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Abstract Phytases decompose phytate, which is the pri-
mary storage form of phosphate in plants. More than 10
years ago, the first commercial phytase product became
available on the market. It offered to help farmers reduce
phosphorus excretion of monogastric animals by replacing
inorganic phosphates by microbial phytase in the animal
diet. Phytase application can reduce phosphorus excretion
by up to 50%, a feat that would contribute significantly
toward environmental protection. Furthermore, phytase
supplementation leads to improved availability of minerals
and trace elements. In addition to its major application in
animal nutrition, phytase is also used for processing of
human food. Research in this field focuses on better mineral
absorption and technical improvement of food processing.
All commercial phytase preparations contain microbial
enzymes produced by fermentation. A wide variety of
phytases were discovered and characterized in the last 10
years. Initial steps to produce phytase in transgenic plants
were also undertaken. A crucial role for its commercial
success relates to the formulation of the enzyme solution
delivered from fermentation. For liquid enzyme products, a
long shelf life is achieved by the addition of stabilizing
agents. More comfortable for many customers is the use of
dry enzyme preparations. Different formulation technolo-
gies are used to produce enzyme powders that retain
enzyme activity, are stable in application, resistant against
high temperatures, dust-free, and easy to handle.

Introduction

Phytase enzyme preparations have a wide range of
applications in animal and human nutrition. The first
commercial phytase products were launched into market in

1991. Meanwhile the market volume is in the range of 150
Mio Euro. Phytases decompose phytates (myo-inositol-
1,2,3,4,5,6-hexakisphosphates), the salts of phytic acid
(Fig. 1). Phytate is regarded as the primary storage form of
both phosphate and inositol in plants (Cosgrove 1966). The
phosphorus fraction stored as phytate range from 30% in
roots up to 80% in seeds and cereals (Table 1). Phytic acid is
a polyanionic chelating agent that forms complexes with
several divalent cations of major nutritional importance,
e.g., Ca2+, Mg2+, Zn2+, Cu2+, Fe2+, and Mn2+ (Harland and
Oberleas 1999). The stability of the different salts mainly
depends on the type and concentration of cation (Vohra et
al. 1965) and pH. Phytic acid can also form complexes with
proteins and amino acids at both acidic and alkaline pH
(Sebastian et al. 1998).

The term phytase (myo-inositol hexakisphosphate phos-
phohydrolase) describes a class of phosphatases with the in
vitro capability to release at least one phosphate from
phytate. Despite this definition, up to now, myo-inostitol
pentakisphosphate (IP5) has yet to be identified as the final
product. Usually, the degradation ends with the less
phosphorylated myo-inostiol phosphates IP3 (Hara et al.
1985; Kerovuo et al. 2000; Quan et al. 2004) or IP (Wyss et
al. 1999; Casey and Walsh 2004; Sajidan et al. 2004). The
International Union of Pure and Applied Chemistry and the
International Union of Biochemistry (IUPAC–IUB) distin-
guish two classes of phytate degrading enzymes, 3-phytase
(EC 3.1.3.8) and 6-phytase (EC 3.1.3.28), initiating the
dephosphorylation at the 3 and 6 positions of phytate,
respectively.

Phytases are widespread in nature because they can be
found in animals, plants, and microorganisms. For exam-
ple, phytate-degrading enzymes were reported in the blood
of calves (McCollum and Hart 1908), birds, reptiles, and
fishes (Rapoport et al. 1941), as well as in plants like maize
(Huebel and Beck 1996), rice (Hayakawa et al. 1989;
Maugenest et al. 1999), wheat (Nagai and Funahashi 1962;
Nakano et al. 1999), and soybean (Hamada 1996). How-
ever, most of the scientific work has been done onmicrobial
phytases, especially on those originating from filamentous
fungi such as Aspergillus ficuum (Gibson 1987), A. fumi-
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gatus (Pasamontes et al. 1997) or Mucor piriformis
(Howson and Davis 1983), Rhizopus oligosporus (Casey
and Walsh 2004), and Cladosporium species (Quan et al.
2004). In the last decade, phytate-degrading enzymes of
yeasts (Nakamura et al. 2000) such as Schwanniomyces
occidentalis (Segueilha et al. 1992), Pichia anomala (Vohra
and Satyanarayana 2001, 2002), Arxula adeninivorans
(Sano et al. 1999), gram-negative bacteria such as Escher-
ichia coli (Greiner et al. 1993), Pseudomonas species (Cho
et al. 2003; Kim et al. 2003),Klebsiella species (Tambe et al.
1994; Sajidan et al. 2004), and gram-positive bacteria such
as various Bacillus species (Kerovuo et al. 1998; Kim et al.
1998a;Wang et al. 2001; Tye et al. 2002) were also identified
and characterized. The occurrence and the biochemical
properties of phytases are reviewed in detail by Oh et al.
(2004) and Konietzny and Greiner (2002).

