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Abstract
Every biological fluid, blood, interstitial fluid and lymph, urine, saliva, lacrimal fluid, nipple aspirate, and spinal fluid, contains a
peptidome-degradome derived from the cellular secretome along with byproducts of the metabolic/catabolic activities of each paren-
chymal organ. Clement et al. (J Proteomics 78:172–187, 2013), Clement et al. (J Biol Chem 291:5576–5595, 2016), Clement et al.
(PLoS One 5:e9863, 2010), Clement et al. (Trends Immunol 32:6–11, 2011), Clement et al. (Front Immunol 4:424, 2013), Geho et al.
(Curr Opin Chem Biol 10, 50–55, 2006), Interewicz et al. (Lymphology 37:65‑72, 2004), Leak et al. (Proteomics 4:753‑765, 2004),
Popova et al. (PLoSOne 9:e110873, 2014), Zhou et al. (Electrophoresis 25:1289‑1298, 2004), D'Alessandro et al. (Shock 42:509‑517,
2014), Dzieciatkowska et al. (Shock 42:485‑498, 2014), Dzieciatkowska et al. (Shock 35:331‑338, 2011), Jordan et al. (J Surg Res
143:130‑135, 2007), Peltz et al. (Surgery 146:347‑357, 2009), Zurawel et al. (Clin Proteomics 8:1, 2011), Ling et al. (Clin Proteomics
6:175‑193, 2010), Sturm et al. (Nat Commun 4:1616, 2013). Over the last decade, qualitative and quantitative analysis of the biological
fluids peptidome and degradome have provided a dynamic measurement of tissue homeostasis as well as the tissue response to
pathological damage. Proteomic profiling has mapped several of the proteases and resulting degradation by-products derived from cell
cycle progression, organ/tissue remodeling and cellular growth, physiological apoptosis, hemostasis, and angiogenesis. Currently, a
growing interest lies in the degradome observed during pathological conditions such as cancer, autoimmune diseases, and immune
responses to pathogens as a way to exploit biological fluids as liquid biopsies for biomarker discovery Dzieciatkowska et al. (Shock
42:485–498, 2014), Dzieciatkowska et al. (Shock 35:331–338, 2011), Ling et al. (Clin Proteomics 6:175–193, 2010), Ugalde et al.
(Methods Mol Biol 622:3–29, 2010), Quesada et al. (Nucleic Acids Res 37:D239‑243, 2009), Cal et al. (Front Biosci 12, 4661–4669,
2007), Shen et al. (PLoS One 5:e13133, 2010a), Antwi et al. (Mol Immunol 46:2931–2937, 2009a), Antwi et al. (J Proteome Res
8:4722‑4731, 2009b), Bedin et al. (J Cell Physiol 231, 915‑925, 2016), Bery et al. (Clin Proteomics 11:13, 2014), Bhalla et al. (Sci Rep
7:1511, 2017), Fan et al. (Diagn Pathol 7:45, 2012a), Fang et al. (Shock 34:291‑298, 2010), Fiedler et al. (Clin Cancer Res
15:3812‑3819, 2009), Fredolini et al. (AAPS J 12:504‑518, 2010), Greening et al. (Enzymes 42:27‑64, 2017), He et al. (PLoS One
8:e63724, 2013), Huang et al. (Int J Gynecol Cancer 28:355‑362, 2018), Hashiguchi et al. (MedHypotheses 73:760‑763, 2009), Liotta
and Petricoin (J Clin Invest 116:26‑30, 2006), Petricoin et al. (Nat Rev Cancer 6:961‑967, 2006), Shen et al. (J Proteome Res
9:2339‑2346, 2010a), Shen et al. (J Proteome Res 5:3154‑3160, 2006), Smith (Clin Proteomics 11:23, 2014), Wang et al.
(Oncotarget 8:59376‑59386, 2017), Yang et al. (Clin Exp Med 12:79‑87, 2012a), Yang et al. (J Clin Lab Anal 26:148‑154, 2012b),
Yang et al. (Anat Rec (Hoboken) 293:2027‑2033, 2010), Zapico-Muniz et al. (Pancreas 39:1293‑1298, 2010), Villanueva et al. (Mol
Cell Proteomics 5:1840‑1852, 2006), Robbins et al. (J Clin Oncol 23:4835‑4837, 2005), Klupczynska et al. (Int J Mol Sci 17:410,
2016). In this review, we focus on the current knowledge of the degradome/peptidome observed in two main biological fluids (plasma
and lymph) during physiological and pathological conditions and its importance for immune surveillance.
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Interstitial fluid and lymph

