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Abstract Pseudomonas aeruginosa produces glycolipidic
surface-active molecules (rhamnolipids) which have po-
tential biotechnological applications. Rhamnolipids are
produced by P. aeruginosa in a concerted manner with
different virulence-associated traits. Here, we review the
rhamnolipids biosynthetic pathway, showing that it has
metabolic links with numerous bacterial products such as
alginate, lipopolysaccharide, polyhydroxyalkanoates, and
4-hydroxy-2-alkylquinolines (HAQs). We also discuss the
factors controlling the production of rhamnolipids and the
proposed roles this biosurfactant plays in P. aeruginosa
lifestyle.

Introduction

Pseudomonas aeruginosa is an environmental bacterium
that can be isolated from many different habitats, including
water, soil, and plants, but it is also an opportunistic human
pathogen causing serious nosocomial infections (Costerton
1980; Lyczak et al. 2000). This bacterium was shown by
Jarvis and Johnson (1949) to produce the biosurfactant
rhamnolipids, which are amphiphilic molecules composed
of a hydrophobic fatty acid moiety and a hydrophilic
portion composed of one or two rhamnose. Rhamnolipid
anabolic precursors without the sugar moiety, 3-(3-hy-
droxyalkanoyloxy)alkanoic acids (HAAs), are also released
by the bacteria and display tensio-active properties (Déziel

et al. 2003). While the production of rhamnolipids is
characteristic of P. aeruginosa, some isolates of the non-
pathogenic pseudomonads P. putida and P. chlororaphis as
well as the pathogen Burkholderia pseudomallei were also
recently shown to produce a variety of rhamnolipids
(Häussler et al. 1998, 2003; Tuleva et al. 2002; Gunther
et al. 2005). Rhamnolipids have several potential indus-
trial and environmental applications due to their tensio-
active properties (Lang and Wullbrandt 1999; Maier and
Soberón-Chávez 2000). These uses include the production
of fine chemicals, the characterization of surfaces and sur-
face coatings, and usage as additives for environmental
remediation, and they have even been reported to be useful
as a biological control agent (Stanghellini and Miller 1997).

Here, we review the production of rhamnolipids, showing
that their biosynthesis is dependent on central metabolic
pathways, such as fatty acid and deoxythymidine diphos-
phate dTDP-activated sugars synthesis (also reviewed
in the study of Soberón-Chávez 2004). We also describe
that the production of this biosurfactant is very tightly
regulated at the transcriptional level by the quorum-sensing
(QS) response and by environmental conditions and that
the production of polyhydroxyalkanoates (PHAs), other
biotechnologically important compounds (Madison and
Huisman 1999) made by P. aeruginosa, have some bio-
synthetic steps in common (Soberón-Chávez et al. 2005b).
The rhamnolipids biosynthetic pathway has also steps in
common with lipopolysaccharides (LPS; Rahim et al.
2000), alginate (Olvera et al. 1999), and 4-hydroxy-2-
alkylquinolines (HAQs; Bredenbruch et al. 2005). The role
that rhamnolipids play is not yet understood. They have
been regarded as virulence factors (Kownatzki et al. 1987)
and antimicrobials (Abalos et al. 2001), implicated in the
development of biofilms (Davey et al. 2003) and, along
with HAAs, shown to be indispensable for P. aeruginosa
swarming motility (Köhler et al. 2000; Déziel et al. 2003).

Characterization of rhamnolipids

Rhamnolipids are typically constituted of a dimer of 3-
hydroxyfatty acids linked through a beta glycosidic bond to
a mono- or di-rhamnose moiety (Fig. 1). However, with rest-
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ing cells or using naphthalene as carbon source, rhamno-
lipids containing only one fatty acid chain are also detected
(Syldatk et al. 1985a,b; Déziel et al. 1999). It is unknown
whether monomers of 3-hydroxyfatty acids can act as
substrates for RhlB or if these smaller rhamnolipids result
from the degradation of rhamnolipids containing two fatty
acids.