Application in animal nutrition

Phytase is incorporated into commercial poultry, swine, and
fish diets to improve the availability of phosphorus, min-
erals, amino acids, and energy. Phytate accounts for 60–
80% of phosphorus found in plant-derived feedstuffs
(Table 1). The phytate molecule and thus the nutrients
bound to it cannot be absorbed in the digestive tract without
enzymatic degradation by phytases. Generally, this degra-
dation can occur in the digestive tract and/or in the feed
before consumption (Sebastian et al. 1998). Some cereals
such as rye, triticale, wheat, and barley are rich in intrinsic
phytase, while other feedstuffs such as corn and oilseed
meals contain little or no phytase activity (Eeckhout and De

Paepe 1994). Plant phytase is generally active in feeds as
shown by Temperton et al. (1965a,b). However, the use of
plant phytase in animal feed is limited, because its content is
highly variable even within one feedstuff. Moreover, pel-
leting of feed at temperatures higher than 70°C results in
partial inactivation (Pointillart 1988). Additionally, the bio-
efficacy1 of cereal phytases was only 40% compared to
microbial phytase from Aspergillus species (Zimmermann
et al. 2002).

Phytase produced by microorganisms in the digestive
tract can be very efficient in degrading phytate as demon-
strated by the almost complete availability of vegetable
phosphorus to ruminants (Rodehutscord 2001). However,
the microbial ecosystem in monogastric animals is mainly
located in the large intestines and it can be assumed that
most of the phosphate released from phytate is not ab-
sorbed, but excreted after release by microorganisms. Due
to the low availability of phosphorus in plant-derived feed-
stuffs, diets for nonruminants have been traditionally sup-
plemented with inorganic phosphates. Excessive dietary
phosphorus is excreted by animals and thus applied to the
soil together with manure. Due to increasing livestock
density in many regions, manure has been applied to the soil
at rates exceeding plant needs, resulting to accumulation of
phosphate in the soil (CAST 2002). This could lead to
eutrophication of surface waters, and long-term leaching of
phosphate into ground water can be expected (Furrer and
Stauffer 1987).

The first commercial phytase product, which became
commercially available 10 years ago, offered animal nutri-
tionists the tool to drastically reduce phosphorus excretion
of monogastric animals by replacing inorganic phosphates
with microbial phytase. Depending on diet, species, and
level of phytase supplementation, phosphorus excretion can
be reduced between 25 and 50% (Kornegay 1999).

Supplementation of microbial phytase to nonruminant
diets also showed effects on other nutrients. The improve-
ment of Ca availability has been shown in many trials
(Sebastian et al. 1998). Schoener and Hoppe (2002) dem-
onstrated in a broiler trial with adequate phosphorus supply
that enhanced Ca availability is not only based on a direct
effect (i.e., cleaving Ca from the phytate complex), but also
on an indirect effect accruing from the enhanced phospho-
rus utilization. Increased availability has also been shown
for Mg (Brink et al. 1991), and several trace elements such
as Zn (Thiel and Weigand 1992), Cu (Adeola 1999), Fe
(Pallauf et al. 1992), and Mn (Mohanna and Nys 1999).
Besides improving the availability of minerals and trace
elements, microbial phytase is also able to enhance protein
digestibility. This was described by Jongbloed et al. (1999)
for pigs, Farrell et al. (1993) for broilers, Van der Klis and
Versteegh (1991) for laying hens, Yi et al. (1996) for
turkeys, as well as Martin and Farrell (1994) for ducks. The
protein and amino acid effects of microbial phytase can be
explained by the degradation of phytate–protein and phytate–
mineral–protein–complexes in plant feedstuffs (Ravindran
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Fig. 1 Structural formula of phytic acid

Table 1 Phytate content of cereals and roots (Ravindran et al. 1995)

Phytate P
[g/100 g dry matter]

