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Abstract Pseudomonas rhodesiae KK1 was isolated
from a former manufactured-gas plant site, due to its
ability to grow rapidly in a mixture of polycyclic aromatic
hydrocarbons (PAHs). Radiorespirometric analysis re-
vealed that strain KK1 was found to be able to mineralize
anthracene, naphthalene and phenanthrene. Notably,
phenanthrene-grown cells were able to mineralize anthra-
cene much more rapidly than naphthalene-grown cells.
Comparative analysis of amino acid sequences from
17 randomly selected dioxygenases capable of hydroxy-
lating unactivated aromatic nuclei indicated that the
enzymes for catabolism of PAHs, such as naphthalene and
phenanthrene, might exist redundantly in strain KK1.
Northern hybridization for cells grown on naphthalene or
phenanthrene, using the putative naphthalene or phenan-
threne dioxygenase gene fragment as a probe, suggested

that the enzyme for naphthalene catabolism might share
some homology in deduced amino acid sequences with
phenanthrene dioxygenases. Also, it was found that three
lipids (17:0 cyclo, 18:1 w7c, 19:0 cyclo) increased in
response to both naphthalene and phenanthrene, while the
shift of other lipids varied from substrate to substrate.

Introduction

The manufactured-gas plant (MGP) site used in this study
has a history of over 100 years of contamination with coal
tar. It is well known that coal tar is composed of many
polycyclic aromatic hydrocarbons (PAHs) including an-
thracene, benzo(a)pyrene, chrysene, fluoranthene, fluo-
rene, naphthalene, phenanthrene, and pyrene (Arvin and
Williams 1992; Prince and Drake 1999). These PAHs are
considered among the major contaminants in soil and
water environments, because many of these compounds
have been found to be cytotoxic, mutagenic, and poten-
tially carcinogenic (Cerniglia et al. 1994; Van Agteren et
al. 1998). The microbial degradation of PAHs, including
fluorene, naphthalene, and phenanthrene, has been exten-
sively characterized (Menn et al. 1993; Sanseverino et al.
1993a, b; Serdar and Gibson 1989; Simon et al. 1993;
Takizawa et al. 1994; Yang et al. 1994). Several reports
suggested that the enzymes involved in naphthalene
degradation also have the ability to degrade phenanthrene
and anthracene through similar catabolic steps (Menn et
al. 1993; Sanseverino et al. 1993a, b; Yang et al. 1994;
Zylstra et al. 1994). However, Cigolini (2000) reported
that the pyrene- and phenanthrene-degrading bacterium,
Mycobacterium sp. strain PYO1, could not degrade
naphthalene. The genes for the initial steps in the
degradation of naphthalene and phenanthrene have been
cloned from Pseudomonas strains and their nucleotide
sequences have been determined. However, little is
known about dioxygenase genes for the initial catabolism
of PAHs (except for naphthalene and phenanthrene), or
their functions. In our efforts to understand the mecha-
nisms for utilization of PAHs, strain KK1 was isolated
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from the coal tar-contaminated soil at a former manufac-
turing facility, owing to its ability to grow rapidly on
PAHs, such as naphthalene (Kahng 2002). This study was
undertaken not only to evaluate the catabolic potential of
KK1 strains for PAHs, but also to analyze their diversity
and the possible role of dioxygenase for PAH degrada-
tion.

Materials and methods

Media, soil samples, and isolation of pure bacterial strains
capable of degrading PAHs

The PAH-contaminated soil used in this study was collected at a
depth of 0–2 m below the surface at a former MGP site in New
Jersey. The soil was classified as loamy sand, consisting of 78%
sand, 11% silt, and 11% clay. PAH-degrading bacteria were
isolated from PAH-contaminated soil at the MGP site through
enrichment culture technique. Samples of MGP soil (5 g) were
incubated with a mixture of PAHs in 100 ml of inorganic salts
solution (0.10 g CaCl2·2H2O, 0.01 g FeCl3, 0.10 g MgSO4·7H2O,
0.10 g NH4NO3, 0.20 g KH2PO4, 0.80 g K2HPO4 in 1 l of dH2O;
pH 7.0) at 30 �C for 2 weeks. PAHs, including anthracene,
naphthalene, or phenanthrene, dissolved in acetone at the concen-
tration of 10 mg/ml were used as substrates for the enrichment.
After 2 weeks of incubation, 10 ml of the supernatant were
collected and incubated for a further 2 weeks, as described above.
By this procedure, a consortium capable of degrading a variety of
PAHs was obtained and used for the isolation of pure bacterial
strains that were able to degrade PAHs.