Liquid chromatography coupled to mass spectrometry
(LC/MS) allows the detection of more than 28 different
rhamnolipid congeners in liquid cultures (Déziel et al.
1999). The alkyl chains of these congeners vary from C8 to
C12, and some of these chains also contain one unsatura-
tion. In liquid culture and under usual growth conditions,
the two most abundant rhamnolipids observed are rham-
nosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-C10-C10),
a mono-rhamnolipid, and rhamnosyl-rhamnosyl-β-hy-
droxydecanoyl-β-hydroxydecanoate (Rha-Rha-C10-C10),
a di-rhamnolipid. MS also revealed that for an isomeric
rhamnolipid pair in which each compound contains two
alkyl chains of different length (for instance Rha-C10-C8

and Rha-C8-C10), the congener with the shortest chain ad-
jacent to the sugar is always more abundant than the other
one by at least a factor of three. If the longest chain contains

an unsaturation, the rhamnolipid with the shorter chain
adjacent to the sugar is more than 20 times more abundant
than the other congener. Free HAAs are also detected in the
culture medium by LC/MS (Lépine et al. 2002; Déziel et al.
2003). These compounds are not degradation products of
rhamnolipids, and the most abundant free HAA congener is
C10-C10 (Lépine et al. 2002). As with rhamnolipids, for an
isomeric HAA pair in which each compound contains two
alkyl chains of different length, the congener with the
shortest chain at the hydroxyl end is always more abundant
than the other one. In fact, the relative proportion of each of
these two free HAA congeners exactly matches the pro-
portion of the two corresponding rhamnolipid congener
containing the same two chains (Lépine et al. 2002). How-
ever, within the pool of free HAAs, those with a longer
alkyl chain are proportionally less abundant than in the
rhamnolipid congener pool, suggesting that the free HAAs
in the culture medium are leftovers of the initial HAA pool
used for rhamnolipid synthesis.

Role of RhlA, RhlB, and RhlC in rhamnolipid production

P. aeruginosa produces rhamnolipids by three sequential
reactions (Fig. 2). RhlA is involved in the synthesis of the
fatty acid dimer moiety of rhamnolipids and free HAAs
(Déziel et al. 2003; Cabrera et al., unpublished data), as
discussed further below, and seems to be loosely bound
to the inner membrane (Rahim et al. 2001). The next re-
action is catalyzed by the membrane-bound RhlB rham-
nosyltransferase and uses dTDP-L-rhamnose and an HAA
as precursors, yielding mono-rhamnolipids (Ochsner et al.
1994; Rahim et al. 2001). These compounds are in turn the
substrates, together with dTDP-L-rhamnose, of RhlC to
produce di-rhamnolipids (Rahim et al. 2001). RhlC also
seems to be loosely bound to the inner membrane (Rahim
et al. 2001) and has sequence homology with rhamnosyl-
transferases involved in LPS synthesis but is specific for
di-rhamnolipid synthesis (Rahim et al. 2001).

Regulation of rhamnolipid production
at the transcriptional level

The rhlA and rhlB genes are arranged as an operon and are
clustered with rhlR and rhlI, which encode proteins in-
volved in their transcriptional regulation through the QS
response (Lazdunski et al. 2004; Soberón-Chávez et al.
2005a), as described below. The rhlC gene is not linked in
the chromosome to other rhl genes and forms an operon
with a gene whose function is not known. This operon is
regulated at the transcriptional level in a similar manner as
rhlAB (Rahim et al. 2001).

QS response regulates at the transcriptional level the
production of several virulence-associated traits, including
rhamnolipids (Van Delden and Iglewski 1998), as well as
hundreds of additional genes (Hentzer et al. 2003; Schuster
et al. 2003; Wagner et al. 2003). The QS response depends
on the production of two autoinducers, butanoyl-homo-
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Fig. 1 Chemical structure of rhamnolipids and HAAs
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serine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoser-
ine lactone (3-oxo-C12-HSL), that bind to RhlR and LasR,
respectively, to activate gene expression. C4-HSL and 3-
oxo-C12-HSL are synthesized by RhlI and LasI, respec-
tively (reviewed by Lazdunski et al. 2004; Soberón-Chávez
et al. 2005a). The transcriptional activator LasR, once
bound to 3-oxo-C12-HSL, promotes the expression of
several genes (Whiteley et al. 1999), including the one
coding for the transcription regulator RhlR (Latifi et al.
1996; Pesci et al. 1997; Medina et al. 2003a). The second
QS genetic circuit responds to RhlR that, once bound to
C4-HSL (Ochsner and Reiser 1995), promotes the expres-
sion, among others, of rhlAB (Ochsner et al. 1994) and
rhlC (Rahim et al. 2001).

