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Abstract Feruloyl esterases have potential uses over a
broad range of applications in the agri-food industries. In
recent years, the number of microbial feruloyl esterase
activities reported has increased and, in parallel, even
more related protein sequences may be discerned in the
growing genome databases. Based on substrate utilisation
data and supported by primary sequence identity, four sub-
classes have been characterised and termed type-A, B, C
and D. The proposed sub-classification scheme is
discussed in terms of the evolutionary relationships
existing between carbohydrate esterases.

Introduction

Feruloyl esterases

Feruloyl esterases [E.C. 3.1.1.73; also known as ferulic
acid esterases (FAE), cinnamoyl esterases, cinnamic acid
hydrolases] are a subclass of the carboxylic acid esterases
(E.C. 3.1.1.1) that are able to hydrolyse the ester bond
between hydroxycinnamic acids and sugars present in the
plant cell walls (Williamson et al. 1998b). These enzymes
have previously been classified as type A (e.g. Aspergillus
niger FaeA) and type B (e.g. A. niger CinnAE, FaeB,
Penicillium funiculosum FaeB, Neurospora crassa Fae-1),
based on their specificity for the substrate aromatic moiety,
specificity for the linkage to the primary sugar and ability
to release ferulic acid dehydrodimers from esterified

substrates (Crepin et al. 2003a; De Vries et al. 2002b;
Kroon et al. 1999, 2000). The substrate utilisation of either
methyl sinapate or methyl caffeate by feruloyl esterases is
the basis of this classification. In addition, the majority of
these esterases show acetyl xylan esterase activity,
regardless of whether they are assigned as acetyl or
feruloyl esterases. However, specific acetyl xylan esterase
activity is rather low for the enzymes classified as feruloyl
esterases. The two major feruloyl esterases of A. niger
have received most attention, namely AnFaeA and
AnFaeB (De Vries et al. 1997, 2002b; Faulds and
Williamson 1994; Kroon et al. 1996, 1997).

Type A feruloyl esterases

Type A feruloyl esterases tend to be induced during
growth on cereal-derived substrates. The enzyme releases
ferulic acid from 1,5-ester-linked feruloylated arabinose
(Ralet et al. 1994) and is also able to release low quantities
of 5,5′- and 8-O-4′-ferulate dehydrodimers from plant
material when pre-treated with a xylanase or when a
xylanase is co-incubated with the feruloyl esterase
(Bartolome et al.1997; Faulds and Williamson 1995;
Kroon et al. 1999; Williamson et al. 1998a). There is no
report of these enzymes releasing diferulate from pectin-
derived material. Type A feruloyl esterases also show a
preference for the phenolic moiety of the substrate that
contains methoxy substitutions, especially at carbon(s) 3
and/or 5, as occurs in ferulic and sinapic acids. Regarding
specificity against synthetic substrates, type A feruloyl
esterases are active against methyl ferulate, methyl
sinapate and methyl p-coumarate, but not methyl caffeate.
They appear to prefer hydrophobic substrates with bulky
substituents on the benzene ring (Kroon et al. 1997, 1999;
Williamson et al. 1998a).
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Type B feruloyl esterases

Type B feruloyl esterases are preferentially secreted by
growth on sugar beet pulp. The enzymes release ferulic
acid ester-linked to either C-2 of feruloylated arabinose or
C-6 of feruloylated galactose residues (Kroon and Wil-
liamson 1996), but they are unable to release the dimeric
forms of ferulate. The A. niger type B enzyme also works
on 1,5-linked ferulic acid as found in cereals but at a lower
rate than the type A esterases (Kroon et al. 1996; Ralet et
al. 1994; Williamson et al. 1998a). The type B feruloyl
esterases show a preference for the phenolic moiety of the
substrate that contains one or two hydroxyl substitutions,
as found in p-coumaric and caffeic acids, respectively.
Hydrolytic rates are significantly lowered when a methoxy
group is present. Regarding specificity against synthetic
substrates, type B feruloyl esterases are active against
methyl caffeate, methyl ferulate and methyl p-coumarate,
but not methyl sinapate.

A third type of esterase

A third type of esterase with broad specificity against
synthetic hydroxycinnamic acids (ferulic, caffeic, p-cou-
maric, sinapic) has been reported as an acetyl esterase
(XYLD) from Pseudomonas fluorescens subsp. cellulosa
(Ferreira et al. 1993). The data indicate that XYLD is able
to cleave ester linkages in plant cell walls, although the
enzyme exhibits greatest activity towards the release of
acetic acid from 4-nitrophenyl acetate. The hydrolysis rate
of XYLD esterase, both for hydroxycinnamic acids and for
acetylated substrates, is significantly lower (25- to 500-
fold) than reported for the characterised fungal feruloyl
esterases (De Vries et al. 2002b; Faulds and Williamson
1994; Kroon et al. 1996, 2000) and other microbial acetyl
xylan esterases (Basaran and Hang 2000; Blum et al.
1999; Degrassi et al. 2000; Linden et al. 1994; McDermid
et al. 1990). In addition, XYLD is capable of releasing 5-
5′-ferulic dehydrodimers from barley and wheat cell walls
(Bartolome et al. 1997). In respect of this broad substrate
specificity, XYLD has been tentatively classified as a
general plant cell wall esterase.