Phytate P
[% of total P]

Cereals
Corn 0.24 72
Wheat 0.27 69
Barley 0.27 64
Oats 0.29 67
Sorghum 0.24 66
Rice, unpolished 0.27 77
Roots and tubers
Cassava 0.04 28
Sweet potato 0.05 24

1Effect of analyzed phytase activity on animal performance feeding
phosphorus deficient diets.
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et al. 1999). Phytate–protein–complexes may be formed
postfeeding in the gut in case phytate has not been hydro-
lyzed by phytase (Jongbloed et al. 1997). Also, phytate can
complex with supplemental free amino acids, which could
be partly prevented with phytase (Rutherfurd et al. 1997).
Furthermore, phytate is known to inhibit proteolytic en-
zymes (Caldwell 1992). As phytate can also bind starch and
inhibit amylase (Deshpande and Cheryan 1984), it can be
hypothesized that activity of phytase is able to increase
energy utilization in monogastric animals as well. Ravindran
et al. (1999) showed such effects by literature review and via
their own trials for poultry. Due to the effects described
above and its potential to producemicrobial phytase on large
scale at low costs, microbial phytase is today widely used in
diets for monogastric farm animals. However, it has to be
taken into account that microbial phytases of different ori-
gin can differ in their bioefficacy per analyzed phytase unit.
Differences in bioefficacy are described by Paditz et al.
(2004), Klein Holkenborg et al. (2003), and Wendt and
Rodehutscord (2004).

Application in human nutrition

Processing and manufacturing of human food is also a
possible application field for phytase. Up to now, no phy-
tase product for a relevant food application is on the market.
Research in this field focuses on better mineral absorption
or technical improvement of food processing.

In cereal and legume-based complementary foods, phytic
acid inhibits iron absorption, causing the high prevalence of
iron deficiency, e.g., in infants from developing countries,
women of fertile age, or vegetarians. In their study, Sandberg
et al. (1999) showed that inositol hexaphosphate (IP6) as
well as pentaphosphate (IP5) have inhibitory effects on iron
absorption. The addition of 10 mg phosphorus as IP5 to
white wheat rolls resulted in a 39% reduction in iron ab-
sorption. IP3 and IP4 did not reveal such negative effects in
isolated forms, but there are indications for a contribution to
the negative effects when they are given together with IP5
and IP6. As a conclusion, it was stated that in order to
improve iron absorption from cereals and legumes, degra-
dation of inositol phosphates should yield less phosphor-
ylated forms than IP3.

Some food processing methods such as cooking, germi-
nation, hydrothermal treatment, fermentation, and soaking
are shown to reduce or remove considerable amounts of
phytate in legumes (Rehms and Barz 1995; Nout and
Rambouts 1990). Use of phytase reduces the phytic acid
content in food products, maybe more efficiently. Phytase
fully degraded phytic acid during the manufacture of roller-
dried complementary foods based on flours from rice,
wheat, maize, oat, sorghum, and a wheat–soy flour blend
(Hurrell et al. 2003). Phytate degradation was measured as
well as the effect on iron absorption. The tested cereal
porridges had native phytate levels between 0.12% (wheat
porridge) and 0.89% (sorghum porridge). After treatment
with phytase, phytic acid content was reduced to ≤0.002%.
Iron absorption was significantly increased when the por-

ridges were prepared with water, although the magnitude of
the increase differed markedly.

Haros et al. (2001) investigated the possible use of
phytase in the process of bread making. Different amounts
of fungal phytase were added in whole wheat breads, and it
was shown that phytase is an excellent bread-making im-
prover. The main achievement of this activity was the
shortened fermentation period without affecting the bread
dough pH. An increase in bread volume and an improve-
ment in crumb texture were also observed.