The interstitial fluid is a thin film of fluid that bathes all the
cellular layers of each parenchymal organ (Guyton and
Coleman 1968; Wiig and Swartz 2012; Zhang et al. 2006).
In humans, 8–12 l of interstitial fluid are generated every day,
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which accounts for about one sixth of the body weight
(Guyton and Coleman 1968; Wiig and Swartz 2012; Kramer
et al. 1986). A fundamental function of the interstitial fluid is
to provide nutrients, water, electrolytes, metabolites, and over-
all biomolecules to parenchymal cells (Wiig and Swartz 2012;
Tran et al. 2018; Aukland et al. 1984; Zhang et al. 2017).
Indeed, since the organ’s cellular layers are not in direct con-
tact with the blood, nutrients, protein, and soluble molecules
need to extravasate into the interstitial fluid to be taken up by
parenchymal cells. The movement of proteins and biomole-
cules from the intravascular to the extravascular/interstitial
compartment is associated with movement of water and elec-
trolytes, which altogether forms the elementary composition
of the interstitial fluid. Using radioactive tracer, it was
originally shown that all the major categories of plasma
proteins, such as albumin and α, β,and γ globulins
were present in the interstitial fluid at a relatively small-
er concentration (between 20 to 37%, depending on the
anatomical district) than in the plasma (Wiig and Swartz
2012; Reed and Wiig 1983; Wiig and Noddeland 1983).
These proteins, which are pivotal for the maintenance of
the intravascular oncotic pressure, extravasate from the
blood capillaries following the gradient of hydrostatic
pressure present between the arterial and venule-end of
the capillary bed (Michel 2004). The interstitial fluid
will then be progressively enriched with the tissue pro-
teome derived from the cellular secretome, products of
metabolic cellular activities, extracellular matrix remodeling,
and physiological apoptosis (Clement et al. 2016; Clement
et al. 2010; Clement et al. 2011; Clement and Santambrogio
2013; D'Alessandro et al. 2014; Dzieciatkowska et al. 2014;
Dzieciatkowska et al. 2011; Zurawel et al. 2011; D'Alessandro
et al. 2011; Veenstra 2007; Veenstra et al. 2005). Indeed, al-
though plasma albumin and serum globulins constitute the
majority of the lymph proteins, tissue-specific proteins are
also highly represented in the lymph proteome when com-
pared to the plasma proteome (Clement et al. 2016; Clement
et al. 2010; Clement et al. 2011; Clement and Santambrogio
2013; D'Alessandro et al. 2014; Dzieciatkowska et al. 2014;
Dzieciatkowska et al. 2011; Zurawel et al. 2011; D'Alessandro
et al. 2011; Veenstra 2007; Veenstra et al. 2005). Tissue spe-
cific proteins are present both as soluble proteins as well as in
exosomes and extracellular vesicles, released from parenchy-
mal cells and circulating in the lymph (Hood 2017; Kojima
et al. 2018; Kojima et al. 2017; Srinivasan et al. 2016). Soluble
proteins and their degradation products comprise different
members of the extracellular matrix proteome, which is proc-
essed by the several Matrix Metalloproteinases (MMPs) in-
volved in tissue growth and remodeling. Among these, MMPs
generate collagens, laminins, versican, and lumican, among
many other cleavage fragments, as a way to accommodate cell
movement, division, and regulate cellular architecture or to
generate specific collagen products that will act as integrin

signaling (Clement et al. 2013; Clement et al. 2016; Clement
et al. 2010; Clement et al. 2011; Clement and Santambrogio
2013; Shi et al. 2010; Shi et al. 2009; Shi et al. 2011;
Postawski et al. 1999; El Azreq et al. 2012; Garnotel et al.
1995; Kagami et al. 2001). Additionally, MMPs, ADAMs,
Sheddase, and γ-Secretase products of cleaved growth factors
(SDF1, VEGF) or other surface receptors (TNF, IL-1R, IL-
11R, Notch1 IL-32) have also been mapped in the lymph,
where soluble peptides are released following extracellular
or intramembrane processing upon receptor ectodomain re-
lease (Clement et al. 2016; Clement et al. 2010; Clement
et al. 2011; Clement and Santambrogio 2013; Osenkowski
et al. 2004; Sabbota et al. 2010; Rizzo et al. 2013; Sanz
et al. 2018; Terawaki et al. 2015; De Paiva et al. 2009;
Levine 2008). By-products from plasminogen activators and
thrombin, such as fibrin and PAR-1,3 and 4 cleaved products
have also been found in the lymph (Clement et al. 2016;
Clement et al. 2010). Degradation products from kallikreins,
involved in blood and lymph flow regulation and electrolytes
balance have also been mapped in the serum and lymph
peptidome (Clement et al. 2016; Clement et al. 2010).