Feruloyl esterases are subject to complex regulation

The expression of many fungal genes coding for cell wall-
degrading enzymes are subject to complex regulation
through carbon catabolite repression, as exercised by the
repressor CreA from A. niger and A. nidulans (De Vries et
al. 1999, 2002a; Dowzer and Kelly 1991; Orejas et al.
2001; Ruijter and Visser 1997), Cre-1 from N. crassa
(Ebbole 1998), or Cre1 from Trichoderma reesei (Strauss
et al. 1995). Cell wall-degrading enzymes of A. niger are
also specifically induced via the xylanolytic transcriptional
activator XlnR (De Vries and Visser 1999; van Peij et al.
1998), in addition to positive or negative regulation by
factors derived from the growth substrates themselves (De

Vries et al. 2002b; Faulds and Williamson 1999; Faulds et
al. 1997). Feruloyl esterase activity is proposed to be
regulated through the xylose-induced expression of the
repressor protein XlnR in Aspergillus during growth on
hemicellulosic material (De Vries and Visser 2001), but it
has yet to be established how type B esterases are induced
during growth on material such as sugar beet pulp.

Protein sequence databases

In recent years, the number of microbial feruloyl esterase
activities reported has increased, in particular with the
acquisition of related protein sequences in the growing
genome databases. Several enzymes have been purified
and characterised from aerobic and anaerobic micro-
organisms that utilise plant cell wall carbohydrates (Blum
et al. 2000; Borneman et al. 1992; Castanares et al. 1992;
Crepin et al. 2003a; Dalrymple et al. 1996; De Vries et al.
2002b; Donaghy et al. 2000; Faulds and Williamson 1991,
1994; Ferreira et al. 1993; Fillingham et al. 1999; Kroon et
al. 1996, 2000; McCrae et al. 1994; Tenkanen et al. 1991).
Feruloyl esterase activities have also been detected in
mammalian cells and plants (Andreasen et al. 2001;
Sancho et al. 1999) but these enzymes have yet to be
purified and their protein sequences determined for
comparison with the microbial enzymes. However, a
number of microbial gene sequences have been deter-
mined; and the predicted protein sequences from these
suggests there is a considerable degree of structural
diversity between them. Analysis of predicted feruloyl
esterase protein sequences show that many of these
enzymes are modular, comprising of a catalytic domain
covalently fused to non-catalytic carbohydrate-binding
modules (Ferreira et al. 1993; Kroon et al. 2000).
Alternatively, the catalytic domain may be included in a
greater modular complex, such as that observed for the
cellulosome of Clostridium sp. (Blum et al. 2000; Shoham
et al. 1999) or for the multiprotein cellulose-binding
cellulase-hemicellulase complex from the anaerobic fun-
gus Piromyces equi (Fillingham et al. 1999). Although the
first crystal structure of a feruloyl esterase module was
reported recently for two esterases from C. thermocellum
(Prates et al. 2001; Schubot et al. 2001), relatively few
studies have been performed to elucidate the functional
relationships between sequence-diverse feruloyl esterases.
At present, the lack of highly conserved sequences within
the sequenced esterases does not permit further classifi-
cation for the feruloyl esterases, other than that their
primary amino acid sequences place them in family 1
(Coutinho and Henrissat 1999) of the carbohydrate
esterase classification (http://afmb.cnrs-mrs.fr/~cazy/
CAZY/).

Based on the primary sequence identity and activity
profile data reported for more than 20 feruloyl esterases
against synthetic methyl esters, we propose a scheme for
the sub-classification of the feruloyl esterase enzymes. The
classification is discussed in terms of the evolutionary
relationships existing between carbohydrate esterases.



Materials and methods

Phylogenetic analyses

Multiple alignments of sequences or domains showing feruloyl
esterase activity and sequence-related enzymes, such as lipases, and
the construction of a neighbour-joining phylogenetic tree (Saitou
and Nei 1987) were performed with the CLUSTAL W program,
available at http://www.ebi.ac.uk/clustalw/ (Thompson et al. 1994).
The matrix used for the multiple sequence alignment was the group
of BLOSUM matrices recommended for amino acid sequences
alignments (Henikoff and Henikoff 1992). The gap penalties were
set at the default values, the gap separation penalty value was 8, the
penalty value for extending a gap was 0.05 and the penalty value for
opening a gap was 10.