Determination of PAH mineralization
using radiorespirometry

The catabolic potential of strain KK1 for PAHs was determined by
measuring the radioactivity of CO2 evolved from the mineralization
of [14C]-labeled PAHs. For this purpose, radiolabeled PAHs,
including naphthalene ([UL-14C], 31.3 mCi/mmol), phenanthrene
([9-14C], 14.0 mCi/mmol), and anthracene ([1,2,3,4,4A,9A-14C],
20.6 mCi/mmol), were purchased from Sigma Chemical Company
(St. Louis, Mo.). Cells were pregrown on tryptic soy broth (TSB),
naphthalene, or phenanthrene to late-exponential phase, harvested
by centrifugation, and washed twice with inorganic salts medium.
Approximately 105 cells from each of the substrates were inocu-
lated into 100 ml of inorganic salts solution containing anthracene,
naphthalene, or phenanthrene, respectively, and were then incubat-
ed for 10 days for mineralization experiments. The concentration of
nonradiolabeled PAH used for the mineralization experiments was
10 �g/ml and 105 disintegrations/min of radiolabeled PAH were
used. During the incubation period, the 14CO2 evolved from PAH
mineralization was trapped at intervals by 1 ml of 0.5 N NaOH
solution and the amount was determined by liquid scintillation
counting.

Analysis of dioxygenases for PAH catabolism
in strain KK1

To detect and amplify dioxygenase genes from KK1 total genomic
DNA, we used degenerate oligonucleotide primers that were
designed for the conserved Rieske iron–sulfur motif from dioxy-
genases found in many bacterial species capable of degrading
neutral aromatic hydrocarbons (Cigolini 2000). Genomic DNA was
purified by use of a Clonetech tissue kit. For PCR amplification of
the dioxygenase Rieske-type iron–sulfur motif sequences from
strain KK1, two universal degenerate oligonucleotides, 5'-AGG
GAT CCC CAN CCR TGR TAN SWR CA-3' and 5'-GGA ATT

CTG YMG NCA YMG NGG-3', were used as sense and antisense
primers, respectively. The PCR reaction, other molecular tech-
niques for DNA sequencing, and sequence analysis were performed
as described by Kahng et al. (2000).

RNA preparation and Northern hybridization

In order to analyze expression patterns at the transcriptional level,
cells were grown overnight in TSB media to the mid-log phase
(optical density = 0.8–1.0). Cells were harvested and washed twice
with the inorganic salts solution. Approximately 105 cells/ml were
transferred to the PAH medium containing 5 mg/ml of either
naphthalene or phenanthrene and were incubated for 12 h. Total
RNA was extracted from the KK1 cells using a Nucleospin RNA
extraction kit, according to the procedure provided (Clontech, Palo
Alto, Calif.). DNA fragments for probes in Northern hybridization,
diox14 (5'-tgtcggcatcgcggcaacaaggtgtgctttgcccggcaacgcccgcggctt-
tatctgctcgtaccacggctgggg-3') and diox40 (5'-tgcagtcatagcggcaa-
gacgctggtgagcgtggaagccggcaatgccaaaggttttgtttgttgctaccacgggtggg-
3'), were dissolved in sterile distilled water at the concentration of
50 �g/ml and were labeled after denaturation by heating them in
screw-capped microcentrifuge tubes at 95–100 �C, according to the
random-priming method provided (Promega, Madison, Wis.). Five
milligrams of total RNA were used as template for Northern
hybridization with the representative probes of two dioxygenase
groups (the putative naphthalene or phenanthrene dioxygenase
groups) obtained from KK1 to estimate the PAH-degrading
potential of strain KK1. Northern hybridization was carried out
as described by Kahng et al. (2001).