Apoptotic cells, which have been detected in the lymph
(Olszewski 2001), have also been shown to release intracellu-
lar proteins such as cytosolic enzymes (carboxypeptidase,
enolase-3, LDH, GAPDH, different kinases), cytoskeletal pro-
teins (α-actinin-4, filamin-α), chaperones (14–3-3, hsc-70 and
hsp-90), and mitochondrial and nuclear proteins (histones
HMGB1) (Bournazou et al. 2009; Lauber et al. 2003;
Osman et al. 2017; Piacentini et al. 1999; Weigert et al.
2010). Degradation products due to caspase activity have also
been mapped in the lymphatic fluid (Clement et al. 2016;
Clement et al. 2010; Clement et al. 2011; Clement and
Santambrogio 2013).

During pathological conditions, including acute and chron-
ic inflammation, cancer, and autoimmune and degenerative
diseases, several proteomic analyses have shown that the in-
terstitial fluid and the lymph are further enriched with by-
products of tissue injury, necrosis, apoptosis, and overall cel-
lular damage (D'Alessandro et al. 2014; Zurawel et al. 2011;
Fang et al. 2010; Goldfinch et al. 2008; Meng and Veenstra
2007; Meng and Veenstra 2011; Mittal et al. 2008; Mittal et al.
2009; Nguyen et al. 2010; Olszewski et al. 2001). Following
trauma changes in the lymph proteome could be observed
within the first 30 min including triggering of coagulation
and pro-inflammatory responses, changes in proteases/
antiproteases homeostasis, and release of products from cellu-
lar damage (D'Alessandro et al. 2014). Similarly, changes in
the lymphatic fluid were observed following acute pancreatitis
with release of pancreatic enzymes and a necrosis-related
degradome (Mittal et al. 2009). In patients with rheumatoid
arthritis, the inflammatory process could be clearly mapped in
the lymph draining the affected joints. Finally, lymph analysis
in different models of cancer has shown the potential of
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exploiting interstitial and lymphatic fluid for early detection of
metastasis. Indeed, one of the main goals of cancer research is
the ability to detect and possibly prevent metastasis formation,
and liquid biopsy is considered the key to monitor disease
progression. We recently performed a comparative proteomic
analysis between lymph and plasma in several patients with
melanoma, as compared to healthy controls. We determined
that the lymph was significantly enriched in melanoma bio-
markers such as Melan-A, S100B, and S100A8 (Buchbinder
and Flaherty 2016; Huang and Hoon 2016), whereas the same
proteins were undetectable in blood (manuscript in prepara-
tion). Additionally, factors known to strongly correlate with
metastatic potential in melanoma, including colony stimulat-
ing factor-1 (CSF-1), Galectin-3, and matrix metalloprotein-
ases (MMP)-2 and -9 (Egeblad and Werb 2002), were also
orders of magnitude higher in lymph compared to plasma
(manuscript in preparation).Whenmelanoma patients without
metastasis were compared with those with metastasis, as well
as with healthy patients, a distinct protein signature in the
lymph, that was absent in the plasma, and that characterized
the lymph of metastatic melanoma patients was found.
Highly expressed were proteins related to cytoskeletal
rearrangement and adhesion (myosin, actin, tropomyo-
sin, troponin, integrins), matrix remodeling (vimentin,
enolases, cathepsins), histone variants, and glycolytic
enzymes (triosephosphate isomerase). Most of these pro-
teins were previously shown to be differently regulated
in tumor progression and metastasis (Wilson et al. 2010)
(Hsiao et al. 2013).