The transcriptional regulation of the rhlAB promoter not
only depends on RhlR and C4-HSL. This operon is not
expressed in the exponential phase of growth even in
the presence of this protein and its autoinducer when P.
aeruginosa is cultured in rich medium (Medina et al.
2003b), presumably due to its partial transcriptional de-
pendence on the RpoS sigma factor (σS) (Medina et al.
2003b). Furthermore, RhlR activates rhlAB transcription
when coupled with C4-HSL but represses its transcription
when not coupled with its autoinducer (Medina et al.
2003c). In addition, the transcriptional regulator MvfR,
which directs the synthesis of HAQs, influences the

expression of multiple RhlR-dependent genes, including
rhlAB (Déziel et al. 2005).

Regulation of production of dTDP-L-rhamnose
and its role in rhamnolipids production

In P. aeruginosa, AlgC plays a central role in the biosyn-
thetic pathway of dTDP-D-glucose, guanosine diphosphate
(GDP)-D-rhamnose, GDP-mannose, and dTDP-L-rhamnose;
it transforms mannose-6-phosphate to mannose-1-phosphate,
a precursor of GDP-mannose and, thus, of LPS (Lam 2004)
and the exopolysaccharide alginate, but it also catalyzes the
conversion of glucose-6-phosphate to glucose-1-phosphate,
a precursor of dTDP-D-glucose and dTDP-L-rhamnose
(Coyne et al. 1994). We described that AlgC through its
phospho-gluco-mutase activity is directly involved in rham-
nolipids biosynthesis (Fig. 2; Olvera et al. 1999).

The dTDP-L-rhamnose biosynthetic pathway has been
reported in different bacteria to consist of the conversion of
glucose-1-phosphate via dTDP-glucose, dTDP-6-deoxy-
D-xylo-4-hexulose, and dTDP-6-deoxy-L-lyxo-4-hexulose
(Fig. 2). In P. aeruginosa, the enzymes catalyzing these
conversions are encoded by rmlA, rmlB, rmlC, and rmlD,
respectively, and form the rmlBCAD operon (Rahim et al.
2000). Mutations in the rml operon of P. aeruginosa sero-
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types containing L-rhamnose in their LPS, like PAO1,
produce truncated LPS molecules (Rahim et al. 2000) and
in all cases inhibit rhamnolipid production (Olvera and
Soberón-Chávez, unpublished data). TDP-L-rhamnose is
the limiting RhlB substrate for rhamnolipid production in
recombinant Escherichia coli expressing the rhlAB oper-
on (Cabrera et al., unpublished data). The limited avail-
ability of this activated sugar might be the cause of the
reduced rhamnolipid production by other recombinant bac-
teria expressing the rhlAB operon (Ochsner et al. 1995b).

Synthesis of the rhamnolipid fatty acid moiety
and of HAAs

Synthesis of the fatty acid moiety of rhamnolipids diverges
from the P. aeruginosa general fatty acid biosynthetic
pathway at the level of the ketoacyl reduction (Campos-
García et al. 1998). The enzyme responsible for draining
the fatty acid precursors of rhamnolipids away from the
general biosynthetic pathway is called RhlG and shows
significant sequence homology with numerous nicotin-
amide adenine dinucleotide phosphate dependent ketoacyl
reductases. RhlG is specifically involved in rhamnolipids
production and also affects PHA synthesis (Fig. 2). General
fatty acid content and autoinducer production in a rhlG
mutant remain unaffected (Campos-García et al. 1998).
However, it was recently reported that RhlG is involved in
providing acyl carrier protein (ACP) fatty acid precursors
for the synthesis of HAQs (Bredenbruch et al. 2005;
Fig. 2), which include the QS-related Pseudomonas quin-
olone signal (PQS) (Déziel et al. 2004). The chain length of
the fatty acid portion of rhamnolipids seems less affected
by the culture medium or carbon source than PHAs are
(Lépine, unpublished data).