Analysis of total cellular fatty acids in strain KK1

Cells harvested following 24 h growth on tryptic soy agar (TSA)
were heated with NaOH–methanol to saponify cellular lipids; and
the released fatty acids were methylated by heating with HCl–
methanol. Fatty acid methyl esters (FAMEs) were solvent-extracted
and analyzed by gas chromatography with flame ionization
detection and gas chromatography–mass spectrometry. FAMEs
were identified by comparing their retention times and mass spectra
with those of authentic standards provided in the MIDI database.
To examine fatty acids shifted in response to PAH exposure, cells
grown on TSB were collected and washed twice in potassium
phosphate buffer (pH 7.0). Washed cells were incubated in 5 mg/ml
of anthracene, naphthalene, or phenanthrene mineral salts media for
24 h. Cells were extracted after 24 h and lipids extracted from those
cells were used for fatty acid analysis, as described above.

Physiological characterization of strain KK1

A GN2 MicroPlate (Biolog, Hayward, Calif.) was used to
characterize strain KK1, based on substrate-utilization profiling.
A single KK1 colony grown on a TSA plate was streaked onto
Biolog universal growth agar medium containing 5% sheep blood
and incubated overnight at 30 �C. Cells were suspended in normal
saline (0.15% NaCl) and inoculated into the GN2 MicroPlate. After
incubation for 24 h, the resulting pattern was read, using the Biolog
automated Micro-Station. The result obtained through Biolog
substrate-utilization analysis indicated that strain KK1 was a
member of the Pseudomonas spp cluster, with 96% matching
similarity (data not shown). Analysis of a 1,500-bp fragment of the
amplified 16S rDNA sequence from strain KK1 indicated that
strain KK1 was closest to the g-proteobacterium, P. rhodesiae
(GenBank accession no. AY043360).
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Results

PAH mineralization by KK1 cells

A single colony of KK1 cells grown on TSA was able to
mineralize 10 �g/ml of anthracene, naphthalene, or
phenanthrene within 10 days of incubation. However, it
could not degrade benzo[a]pyrene, chrysene, or pyrene
during an equivalent incubation. After 10 days of
incubation, approximately 1.8% of anthracene was min-
eralized, while 13% of naphthalene and 22% of phenan-
threne were mineralized, respectively (data not shown).
KK1 cells pre-grown on naphthalene or phenanthrene
were evaluated for PAH mineralization. There was no
change in the substrate spectrum of PAHs utilizable by
KK1 cells pregrown on naphthalene or phenanthrene.
However, KK1 cells pregrown on phenanthrene exhibited
much quicker and stronger catabolic potential for the
three substrates, anthracene, naphthalene, and phenan-
threne. A much quicker rate of anthracene mineralization
was observed in phenanthrene-grown cells, while naph-
thalene-grown cells had no effect on anthracene degra-
dation (Fig. 1A). Naphthalene mineralization was not
enhanced by cells pregrown on naphthalene, but phenan-
threne-grown cells mineralized naphthalene approximate-
ly twice as quickly at the same incubation time-point
(Fig. 1B). It was also found that phenanthrene mineral-
ization was greatly enhanced by cells pregrown on either
naphthalene or phenanthrene (Fig. 1C).

Dioxygenases for PAH metabolism in strain KK1

To investigate the catabolic potential for initial catabo-
lism of PAHs in KK1 cells, we analyzed total DNA
extracted from strain KK1 for the presence of dioxyge-
nases capable of hydroxylating unactivated aromatic

nuclei, using a specific PCR primer set. PCR products
were cloned and 17 randomly selected dioxygenases were
sequenced. Comparative analysis of amino acid sequences
indicated that 26 clones might originate from PAH
dioxygenases in strain KK1. The PAH dioxygenase
clones could be divided into three groups, suggesting
that strain KK1 has the diverse genes for the catabolism
of PAHs, such as naphthalene and phenanthrene (Fig. 2,
Table 1). This finding is consistent with radiorespiromet-
ric data showing that strain KK1 has the physiological and
catabolic ability for PAH mineralization. Subfamily 1
shared significant similarity in deduced amino acid
sequences with biphenyl or phenanthrene dioxygenases
(55–68% similarity). Subfamily 2 was closest to naph-
thalene dioxygenase, with 90–100% similarity. Subfam-