Overall, during the last 20 years, several proteomic
analyses performed on bovine, ovine, rodent, and hu-
man lymph sampled in physiological and pathological
conditions have determined that the lymphatic fluid is
not a simple ultrafiltrate of the plasma but collects the
“omic signature” of the organ from which it drains
(Clement et al. 2016; Clement et al. 2010; Clement et al.
2011; Clement and Santambrogio 2013; D'Alessandro et al.
2014; Dzieciatkowska et al. 2014; Dzieciatkowska et al. 2011;
Zurawel et al. 2011; D'Alessandro et al. 2011; Veenstra 2007;
Veenstra et al. 2005).

Blood

The blood peptidome-degradome was the first, among all oth-
er biological fluids, to be investigated. Over the years, several
mass spec analyses have provided a comprehensive mapping
of blood peptides in physiological and pathological condi-
tions. Overall, over 10,000 peptides deriving from both intra-
cellular and extracellular sources have been identified using
bottom up and top down mass spectrometry. Most of these
peptides derive from proteolytic processing performed by a
variety of peptidases involved in several cellular processes

including tissue remodeling, membrane receptor editing, cel-
lular secretion, and cellular apoptosis. The amount and com-
plexity of the extracellular degradome/proteome is further in-
creased during inflammatory and degenerative conditions as
well as cancer, all conditions associated with increased prote-
ase activity. As such, the blood peptidome-degradome has
been considered a valuable source of biological information,
as a liquid biopsy for identifying plasma-based markers of
disease. Notably, quantification of insulin peptides in serum
is used as a biomarker for diabetes (Wan et al. 2018), collagen
fragments as well as peptides from cartilage proteins, as a
marker of osteoporosis and degenerative joint conditions, β-
amyloid and TAU peptides for Alzheimer’s disease (Tapiola
et al. 2009), and angiotensin II for hypertension (Zuo et al.
2005), to name a few. For cancer peptides, a comprehensive
database (http://crdd.osdd.net/raghava/cancerpdf/) has
recently been generated that reports peptides mapped in
serum and plasma from ~ 30 forms of cancers. The reported
degradome/peptidome highlights protein processing and
degradation in the tissue environment as biomarkers of
cancer-associated activities. An automated technology
platform has also been developed at Memorial Sloan-
Kettering Cancer Center (MSKCC) to extract and map
peptides from patients’ serum. Using robotic automation
on a MALDI-TOF target plate, around 600 peptides
were identified in a cohort of 27 patients with metasta-
tic thyroid cancer and 32 controls. A statistically signif-
icant diverse peptidome could be mapped between the
two groups (Villanueva et al. 2006). Similar analyses
have mapped degradome/peptidomes in patients with
oral, breast, ovarian, colon-rectal cancer as well as me-
tastasis from different malignancies (Antwi et al. 2009b;
Bedin et al. 2016; Bery et al. 2014; Fan et al. 2012a;
Fredolini et al. 2010; Greening et al. 2017; Liotta and
Petricoin 2006; Petricoin et al. 2006; Smith et al. 2014;
Yang et al. 2012b; Armandola 2003; Bassani-Sternberg
2018; Fan et al. 2012b). All these analyses point to the
importance of the peptidome/degradome, present in bio-
logical fluid, as an important tool for biomarker discovery
(Petricoin et al. 2006).

Lymph and blood circulation in spleen
and lymph nodes

In the paragraphs below, the anatomical structures of spleen
and lymph nodes are described. Our goal is to illustrate how
lymph and blood flows through these secondary lymphatic
organs and how the anatomical structure facilitates the process
of clearance and sampling of the blood and lymph proteome/
peptidome for immunosurveillance. The variety, complexity,
and functionality of the different immune cell populations
present in these organs are beyond the goal of this review.
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Blood clearance in the spleen