Burger et al. (1966) observed that adding 3-hydroxy-
decanoic acid or C10-C10 HAA to a partially purified P.
aeruginosa extract leads to the production of rhamnolipids.
They thus hypothesized that 3-hydroxyfatty acids and
HAAs are the precursors of these biosurfactants. The stereo-
chemistry at the chiral center of the 3-hydroxyfatty acids
included in rhamnolipids is the same as the one found in
PHAs. The most abundant 3-hydroxyfatty acid found in
PHAs is C10, which, as already mentioned, is also the most
abundant in rhamnolipids and HAAs. These elements point
to a common origin between PHA and rhamnolipids, and
recently, we reported direct experimental evidence in sup-
port of this metabolic relation (Soberón-Chávez et al.
2005b).

Although, as already mentioned, some rhamnolipids
contain only one 3-hydroxyfatty acid linked to one or two
rhamnose moiety, the most abundant rhamnolipids pro-
duced by P. aeruginosa contain a 3-hydroxyfatty acid
dimer. This brings to question how these fatty acid dimer
precursors are made. Rehm et al. (2001) suggested they
might arise from partial degradation of PHAs. A variety of
PHA depolymerases are known to produce mono- and di-
and even trilipids (Schirmer et al. 1993; Jendrossek et al.
1996). However, this hypothesis is difficult to reconcile

with the observation that for two isomeric HAAs contain-
ing two alkyl chains of different length, the most abundant
of these congeners is always the one with the short alkyl
chain at the hydroxy terminal end (Lépine et al. 2002).
Since PHAs are random copolymers (Barbuzzi et al. 2004),
it is unlikely that such relative abundances could be
maintained for HAA synthesis. In fact, it was recently
shown that PHA synthesis is not required for the pro-
duction of rhamnolipids (Pham et al. 2004).

The observation that an rhlB mutant produces free
HAAs, while a rhlA mutant does not (Déziel et al. 2003),
indicates that RhlA is probably responsible for the syn-
thesis of these compounds. The reason why rhamnolipids
contain preferentially a shorter alkyl chain adjacent to the
sugar remains to be elucidated. This could be due to a
preferential synthesis by RhlA of HAAs with the shorter
alkyl chain at the hydroxyl end of the molecule, or it could
be due to preferential coupling of such HAAs, from the
HAA pool, to the sugar by the RhlB rhamnosyltransferase.
The fact that the relative abundances of free HAAs with the
short alkyl chain at the hydroxyl terminal end of the
molecule match almost exactly the relative abundances of
mono- or di-rhamnolipid with the short alkyl chain ad-
jacent to the sugar indicates that it is RhlA and not RhlB
that is responsible for this preferred regioselectivity. In
addition, the fact that rhamnolipids with only one hy-
droxyfatty acid have been observed rather indicates that
RhlB is not highly specific for the fatty acid portion it
couples to the sugar.

We recently showed that expressing rhlAB in E. coli
leads to the production of the same rhamnolipids and HAA
congeners as observed in P. aeruginosa, indicating that
RhlA is the enzyme responsible for the synthesis of HAAs
and the fatty acid moiety of rhamnolipids (Cabrera et al.,
unpublished data). That the same spectrum of HAAs is
produced in a different host also indicates that it is RhlA
that dictates the type of fatty acid that is incorporated into
HAAs and not the fatty acid relative abundance in the cell.
What remains to be determined is the RhlA substrate: it
might be the free 3-hydroxy acid linked either to ACP or to
coenzyme A or all these species as suggested recently
(Cabrera et al., unpublished data).