Application in synthesis of lower inositol phosphates

Lower phosphoric esters of myo-inositol (mono, bis, tris,
and tetrakisphosphates) play a crucial role in transmem-
brane signaling processes and in calcium mobilization from
intracellular store in animal as well as in plant tissues
(Michell 1975; Berridge and Irvine 1984; Samanta et al.
1993; Dasgupta et al. 1996; Krystofova et al. 1994). Re-
search interest in this field prompted the need for various
inositol phosphate preparations. However, chemical syn-
thesis (for review, see Billington 1993) is difficult. In
contrast, an enzymatic synthesis has the advantage of high
stereospecifity and mild reaction conditions. The use of
phytase has been shown to be very effective in producing
different inositol phosphate species. Siren (1986a,b) success-
fully prepared D-myo-inositol 1,2,6-trisphosphate, D-myo-ino-
sitol 1,2,5-trisphosphate, L-myo-inositol 1,3,4-trisphosphate,
and myo-inositol 1,2,3-trisphosphate with the help of phy-
tase derived from S. cerevisiae. Also, the use of phytase
isolated from A. niger was shown to efficiently hydrolyze
IP6 to all lower phosphorylated derivates from IP5 to IP2
depending on the amount of enzyme (Dvorakova et al.
2000).

Production of microbial phytases

The first phytase product, which entered the feed market in
1991, was manufactured by Gist Brocades (now DSM) and
sold by BASF under the trade name Natuphos. Natuphos is
available as powder, granulate, or liquid formulation. Later,
other products from different companies appeared, but only
a limited number of commercial phytase products are cur-
rently available. These first phytases produced on commer-
cial scale were either derived from fungal strains mutated
via standard means or by using recombinant DNA tech-
nology. Gist Brocades’ patent (van Gorcom et al. 1990)
describes an A. ficuum strain overproducing phytase with at
least 50 times increased activity compared to the wild-type
strain. At present, all phytase preparations authorized in the
EU as feed additives are produced by recombinant strains of
filamentous fungi (Table 2). The expressed phytase genes
are of fungal origin and originate in two cases from the
genus Aspergillus.

In most cases, the production of phytases was studied in
submerged cultivations. However, there is an increasing
number of scientific publications dealing with phytase
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production via solid state cultivation, especially those using
filamentous fungi.

Table 3 summarizes published phytase productivities.
The underlying phytase activities were all determined on
the basis of inorganic phosphate liberation from phytate.
Due to obvious differences with respect to cultivation
conditions and slight differences with respect to phytase
assay conditions, a comprehensive comparison and evalua-
tion of the production strains is difficult. However, one gets
an impression (1) of the diversity of phytase productivities
(i.e., 4 orders of magnitude) and (2) of those production
strains and cultivation conditions resulting in substantially
high phytase productivities.

Chen and coworkers (2004) used P. pastoris for the
heterologous overexpression of the E. coli phytase gene
appA. The appA gene was cloned under the control of the
AOX1 promotor, which is highly expressed when methanol
is the only carbon source. By applying high cell-density
cultivation, culture medium replacement prior to methanol
induction, and a modified medium composition, extracel-
lular phytase activities of almost 5,000 U ml−1 were
achieved.

Mayer and coworkers (1999) usedH. polymorpha strains
containing multiple copies of the A. terreus phytase gene,
two variants of the A. fumigatus phytase gene or a con-
sensus phytase gene, respectively. In high cell-density cul-
tivations with glucose as carbon source, very high phytase
concentrations in the medium (up to 13.5 g l−1) were
obtained.

These two studies deal with both the rational design of a
powerful production strain via genetic engineering and the
systematic improvement of the cultivation conditions.
Mayer and coworkers (1999) even established a down-
stream processing and performed the scale up of the whole
process to 2,000 l.

Production of phytase in transgenic plants

Several attempts were made to use transgenic plants as
expression hosts for phytases. Transgenic plants might
contain sufficient phytase activity to replace additional
supplementation of feed and food with microbial phytases.
Alternatively, transgenic plants could be used as bioreactors
for the production of phytase as a supplement.

Fungal phytases, like the A. niger PhyA, have success-
fully been expressed in tobacco (Pen et al. 1993; Verwoerd
et al. 1995; Ullah et al. 1999), soybean (Li et al. 1997),
alfalfa (Gutknecht 1997), wheat (Brinch-Pedersen et al.
2000), and canola (Ponstein et al. 2002). In tobacco, the
enzyme was secreted into the apoplast via the default se-
cretion pathway and accumulated to approximately 14% of
the total soluble protein (Verwoerd et al. 1995). Purified
recombinant phytase expressed from tobacco leaves had the
same temperature optimum for phytate hydrolysis, but has
been less glycosylated and showed a moderate shift to a
more acidic pH optimum (Ullah et al. 1999). Also, the re-
combinant phytases expressed in soybean and alfalfa had
almost the same properties as the endogenous produced
fungal phytase, except for the glycosylation pattern (Li et
al. 1997; Ullah et al. 2002). The A. niger phytase produced
in tobacco seeds was functional in releasing phosphate from
animal feed under simulated standard conditions and the
seeds could be stored for at least 1 year without losing
activity (Pen et al. 1993). In feeding trials, phytases that
were recombinantly produced in soybean and canola seeds
had the same performance as microbial phytases (Denbow
et al. 1998; Zhang et al. 2000). However, the thermo to-
lerance of the A. niger phytase would not be high enough to
survive the heat encountered in the soybean meal produc-
tion. In the approach of Gutknecht (1997), the alfalfa plant
was used as a bioreactor and not as a valorized animal
feedstuff. Most of the transgenically produced phytase was
contained in the juice collected after the alfalfa was
processed.