Anatomically the spleen is divided into the red and white pulp
(Mebius and Kraal 2005). Since a major role of the spleen is to
clear/filtrate the incoming blood, the splenic circulation differs
from the classical pattern of arterioles, capillaries, and ve-
nules, as present in all the other parenchymal organs
(Mebius and Kraal 2005). The red pulp is divided into ana-
tomical regions by connective tissue called the “cords of
Billroth.” The cords are formed by a meshwork of
fibroblast-like reticular cells supported by extracellular matrix
and reticulin fibers without endothelial lining (Mebius and
Kraal 2005). The anatomical cavernous spaces of the cords
directly receive arterial blood from terminal arterioles and
arterial capillaries (Mebius and Kraal 2005). Several macro-
phages and dendritic cells are present within the cords at-
tached to the extracellular matrix components, whose job it
is to filtrate pathogens, abnormal/old/damaged red blood cells
from the blood and to sample the overall circulating proteome
(Mebius and Kraal 2005; Steiniger and Barth 2000; Qi et al.
2014). From the cords, the blood flows into the venous si-
nuses, which represent a second system of filters, before en-
tering the venule-end of the splenic circulatory system
(Mebius and Kraal 2005). The venous sinusoidal system con-
sists of a network of contractile reticular fibers, composed of
actin and myosin-like filaments, known as stress fibers, which
run both circumferentially and longitudinally forming a filtra-
tion lattice. Elongated endothelial cells, on top of this fenes-
trated basal membrane, as well as a population of macro-
phages known as metallophilic macrophages, form this addi-
tional filter to ensure no pathogens or damaged red blood cells
re-enter the general circulation (Mebius and Kraal 2005;
Qi et al. 2014).

The spleen white pulp contains around 30% of the total
lymphocyte population which are structured around a central
arteriole as “periarteriolar lymphocyte sheaths” (PALS). Most
of the T cells are in the inner part of the PALS whereas B cells
and plasma cells are in the outer PALS. In the periarteriolar
areas, T cells interact with dendritic cells and B cells. Next to
the PALS, bona fide B cell follicles are present where clonal
expansion of B cells, isotype switching, and somatic
hypermutation occurs (Mebius and Kraal 2005). Anatomical
integrity of these areas is controlled by a complex of
chemokine gradients (CXCL13, CCL19, CCL21) and
their respective receptors which guide T and B cell traf-
ficking and localization (Mebius and Kraal 2005).
Altogether PALS and B cell follicles are surrounded
by a corona-like structure, called the marginal zone,
which also contains B cells, the marginal zone macro-
phages, and different dendritic cell subsets (Mebius and
Kraal 2005). The marginal zone is located between the
white and red pulp and is an important transit area for
cells entering the PALS from the blood stream.

PALS and B cell follicles resemble the anatomical struc-
tures present in the lymph node albeit an important difference
is that the spleen is void of afferent lymphatics. As such, the
lymph does not circulate in the splenic parenchyma and blood
filtration is the primary immunological function of the spleen.
On the other hand, structures similar to efferent lymphatics
have been described in the spleen as an exit way for T, B,
and dendritic cells to leave the white pulp and re-circulate into
the lymphatic system (Guyton and Coleman 1968). These
lymphatic vessels, present in the T and B areas of the white
pulp, have been described flowing from the outer to the inner
PALS, running in parallel to the arteriole and draining into the
pancreatic-splenic lymph nodes (Guyton and Coleman 1968).
From there, the lymph flows into the intestinal lymph trunk,
which then enters the cisterna chyli and finally drains into the
thoracic duct.

Lymph clearance in the lymph nodes

During the past few years, new research has elucidated how
the interstitial fluid enters the initial lymphatics to form lymph.
It was originally proposed, and recently experimentally prov-
en, that tissue movement transiently increases interstitial pres-
sure, generating a suction force that facilitates drainage into the
open-ended lymphatics (Guyton and Coleman 1968). These
initial lymphatics do not contract whereas the downstream
collecting lymphatics propel the lymph forward through a
Ca++-initiated contraction of smooth muscle present in the
vessel wall. Additionally, the presence of a one-way valve
separating anatomical segments of the vessels at equal distance
(each segment is called a lymphangion) synergizes with the
vessel pumping activity favoring lymph movement towards
the lymph node (Santambrogio 2013).