Environmental and growth conditions influencing
the production of rhamnolipids

Rhamnolipids are so-called “secondary metabolites”, and
as such, their production coincides with the onset of the
stationary phase (Venkata Ramana and Karanth 1989;
Déziel et al. 1996). This is in agreement with the fact that,
as discussed above, transcription from the rhlAB promoter
is primarily regulated in a cell density-dependent manner
by QS. However, rhamnolipid production also requires
appropriate growth conditions. Mostly because of their
commercial/biotechnological interest as alternatives to
synthetic surfactants, these cultivation factors have been
extensively investigated (Ochsner et al. 1995a).
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Rhamnolipid production seems possible from most
carbon sources supporting bacterial growth. Nevertheless,
oil of vegetable origin, such as soybean (Lang and
Wullbrandt 1999), corn (Linhardt et al. 1989), canola
(Sim et al. 1997), and olive (Robert et al. 1989), provides
the highest productivity. Among water-soluble substrates,
mannitol is especially effective (Robert et al. 1989). In
contrast to PHAs, the carbon source does not generally
affect the composition of rhamnolipids produced presum-
ably because their fatty acid is synthesized de novo (Fig. 2).
A noticeable exception was observed when P. aeruginosa
57RP was grown on the aromatic hydrocarbon naphtha-
lene: 80% of the total rhamnolipids contained only one
fatty acid moiety instead of HAAs (Déziel et al. 1999).

Elevated C/N (Guerra-Santos et al. 1984; Venkata
Ramana and Karanth 1989) and C/P (Mulligan et al.
1989) ratios promote rhamnolipids production, while high
concentrations of divalent cations, especially iron, are
inhibitory (Guerra-Santos et al. 1986; Venkata Ramana and
Karanth 1989). Actually, nitrogen-limiting conditions do
not favor rhamnolipids production per se, but production
starts with the exhaustion of nitrogen (Robert et al. 1989;
Venkata Ramana and Karanth 1989; Manresa et al. 1991).
Production of rhamnolipids is inhibited by the presence
of NH4

+, glutamine, asparagine, and arginine as nitrogen
source and promoted by NO3

−, glutamate, and aspartate
(Mulligan and Gibbs 1989; Venkata Ramana and Karanth
1989; Köhler et al. 2000; Déziel, unpublished data). It has
been repeatedly demonstrated that NO3

− is the best nitrogen
source for rhamnolipid production (Venkata Ramana and
Karanth 1989; Manresa et al. 1991; Arino et al. 1996), and
we have seen that it indeed elicits higher rhlAB expression
than NH4

+ (Déziel et al. 2003). On the other hand, high
levels of NH4

+ or glutamine reduce rhamnolipid production,
and this is correlated with a lower glutamine synthase
activity (Mulligan and Gibbs 1989). The RpoN sigma
factor (σ54) controls this enzyme, which is upregulated
under nitrogen-limiting conditions (Totten et al. 1990).
This sigma factor is also required for transcription of the
rhlAB genes (Ochsner et al. 1994), one reason being that
rhlR transcription is partially σ54-dependent (Medina et al.
2003a). The basis for the preference for nitrate is unknown.
One suggestion was that P. aeruginosa, which is capable of
denitrification, is also using NO3

− as an electron acceptor
even in the presence of oxygen (Manresa et al. 1991).
Interestingly, Sabra et al. (2002) recently proposed that P.
aeruginosa is producing rhamnolipids to reduce oxygen
transfer rate as a means to protect itself from oxidative
stress, and it appears that this mechanism is activated by
iron deficiency (Kim et al. 2003). However, excellent
rhamnolipid production is also obtained in the absence of
oxygen (Chayabutra et al. 2001).

Functions of rhamnolipids

Although rhamnolipids have been extensively studied, their
natural function is still highly speculative. They actually
seem to play multiple roles. First, since they display potent

surface tension-reducing and emulsifying activities, these
molecules are considered surfactants and, as a result, have
been mostly studied for their ability to solubilize and pro-
mote the uptake of hydrophobic substrates, especially
hydrocarbons such as n-alkanes (Itoh and Suzuki 1972;
Koch et al. 1991; Zhang and Miller 1995; Beal and Betts
2000). Another mechanism through which rhamnolipids
enhance the biodegradation of poorly soluble molecules is
by causing the cell surface to become more hydrophobic
(Zhang and Miller 1994; Al-Tahhan et al. 2000). Never-
theless, it is unlikely that the intended function of rham-
nolipids is to facilitate the assimilation of insoluble substrates,
as they are also efficiently produced when grown on soluble
substrates.

