ from
their partitioning behavior in buffer/MTBE (see Table 1).
LbADH has been used as a biocatalyst in biphasic systems
with buffer/[BMIM][(CF3SO2)2N] and buffer/MTBE,

Table 1 Partition coefficients for 2-propanol and acetone (Eckstein et
al. 2004)

Substance MTBE/buffer [BMIM][(CF3SO2)2N]/buffer

2-Propanol 1.0 0.4
Acetone 1.1 2.0

O

+
O

O

OH

O

OH

BFD

ThDP

BAL

ThDP

R-HPP
95% yield
99% ee

S-HPP
96% yield
94% ee

OH

OH

OH

OH

1S, 2R-PPD
86% yield
99% ee

1R, 2R-PPD
81% yield
98% ee

ADH-T

NADPH

LbADH

NADPH

OH

OH

OH

OH

1S, 2S-PPD
90% yield
98% ee

1R, 2S-PPD
85% yield
98% ee

ADH-T

NADPH

LbADH

NADPH

Fig. 10 Enzymatic synthesis of 1-phenylpropane-1,2-diol (PPD) stereoisomers via hydroxyl-1-phenylpropanone (HPP)
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respectively. The enzyme catalyzed the conversion of 2-
octanone to (R)-2-octanol with an ee greater than 99%.
Cofactor regeneration was carried out in the substrate-
coupled approach using 2-propanol as cosubstrate. In the
biphasic system with buffer/[BMIM][(CF3SO2)2N], the
produced acetone is continuously removed from the buffer
phase leading to lower acetone concentrations in the buffer
phase. Because of faster cofactor regeneration, a higher
reaction rate could be observed. Within the first 180 min,
the reduction is much faster in the biphasic system
containing the ionic liquid, leading to a conversion of
88%, while the reduction reaches a conversion of only 61%
in the presence of MTBE. Other applications of ionic
liquids in biocatalysis, which mainly deals with isolated
lipases, have recently been reviewed (Kragl et al. 2002; van
Rantwijk et al. 2003).

Enzymatic gas-phase reactions involve the conversion of
a gaseous substrate to a gaseous product using a dry
enzyme as the catalyst. This method offers some advan-
tages in comparison to biocatalysis in aqueous media.
Poorly water-soluble substrates can be applied as volatile
compounds. The dilute product then can easily be recovered
using fractionated condensation (Lamare et al. 2004).
LbADH and ADH-T from Thermoanaerobacter sp. (Findrik
et al. 2005) were investigated regarding their ability to
catalyze the reduction of acetophenone in a gas-phase
reaction with substrate-coupled cofactor regeneration via
oxidation of 2-propanol. By optimization of the reaction
conditions water activity, cofactor-to-protein molar ratio,
and reaction temperature, which all affected the initial
reaction rate and also the stability of the biocatalyst,
productivities of 1,000 g L−1 day−1 for LbADH and 600 g
L−1 day−1 for ADH-T could be achieved (Trivedi et al.
2006). Other works are dealing with the effects of
immobilization and drying the biocatalysts. It could be
shown that the addition of sucrose to the cell extract before
immobilization of the enzyme led to a longer half-life time
of the biocatalyst (Ferloni et al. 2004). Furthermore, the
method for drying the enzyme has an impact to the enzyme
stability (Trivedi et al. 2005).

Optically active diols are interesting building blocks in
asymmetric synthesis. They can be obtained via chemical
routes, but only one of the diol stereoisomers is accessible in
good stereoisomeric purity from a given starting material
(Koike et al. 2000; Choudary et al. 2001). Furthermore, the
enzymatic and microbial reduction of 1,2-diketones and α-
hydroxyketones does not afford the synthesis of all four
possible stereoisomers (Mochizuki et al. 1995; Bortolini
1997). By employing a combination of enantioselective
lyases, e.g., thiamine diphosphate-dependent benzoylfor-
mate decarboxylase or BAL, and diastereoselective
ADHs, it has became possible to synthesize all four 1-
phenylpropane-1,2-diol stereoisomers separately in a

reaction cascade (Fig. 10). As substrates, simple molecules
like benzaldehyde and acetaldehyde were used (Kihumbu
et al. 2002).

Conclusion and outlook

The given examples point out that oxidoreductases namely,
ADHs or CRs, have become a powerful tool in the
synthesis of chiral alcohols. It could be shown that by
developing appropriate process engineering strategies, it
became possible to remarkably optimize a couple of
biocatalytic processes catalyzed by isolated enzymes, e.g.,
in terms of space–time yield and catalyst usage. Successful
attempts have been reported for the use of ADHs in
nonconventional media like biphasic systems or gas phases.
Such methods offer the possibility to apply remarkable high
concentrations of substrate to the biocatalyst and thus
increase volumetric productivities. Furthermore, thermody-
namic limitations can be overcome by applying adequate
ISPR techniques. These examples clearly demonstrate that
by applying reaction engineering, ADHs can be success-
fully used as catalysts in preparative organic chemistry and
on an industrial scale for the synthesis of chiral alcohols.
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