Results and discussion

Feruloyl esterase sub-classification

Using literature reports of the substrate preferences of
characterised feruloyl esterases, together with the growth
substrate requirements for crude cell wall materials leading
to the expression of these enzymes by various microbes,
we organised the microbial feruloyl esterases into four
functional classes. Using the published compatible data on
the feruloyl esterases Pen. funiculosum FaeB (EMBL
accession number AJ291496), N. crassa Fae-1
(AJ293029), Ps. fluorescens XYLD (X58956), Pen.
funiculosum FaeA (AJ312296), Piromyces equi EstA
(AF164516), A. niger FaeA (AF361950); Talaromyces
stipitatus FaeC (AJ505939) and A. niger FaeB
(AJ309807), a comparative analysis indicated these
enzymes could be divided into four putative sub-classes,
termed types A, B, C and D (Table 1). Members of each
sub-class show similar activity profiles against four model

substrates [methyl 3-methoxy-4-hydroxycinnamate
(MFA), methyl 3,4-dihydroxycinnamate (MCA), methyl
3,5-dimethoxy-4-hydroxycinnamate (MSA), methyl 4-
hydroxycinnamate (MpCA)] and similar abilities to
release diferulate or not from plant cell wall material.
Moreover, these classes are likely to reflect the substrate
availability of natural plant cell walls, as they are
preferentially induced by their respective organisms
when grown in the presence of similar substrates. Finally,
it can be demonstrated that members of the same activity
class also share a high degree of amino acid sequence
identity.

In order to investigate further the feruloyl esterase sub-
classification, a phylogenetic tree was drawn on the basis
of primary sequence identity between selected plant cell
wall-acting esterases and other sequence related enzymes,
such as lipases and xylanases. A phylogenetic tree of the
cladogram type was constructed by the neighbour-joining
method, using CLUSTAL W. A cladogram is a branching
tree assumed to be an estimate of a phylogeny where the
branches are of equal length, which shows common
ancestry but does not indicate the degree of evolutionary
time separating the taxa. The phylogenic tree indicates that
feruloyl esterases diverged in three main branches, within
which they evolved along discrete lines to form sub-
classes of specialised enzymes (Fig. 1).

The phylogenetic analysis by and large supports the
feruloyl esterase classification proposed above on the basis
of enzyme activity profiles against synthetic methyl esters.
However, it is of note that the phylogenetic analysis
indicates that TsFaeC (EMBL accession number
AJ505939) and AnFaeB (AJ309807) are closely related
and evolved from a common root. As a consequence, we
suggest that these enzymes belong to the same sub-class of
feruloyl esterases, termed type C, despite the reported
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Table 1 Classification of feruloyl esterases based on primary
amino acid sequence identity, specificity for hydroxycinnamic acid
methyl esters, ability to release 5,5′-diferulic acid from model and

complex substrates and inducible plant cell wall materials. CE
carbohydrate esterase; for other abbreviations, see Materials and
methods

Parameter Type A Type B Type C Type D
Aspergillus niger
FaeAa,c,d

Penicillium funiculosum
FaeBe, Neurospora
crassa Fae-1f

A. niger FaeBb,c,d,
Talaromyces stipitatus
FaeCg

Pen. equi EstAh,
Pseudomonas fluorescens
XYLDi

Preferential induction medium WB SBP SBP–WB WB
Hydrolysis of methyl esters MFA, MSA, MpCA MFA, MpCA, MCA MFA, MSA, MpCA, MCA MFA, MSA, MpCA, MCA
Release of diferulic acid Yes (5-5′) No No Yes (5-5′)
Sequence similarity Lipase CE family 1 acetyl xylan

esterase
Chlorogenate esterase
tannase

Xylanase

a Faulds and Williamson (1994)
b Kroon et al. (1996)
c Kroon et al. (1999)
d Ralet et al. (1994)
e Kroon et al. (2000)
f Crepin et al. (2003a)
g Crepin et al. (2003b)
h Fillingham et al. (1999)
i Ferreira et al. (1993)
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difference in the substrate specificity of AnFaeB for
methyl hydroxycinnamates, which initially suggested this
enzyme to be a type B feruloyl esterase (De Vries et al.
2002b). The true type B enzymes have a common node,
but the protein sequences of Pen. funiculosum FaeB
(AJ291496) and N. crassa Fae-1 (AJ293029) may be
distinguished from the high degree of conservation
observed between the acetyl xylan esterases of A. awamori

(D87681), A. niger (A22880), A. ficuum (AF331757) and
Pen. purpurogenum (AAM93261).