An alternative ecological role for these surface-active
molecules relates to their toxicity against a variety of
microorganisms, which might confer a competitive ad-
vantage in niche colonization, P. aeruginosa being a
notoriously successful and ubiquitous bacterium. Rham-
nolipids display antibacterial activity mostly against Gram-
positives and also a few Gram-negatives. Furthermore,
antiviral, antifungal, mycoplasmacidal, algicidal, zoospor-
icidal, and antiamoebal activities have been reported (Itoh
et al. 1971; Lang andWagner 1993; Stanghellini and Miller
1997; Abalos et al. 2001; Cosson et al. 2002; Wang et al.
2005).

Since rhamnolipid synthesis is regulated by QS, a
mechanism controlling the production of most virulence
factors in P. aeruginosa (Smith and Iglewski 2003), they
are regarded as virulence-associated exoproducts. Howev-
er, rhamnolipids are certainly among the less well-under-
stood virulence factors released by this bacterium. Indeed,
they have been attributed with a plethora of biological
activities, most of which can be ascribed to their detergent-
like properties. Early on, rhamnolipids were identified as
the heat-stable hemolysin of P. aeruginosa, and this
hemolytic activity was their first suspected role in patho-
genesis (Sierra 1960; Al-Dujaili 1976; Johnson and Allen
1978; Johnson and Boese-Marrazzo 1980; Fujita et al.
1988). They were also proposed to act by solubilizing the
phospholipids of lung surfactant, making them more
accessible to cleavage by the phospholipase C secreted
by P. aeruginosa (Kurioka and Liu 1967). Further studies
showed rhamnolipids to exhibit several effects on mam-
malian cells, such as disruption of the polymorphonuclear
leukocyte chemotactic responses (Shryock et al. 1984),
inhibition of the normal macrophage function (McClure
and Schiller 1992, 1996), stimulation of the release of
cytokines from airway epithelial cells (Bedard et al. 1993),
interference with normal ciliary function, inhibition of the
functional cilia of tracheal epithelium and slowing down of
the human ciliary beat frequency (Hastie et al. 1986;
Hingley et al. 1986; Read et al. 1992; Kanthakumar et al.
1996), and mucus glycoconjugate secretagogue activity
(Somerville et al. 1992; Fung et al. 1995). P. aeruginosa
cell-to-cell communications mechanisms, such as QS, rely
on the exchange of lipidic intercellular signals (Juhas et al.
2005). Not surprising, one of these signals, PQS, was
recently shown to be solubilized by rhamnolipids, hinting
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at an additional function for this biosurfactant (Calfee et al.
2005). PQS plays an important role in the transcriptional
regulation of genes involved in P. aeruginosa virulence
(Déziel et al. 2004; Wade et al. 2005). While all these
reports were obtained from in vitro experiments, rham-
nolipids have also been detected in sputum samples of
cystic fibrosis patients colonized with P. aeruginosa
(Kownatzki et al. 1987). Nevertheless, the importance of
rhamnolipids’ contribution to pathogenesis has yet to be
demonstrated in vivo.

More recently, swarming motility was explicitly dem-
onstrated to require HAAs and rhamnolipids (Köhler et al.
2000; Déziel et al. 2003), and it was proposed that this
multicellular behavior is related to biofilm development
(Déziel et al. 2003). Indeed, a notion of rhamnolipids
playing a central role in the normal formation of biofilm
architecture is emerging (Davey et al. 2003; Schooling
et al. 2004; Lequette and Greenberg 2005).

Finally, it is noteworthy that, since HAAs are concur-
rently produced and often coextracted with rhamnolipids
(Lépine et al. 2002), it is likely that many reports about
rhamnolipids actually included HAAs in the preparations.
Therefore, the role HAAs play in P. aeruginosa activities
besides a contribution to swarming motility will require
further investigations.
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