Fig. 1A–C Percentage of polycyclic aromatic hydrocarbon (PAH)
mineralized by KK1 cells pregrown on naphthalene or phenan-
threne. Cells were grown on naphthalene or phenanthrene and were
harvested by centrifugation at 8,000 rpm for 10 min. Then, 105 cells
were transferred to PAH liquid media containing 10 �g/ml of
anthracene, naphthalene, or phenanthrene radiolabeled with [C14]

and were incubated for 10 days. During the incubation period, 1 ml
of NaOH was used to analyze the amount of CO2 evolved from the
mineralization of [C14]-labeled PAHs. The amount of PAH
mineralized was determined by calculating the [C14]-labeled
CO2 liberated from the degradation of anthracene (A), naphthalene
(B), or phenanthrene (C) during the 10-day incubation period

Fig. 2 Phylogenetic tree based on the deduced amino acid
sequences of the putative PAH dioxygenase clones. Bootstrap
values at the nodes of the dendrogram indicate the percentage of
occurrence of the branching order in 500 bootstrapped trees (only
values of 50 or above are shown). The bar scale represents
10 nucleotide substitutions in 100 nucleotides. The brackets
indicate the three dioxygenase subfamilies that are discussed in
the text
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ily 3 was close to naphthalene dioxygenase, but demon-
strated high divergence in the amino acid sequence.

Transcriptional expression of the nah
and phn dioxygenase genes

Northern hybridization was carried out to analyze the
expression pattern of dioxygenases in response to differ-
ent PAHs, using one representative from subfamily 1
[assumed to be phenanthrene (phn) dioxygenase], or
subfamily 2 [naphthalene (nah) dioxygenase] as a probe.
The amino acid sequences of the probes were 5'-
CRHRGNKVCFAEAGNARGFICSYHGW-3' for sub-
family 1 and 5'-CSHSGKTLVSVEAGNAKGFVCCY-
HGW-3' for subfamily 2. The two representative probes
gave strong positive signals for naphthalene and phenan-
threne, whereas they gave negative signals for glucose
(Fig. 3). The putative naphthalene or phenanthrene

dioxygenase gene was expressed at a similar level in
cells grown on naphthalene or phenanthrene.

Shift in cellular fatty acid composition
for PAH-exposed cells

The total cellular fatty acids of KK1 were composed of
11 C-even and 2 C-odd fatty acids (fatty acids <0.2% in
abundance were not considered in this calculation). The
predominant lipid (16:0) made up 32% of the total
cellular fatty acids for cells grown on complex medium
(TSA), but this increased slightly to 38% when cells were
exposed to naphthalene and to 33% when exposed to
phenanthrene (Fig. 4). Lipid 18:1w7c/15:0 iso 2OH made
up 19% of the total cellular fatty acids for TSA-grown
cells. This lipid decreased to 15% for naphthalene-
exposed cells and disappeared for phenanthrene-exposed
cells. Lipid 16:0 3OH, which was not detectable in TSA-
grown cells, increased to a 5% abundance for phenan-

Table 1 Diversity of the putative polycyclic aromatic hydrocarbon dioxygenases in strain KK1. Numbers in brackets indicate the
dioxygenase clone names obtained through cloning of the PCR product

Dioxygenase group Amino acid sequence Possible functions

Subfamily 1 (two clones) 5'-CRHRGNKVCFAEAGNARGFICSYHGW-3' (14) Biphenyl or phenanthrene
hydroxylation5'-CRHSGNKVCFAEAGNARGFICSYHGW-3' (7)

Subfamily 2
(twelve clones)

5'-CRHRGKTLVSVEAGNAKGFVCSYHGW-3' (20) Naphthalene hydroxylation
5'-CRHRGKTLVSVEAGNAKGFVCCYHGW-3' (9, 41)
5'-CRHSGKTLVSVEAGNAKGFVCCYHGW-3' (4, 11, 16, 40, 50)
5'-CIHRGKTLVSVEAGNAKGFVCCYHGW-3' (25)
5'-CXHRGKTLVSVEAGNAKGFVCCYHGW-3' (45)
5'-CRHRGKTLVSVEAGNAKGFVCYHGW-3' (33)
5'-CRHSGKTLVSVEAGNAKGFVCSYHGR-3' (48)

Subfamily 3 (three clones) 5'-CRHRGKTLVSVEPAMPKVLFVLITAG-3' (1) Unknown
5'-FRHRGKTMVSVEPAMPKVLFVAITAG-3' (36)
5'-CRHSGKTLVSVEPAMPKVLFAATMDG-3' (29)