Not only fungal phytases were produced in plants. The
phytase genes from E. coli (appA) and the ruminal bac-
terium Selenomonas ruminantium (SrPf6) were expressed
in germinated rice seeds. The phytase activity reached up to
1.4 U mg−1 of extracted cellular protein, which represented
60 times of the activity of the nontransformant, without any
adverse effect on plant development (Hong et al. 2004). The
expression of a B. subtilis phytase in the cytoplasm of to-
bacco even increased the number of flowers and fruits (Yip
et al. 2003).

Whether or not transgenic plants will be used for pro-
duction of commercial phytases in the future, either directly
for feeding or as a bioreactor, will depend on production
costs and on public acceptance of green biotechnology.

Formulation

After production of the enzyme, further processing is
necessary. In regards to phytases’ main application as feed

Table 2 Phytase preparations authorized in the EU as feed additives

Company Trademark Phytase
source

Production
strain

References

BASF Natuphos Aspergillus
niger var.
ficuum

Aspergillus
niger

Simon and
Igbasan (2002),
Misset (2003),
European
Union (2004a)

AB
Enzymes
(former
Röhm)

Finase Aspergillus
awamori

Trichoderma
reesei

Simon and
Igbasan (2002),
Misset (2003),
European
Union (2004b)

Novozymes Bio-Feed
Phytase

Peniophora
lycii

Aspergillus
oryzae

Simon and
Igbasan (2002),
European
Union (2004c,d)
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Table 3 Published phytase productivities

Phytase source Production
straina

Phytase
activity
(U ml−1)b

Phytase
concentration
(g l−1)

Phytase
productivity
(U l−1 h−1)b

Phytase
productivity
(mg l−1 h−1)

Reference

Bacteria
Bacillus sp. <1 2 Choi et al. (1999)
Bacillus amyloliquefaciens Bacillus subtilis 2 167 Kim et al. (1999a,b)
Bacillus licheniformis Bacillus subtilis 28 Tye et al. (2002)
Bacillus subtilis <1 5 Powar and

Jagannathan (1982)
Bacillus subtilis 35 Tye et al. (2002)
Citrobacter braakii 1 Kim et al. (2003)
Escherichia coli 105 5830 Miksch et al. (2002)
Escherichia coli 650 7930 Golovan et al. (2000)
Escherichia coli Streptomyces lividans 950 19792 Stahl et al. (2003)
Escherichia coli Pichia pastoris 114 Rodriguez et al. (1999)
Escherichia coli Pichia pastoris 117 2438 Stahl et al. (2003)
Escherichia coli Pichia pastoris 4946 25760 Chen et al. (2004)
Klebsiella sp. <1 9 Shah and Parekh (1990)
Klebsiella sp. 2 62 Hwang (1999)
Lactobacillus amylovorus 146 4562 Sreeramulu et al. (1996)
Lactobacillus fructivorans <1 148 De Angelis et al. (2003)
Lactobacillus sanfranciscensis <1 210 De Angelis et al. (2003)
Megasphaera elsdenii <1 1 Yanke et al. (1998)
Mitsuokella jalaludinii 13 1078 Lan et al. (2002)
Prevotella ruminicola <1 4 Yanke et al. (1998)
Pseudomonas mendocina <1 Richardson and