The phylogenetic tree also recognises sequence relation-
ships outside the present scheme. For example, the acetyl
xylan esterase II from Pen. purpurogenum (Accession
number AF015285) and the catalytic domain of AXE I
(acetyl xylan esterase) from Trichoderma reesei (S71334)
share 67% sequence identity (Gutierrez et al. 1998); and

Fig. 1 Cladogram of enzymes of the feruloyl esterase family and
relatives. Sequence names with their accession numbers are shown
on the right of the tree. NcFaeD-3.660 Neurospora crassa FaeD-
3.660 feruloyl esterase, PfFaeA Penicillium funiculosum FaeA
(AJ312296), PfXYLD Pseudomonas fluorescens XYLD (X58956),
NcFaeD-3.544 N. crassa FaeD-3.544 feruloyl esterase (this work),
PeESTA Piromyces equi ESTA (AF164516), NcFae-1 N. crassa
Fae-1 (AJ293029), PfFaeB Pen. funiculosum FaeB (AJ291496),
AaAXE Aspergillus awamori AXE (D87681), AnAXE Asp. niger
AXE (A22880), AfAXE Asp. ficuum AXE (AF331757), PpAXEI
Pen. purpurogenum AXE I (AAM93261), OspFaeA Orpinomyces
sp. PC-2 FaeA (AF164351), CtXynZ Clostridium thermocellum
XynZ (M22624), RspXyn1 Ruminococcus sp. Xyn1 (S58235),
RfXynE R. flavefaciens XynE (AJ272430), CtXynY C. thermocellum
XynY (X83269), RaXynB R. albus XynB (AB057588), RfAXE R.
flavefaciens AXE (AJ238716), OspAXE Orpinomyces sp. PC-2
AXE A (AAC14690), AnFaeB Asp. niger FaeB (AJ309807),

TsFaeC Talaromyces stipitatus FaeC (AJ505939), AoEST Asp.
oryzae selective esterase (CAD28402), AspChloro Acinetobacter sp.
chlorogenate esterase (AAL54855), AoTAN Asp. oryzae tannase
(JC5087), RfXynB R. flavefaciens XynB (Z35226), AnFaeA Asp.
niger FaeA (AF361950), AaFaeA Asp. awamori FaeA (Q9P979),
AtFaeA Asp. turbingensis FaeA (Y09331), TlLipase Thermomyces
lanuginosus lipase (O59952), RmLipase Rhizomucor miehei lipase
(P19515), PpAXE P. purporogenum xylan esterase II (AF015285),
TrAXE T. reesei acetyl xylan esterase I (S71334), BfCINI Butyri-
vibrio fibrisolvens E14 cinnamoyl ester hydrolase I (T44624),
BfCINII B. fibrisolvens E14 cinnamoyl ester hydrolase II
(AAB57776), NpAXE Neocallimastix patriciarum AXE (U66253),
ApESTA Asp. parasiticus ESTA esterase (AF417002), AspAEST
Acinetobacter sp. AEST esterase (BAB68337), BpAXE Bacillus
pumilus AXE (AJ249957), SlAXE Streptomyces lividans AXE
(AAC06115)



enzymes such as XynY and XynZ from C. thermocellum
(Accession numbers P51584 and M22624, respectively),
FaeA from Orpinomyces sp. PC-2 (AF164351) and Xyn1
from Ruminococcus sp. (S58235) are closely related
(Blum et al. 2000). In parallel, the phylogenetic tree
shows that, although the feruloyl esterases have some
common roots, in some cases they may be more sequence-
related to a variety of other enzymes, such as lipases,
acetyl xylan esterases, or xylanases, than they are to each
other.

Although the four enzyme sub-classes could be ascribed
based on functional criteria outlined above, the phyloge-
netic analysis also suggests that there are probably yet
further unnamed enzyme sub-classes. This fifth sub-class
is comprised of OspFaeA (AF164351), CtXynZ
(M22624), RspXyn1 (S58235), RfXynE (AJ272430),
CtXynY (P51584) and RaXynB (AB057588). However,
at present, this grouping may only be discriminated on the
basis of their primary amino acid sequence identity, as no
further correlation could be established here due to the
lack of comparable enzyme activity data and, in some
cases, information as to which plant cell wall materials
preferentially provoke the expression of these feruloyl
esterases by the microbes that possess them. Future
acquisition of protein and predicted protein sequences
with complementary enzyme activity data using synthetic
methyl esters will enable the substantiation of these and
potentially other enzymes classes recognised in phyloge-
netic analyses. These data will in turn provide a better
understanding of the complex evolutionary relationship
between the feruloyl esterases.

In conclusion, we propose that feruloyl esterases be
classified into four functional sub-classes, termed types A,
B, C and D, based on similarities in esterase activity
profiles against synthetic methyl esters and underpinned
by the intra- and inter-group protein sequence identities of
the enzymes.
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