Fig. 3A, B Northern hybridization using two representative diox-
ygenase probes. Probes Diox14 (A) and Diox40 (B) were obtained
from subfamily 1 and subfamily 2, respectively. Cells were
pregrown on tryptic soy broth (TSB) with either naphthalene,
phenanthrene, or glucose and were then collected. Approximately
105 cells were transferred to 40 mM potassium phosphate
containing naphthalene (lane 1), naphthalene plus KNO3 (lane 2),
phenanthrene (lane 3), phenanthrene plus KNO3 (lane 4), or
glucose (lane 5) and were incubated at 160 rpm at 30 �C. Total
RNA (5 �g) isolated from cells following 20 h incubation was used
for Northern hybridization

Fig. 4 Comparative analysis of fatty acid profiles of strain KK1
cells exposed to naphthalene and phenanthrene. Total cellular fatty
acids were extracted from either TSB-, naphthalene-, or phenan-
threne-grown cells and analyzed by gas chromatography with a
flame ionization detection
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threne. Lipid 9:0 cyclo w8c dramatically increased from
2% for TSA-grown cells to a 12% abundance for
phenanthrene-exposed cells. When KK1 cells were
exposed to naphthalene or phenanthrene, 16:0 3OH and
18:1w6c were no longer detectable, suggesting that the
total cellular fatty acid composition of strain KK1 was
greatly affected by exposure to naphthalene or phenan-
threne.

Discussion

The MGP site used in this study was found to be seriously
contaminated with PAHs, such as anthracene, bezo[a]py-
rene, chrysene, fluorene, naphthalene, phenanthrene, and
pyrene. A pure strain, KK1, was isolated from the highly
active consortium obtained from the MGP site. Evalua-
tion of PAH utilization by KK1 revealed that the strain
was capable of mineralizing anthracene, naphthalene, and
phenanthrene (Fig. 1). In this respect, the result was
consistent with previous studies that naphthalene-degrad-
ing bacteria were capable of anthracene or phenanthrene
degradation, through similar catabolic steps. However,
there is no evidence that the three PAHs can be degraded
by a catabolic enzyme. Mycobacterium sp. strain PYO1 is
capable of mineralizing phenanthrene and can also
catabolize the four-ring PAH, pyrene. But, this organism
cannot metabolize naphthalene. This fact suggests that the
enzyme for the initial catabolism of phenanthrene might
exist independently from the naphthalene dioxygenase.

KK1 cells pregrown on phenanthrene made a more
dramatic effect on the mineralization of anthracene and
phenanthrene than naphthalene-grown cells (Fig. 1). Even
naphthalene mineralization was much more stimulated by
phenanthrene-grown cells. The mineralization rates of
anthracene, naphthalene, and phenanthrene were in-
creased approximately 10.0-, 1.6-, and 2.2-fold, respec-
tively, in phenanthrene-grown cells. It is well known that
pre-growth on the same substrate stimulates substrate
degradation. The result obtained in this study was
different from previous findings, in that quicker miner-
alization of anthracene or naphthalene was performed by
phenanthrene-pregrown cells. This result suggested the
possibility that some metabolites which are produced
during the degradation of phenanthrene are needed for the
induction of the enzymes for the degradation of anthra-
cene or naphthalene. The most interesting thing is that
approximately 4 days of lag-time was observed for the
degradation of anthracene or phenanthrene, whereas there
was no lag-time for the degradation of naphthalene. It was
assumed that the difference in lag-time between the
naphthalene and anthracene (or phenanthrene) degrada-
tions might result from differences in chemical structure.
Three-ring PAHs, such as anthracene and phenanthrene,
probably need a longer time for mineralization than the
two-ring PAH, naphthalene. However, the finding that a
much longer lag-time than expected was observed in the
degradation of phenanthrene warrants further study.
Mineralization of other PAHs, such as benzo(a)pyrene,

chrysene, and pyrene, were not observed by the naphtha-
lene- or phenanthrene-grown cells. It is generally consid-
ered that the degradation rate of any substrate can be
enhanced by cells pregrown on the same substrate.
However, the data we obtained are different from the
general consideration. Phenanthrene can be catabolized to
produce the key intermediate, 1-hydroxy-2-naphthoic
acid, via several metabolic steps; and the intermediate
can be further metabolized to 1,2-dihydroxynaphthalene
or 2-carboxybenzaldehyde under aerobic conditions
(Cerniglia and Heitkamp 1989; Goylal and Zylstra
1996). The compound 1,2-dihydroxynaphthalene can be
mineralized, using the naphthalene catabolic pathway.
These findings suggest that even naphthalene catabolism
can be stimulated by phenanthrene in strain KK1.