Hadobas (1997)
Pseudomonas putida <1 Richardson and

Hadobas (1997)
Selenomonas ruminatum <1 59 Yanke et al. (1998)
Weissela confusa <1 130 De Angelis et al. (2003)
Fungi
Aspergillus sp. 17 177 Kim et al. (1999a,b)
Aspergillus awamori 200 1190 Martin et al. (2003)
Aspergillus ficuum 15c 159c Bogar et al. (2003a)
Aspergillus fumigatus Pichia pastoris 55 Rodriguez et al. (2000a,b)
Aspergillus fumigatus Aspergillus awamori 62 369 Martin et al. (2003)
Aspergillus fumigatus Hansenula polymorpha 7.6 30 Mayer et al. (1999)
Aspergillus niger 7 37 Hong et al. (2001)
Aspergillus niger 8 32 van Hartingsveldt

et al. (1993)
Aspergillus niger 108c 643c Mandviwala and

Khire (2000)
Aspergillus niger 1008c 4667c Krishna and

Nokes (2001)
Aspergillus niger Escherichia coli 0.2 Phillippy and

Mullaney (1997)
Aspergillus niger Saccharomyces cerevisiae 3 186 Han et al. (1999)
Aspergillus niger Pichia pastoris 39 4.2 279 30 Xiong et al. (2004)
Aspergillus niger Pichia pastoris 64 593 Han and Lei (1999)
Aspergillus oryzae <1 4 Shimizu (1993)
Aspergillus terreus Hansenula polymorpha 4.5 15 Mayer et al. (1999)
Mucor hiemalis 12c 160c Bogar et al. (2003b)
Mucor racemosus 26c 361c Bogar et al. (2003b)
Rhizopus microsporus 1c 18c Bogar et al. (2003b)
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additive, properties such as good stability during storage
and application, high bioefficacy, and dust freeness have to
be achieved by formulation. Due to easier handling, most
feed enzymes on the market are sold as dry formulations.

Preferred manufacturing protocols in the feed industry
require that the feed is mixed with steam prior to pelleting.
In the subsequent pelleting step, the feed is forced through a
die and the resulting strips are cut into suitable pellets.
During this process moisture content reaches 12–20%, com-
bined with temperatures in the range of 60–95°C. These
conditions are detrimental to most unprotected enzymes. To
avoid inactivation of the enzymes, various formulation
methods have been developed. The easiest process is to mix
the enzyme concentrate with a stabilizer and to spray dry
the solution (Barendse et al. 1996). Typical stabilizers are
inorganic salts with a bivalent cation, such as MgSO4. The
desired enzyme concentration is achieved by downblending
the enzyme with a carrier. However, the pelleting stability
of products obtained from this technology is limited.
Higher stabilities can be achieved by processes presented
by Barendse et al. (1998), Jacobsen et al. (1992), Bach et al.
(2003), and Ghani and Genencor (2000). Three main pro-
cedures can be derived by various combinations of the
described technologies. The first procedure is granulation,
which consists of a drum, a high shear, or a fluidized bed
granulation step in which a carrier (e.g., starch, sugar, or
salt) is granulated with the enzyme concentrate. The ad-
dition of binders and stabilizers is optional. Afterwards, a
coating is applied in a fluidized bed or a mixer, increasing
the stability and reducing dust formation of the product.
Quite similar to granulation is the process of absorption.

Here the enzyme concentrate is sprayed on cores (e.g.,
sugar cores), which have the ability to absorb the enzyme
solution and do not agglomerate with each other (de Lima et
al. 1997). Also, here a coating can be applied after drying
the enzyme cores. The third technology is extrusion. In a
first step, a dough must be produced consisting of a carrier
(e.g., starch), a binder, and the enzyme concentrate. This
dough is then extrudated. The extrudates can optionally be
rounded in a spheronizer. After the particles are dried, a
coating could be applied in analogy to the above-mentioned
processes. The properties of the products obtained by the
different technologies are essentially influenced by the use
of stabilizers or other processing aids.

An alternative to the use of dry enzyme formulations is
the addition of liquid enzyme formulations postpelleting on
the cooled feedstuff pellets. With this method, the enzymes
can bypass heat inactivation that would occur during the
pelleting process. For liquids the most important property is
shelf life stability. Different stabilizers are established and
described (Barendse et al. 1993; Brugger et al. 1996). Xy-
litol and sorbitol belong to the most effective stabilizers
regarding shelf life stability. However, one needs special-
ized equipment to add liquids to the feed after pelleting,
which is not available in many feed mills.

Outlook

A major trend in phytase research is the screening for
enzymes with higher thermal stability. Until today, only few
phytases have been reported with temperature stability or

Phytase source Production
straina

Phytase
activity
(U ml−1)b

Phytase
concentration
(g l−1)

Phytase
productivity
(U l−1 h−1)b

Phytase
productivity
(mg l−1 h−1)

Reference

Rhizopus oligosporus 5c 75c Bogar et al. (2003b)
Rhizopus oligosporus 14d 149d Sabu et al. (2002)
Rhizopus oryzae 6c 76c Bogar et al. (2003b)
Rhizopus thailandensis 3c 38c Bogar et al. (2003b)
Consensusd Hansenula polymorpha 13.5 46 Mayer et al. (1999)
Yeasts
Arxula adininivorans 3 63 Sano et al. (1999)
Fellomyces fuzhouensis <1 1 Sano et al. (1999)
Pichia anomala 3 63 Vohra and

Satyanarayana (2004)
Pichia farinosa <1 1 Sano et al. (1999)
Rhodotorula gracilis <1 27 Bindu et al. (1998)
Schwanniomyces occidentalis <1 8 Lambrechts et al. (1993)
Schwanniomyces occidentalis <1 9 Sano et al. (1999)
Sporidiobolus johnsonii <1 1 Sano et al. (1999)
Sporobolimyces sp. <1 3 Sano et al. (1999)
Sterigmatosporus polymorphum <1 2 Sano et al. (1999)
aIn cases where no production strain is listed, phytase source and production system are identical
bOne Unit is the amount of phytase required to liberate 1 μmol of inorganic phosphate per minute from phytate
cCases where solid state cultivations were performed and hence data are expressed as U g−1 and U kg−1 h−1, respectively
dConsensus phytase (Mayer et al. 1999)

Table 3 (continued)
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optima exceeding 70°C. The fungal phytase from A. fumi-
gatus was reported to withstand temperatures up to 100°C
over a period of 20 min (Pasamontes et al. 1997), but a later
report from Ullah et al. (2000) did not confirm these results.
A synthetic consensus enzyme, deduced from several fun-
gal phytases and subsequent refinements by site-directed
mutagenesis, resulted in unfolding temperatures of up to
90.4°C (Lehmann et al. 2000). Also, phytase from B. amy-
loliquefaciens exhibited optimal activity at 70°C and sta-
bility at 90°C during 10 min incubation (Kim et al. 1998a;
Park et al. 2003). In pelleting experiments, this enzyme
retained >85% activity at temperatures ranging from 60 to
90°C. If such intrinsic thermostable phytases are used for
the application in animal nutrition, formulation technolo-
gies will change, as thermal stability will be no longer the
major task.

Protein engineering also dealt with the pH profile of
phytases. The pH range for phytase activity of the A. niger
phytase (Mullaney et al. 2002) or the E. coli phytase
(Rodriguez et al. 2000a,b) were broadened at acidic pH by
mutagenesis. Furthermore, phytases with various pH opti-
ma, ranging from 2.5 (A. niger PhyB) to 7.5 (several
Bacillus sp.), are described in literature (Oh et al. 2004).
However, different potential sites of action, like the strong
acidic stomach or the crop of poultry with a nearly neutral
pH, make the definition of an ideal pH profile regarding the
activity and stability of the phytase rather difficult (Lei and
Stahl 2001). Most successful feeding trials were performed
with acidic phytase. Preliminary data suggests that phytase
with neutral pH optimum also show relevant biological
activity (BASF, unpublished data). More data for neutral
and alkaline phytases are required to evaluate the potential
of these enzymes for commercial applications.

A relatively new field in the production of active agents
such as enzymes is the use of transgenic animals. In the case
of phytase, that would mean the possibility to produce the
active enzyme directly in the digestive tract of transgenic
monogastric animals. Several past attempts to express a
fungal phytase in a transgenic animal ended unsuccessfully
(Mullaney et al. 2000). However, the transformation of the
bacterial phytase gene appA from E. coli in a transgenic
mouse model resulted in the expression of phytase in the
parotid salivary glands. The enzymatically fully active
phytase in the salvia reduced fecal phosphorus excretion by
11% (Golovan et al. 2001a). Also, a transgenic pig has been
developed that produced the E. coli phytase in its saliva
with an average of 2,000–3,000 U/ml (Golovan et al.
2001b). These results indicate the potential of transgenic
animals, but further developments in this direction might be
limited by public acceptance.
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