The PCR amplification of the Rieske iron–sulfur motif
region from dioxygenases found in strain KK1 revealed
that strain KK1 has diverse dioxygenase genes for the
catabolism of neutral aromatic hydrocarbons (Fig. 2). The
microbial degradation of mono- and polycyclic aromatic
hydrocarbons is often initiated by ring-hydroxylating
dioxygenase enzymes. The ring-hydroxylating dioxyge-
nases thus far identified are soluble, multicomponent
enzymatic systems comprising a short electron-transport
chain and terminal oxygenase (Cerniglia et al. 1994;
Mason and Cammack 1992; Rieske et al. 1964). Typi-
cally, the terminal dioxygenase is composed of two
dissimilar subunits: large (alpha) and small (beta)
subunits. Every large subunit of a dioxygenase enzyme
contains a Reiske-type iron–sulfur center (Batie et al.
1987; Geary et al. 1984; Gurbiel et al. 1989; Mason
1988). The iron–sulfur center has two peculiar amino acid
sequence motifs surrounding a region of amino acids
whose sequence varies from enzyme to enzyme. Accord-
ingly, identifying amino acid sequences of the Reiske-
type iron–sulfur motif regions in strain KK1 was of
significance, considering that we have very limited
information about the role of dioxygenase for the
degradation of PAHs. Figure 3 shows the diversity of
the putative PAH dioxygenases in strain KK1. A variety
of dioxygenase amino acid sequences in a family might
result from a PCR reaction using degenerate primers. It is
noticeable that subfamily 3 demonstrated highly divergent
amino acid sequences, even though close to naphthalene
dioxygenases.

Expression patterns of PAH dioxygenases at the
transcriptional level were analyzed using Northern hy-
bridization with two representative probes (Fig. 3). The
two probes gave strong positive signals for naphthalene
and phenanthrene, while they gave negative signals for
glucose. These findings were consistent with our expec-
tation that hybridized signals might be obtained in
response to naphthalene and phenanthrene. Any indistin-
guishableness among transcriptional signals in response
to different PAH substrates might result from the fact that
there is some similarity between the two dioxygenase
probes used for Northern blotting. In fact, there is
approximately 62% similarity in deduced amino acid
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sequences between the two probes used for Northern
hybridization.

Exposure of KK1 cells to naphthalene or phenanthrene
resulted in changes in the total cellular fatty acid
composition (Fig. 4). It is notable that lipids 10:0 3OH,
12:0, 12:0 2OH, 12:0 3OH, 17:0 cyclo, 18:1 w7C, 18:1
w6C, and 18:0 occupy a small proportion of the total
cellular fatty acids, but only lipids 14:0 and 16:0 3OH
(which were not detectable on TSA) increased, following
exposure to naphthalene or phenanthrene. It was consid-
ered that changes in these fatty acids in response to
different substrates might affect the cells’ survival
tolerance, or enhance the cells’ ability to utilize the
substrate. This finding was consistent with our previous
report that several cis-unsaturated fatty acids in Bukholde-
ria sp. HY1 increased in response to aniline, along with
an increase in some trans-fatty acids (Kahng et al. 2000).
These facts suggest that shifts from cis- to trans-fatty
acids (or vice versa) in KK1 cells might result from the
cells’ response for both survival and use of substrate in
the presence of naphthalene and phenanthrene. Interest-
ingly, lipids 17:0 cyclo, 18:1 w7c, and 19:0 cyclo
increased in response to both naphthalene and phenan-
threne. This fact suggested that lipids 17:0 cyclo, 18:1
w7c, and 19:0 cyclo might play a key role in the cells’
tolerance or adaptation to PAHs, warranting further
intensive study.
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