Several studies have indicated that subcutaneously injected
fluorochrome-labeled proteins or particles reach the draining
node within minutes after injection, signifying the efficiency
of the lymphatic circulation in transporting soluble and partic-
ulate material to the regional lymph nodes (Santambrogio
2013). Additionally, subsets of dendritic cells that patrol pe-
ripheral organs also enter the lymphatics, following a CCR7-
CCL21 gradient into the lymph node (Russo et al. 2016).
These afferent lymphatic vessels, draining well-defined ana-
tomical regions, enter through the lymph nodal capsule into
the sub-capsular sinuses, which are pool-like areas where the
lymph flows and is filtrated by the macrophages and dendritic
cells lining the walls of the sinuses (Clement et al. 2011).
CD11b+CD169+MHCII+ macrophages and dendritic cells
have been characterized on the floor of the sub-capsular and
medullary sinuses, that act as “flypaper” to capture incoming
pathogens for T and B cell presentation. These cells function
as pivotal gatekeepers, which prevent pathogen dissemination
(Junt et al. 2007). From the sinuses, the lymph travels along
two possible routes; particulate material and proteins with a
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molecular weight above 80 kDa flow from the sub-cortical
and medullary sinuses into the efferent lymphatic to the next
lymph node, whereas proteins and small molecules below
80 kDa enter the conduit system. The conduit system com-
prises a series of 100–200 nm diameter channels, within the
nodal T cell areas, formed by a central pillar of collagens I
and V and peripheral walls formed by perlecan, fibro-
nectin and laminins (Drumea-Mirancea et al. 2006;
Gre tz e t a l . 2000 ; Mouss ion and Six t 2013 ;
Roozendaal et al. 2009; Sixt et al. 2005). These channels
physically connect the sub-cortical and para-cortical regions
of the node with the medullary spaces and the high endothelial
venule. Low molecular weight proteins and small molecules
passing through the conduit will encounter dendritic cells,
scattered throughout the T cell areas, whose dendrites directly
penetrate the conduit system (Drumea-Mirancea et al. 2006;
Gretz et al. 2000; Moussion and Sixt 2013; Roozendaal et al.
2009; Sixt et al. 2005).

Through this highly regulated size exclusion mecha-
nism, two fundamentally important functions of the
lymph node are achieved: fluid homeostasis and pathogen
immunosurveillance. Indeed, the vast majority of water/fluid
from the interstitial fluid and pre-nodal lymph will pass
through the conduit and flow directly into the high endothelial
venule as a mechanism to control body fluid homeostasis
(Jamalian et al. 2017). On the other hand, particulate materials
and pathogens are excluded from the conduit as a safeguard
mechanism to avoid bacteria/viruses entering the blood-
stream. Pathogens that will not be phagocytized by the den-
dritic cells and macrophages present in the sub-cortical and
medullary sinuses will exit through the efferent lymphatic into
another lymph node (Clement et al. 2011). Indeed in humans,
the 600–800 lymph nodes present throughout the body are
organized in chains of 6–8 nodes to ensure proper pathogen
clearance. As such, the lymph nodes act as a sieve that uses
size exclusion as a mechanism to capture the self and non-self
proteome for immunosurveillance.

A recent quantitative analysis of the nodal clearance capac-
ity, which utilized state-of-the-art, label-free quantitative
(LFQ) proteomics complemented by tandem mass tag isotope
labeling, was used to identify proteomic changes in the pre-
and post-nodal mesenteric lymph (Clement et al. 2018). The
proteomic data were supplemented with analysis of lymphatic
transport of fluorochrome-labeled proteins, bacteria, and
beads, by direct cannulation of pre-nodal lymphatics followed
by post-nodal collection and quantification. The picture that
emerged is that lymph nodes act as very efficient filtration
organs, with concentration-dependent filtration efficiency
across molecular sizes (Clement et al. 2018). Indeed, by direct
lymphatic cannulation with injection of titrated amounts of
fluorophore-labeled proteins, at a physiological flow pressure,
it was determined that for protein concentrations up to
5 μg/ml, corresponding to the concentrations of all tissue-

specific antigens, the efficiency of protein clearance upon
nodal passage was up to 80–90%. For much higher protein
concentrations, corresponding to the ones normally observed
for proteins involved in the maintenance of oncotic pressure,
efficiency of protein clearance upon nodal passage was lower
(Clement et al. 2018). Similarly, the lymph node could effi-
ciently clear a pathogen load up to a million bacteria, but when
ten million bacteria were injected into the pre-nodal lymph,
around 30% of the pathogen load could be observed in the
post-nodal lymph (Clement et al. 2018).

Proteases generating the blood and lymph
peptidome

Protease genes comprise 1.7% of the human expressed ge-
nome but despite their relevance in a variety of biological
activities, many of the proteases, their substrates, activators,
and inhibitors are yet to be fully characterized. Proteases can
be divided into five catalytic classes including metallo, serine,
cysteine, threonine, and aspartic proteases. Each class is fur-
ther divided into different families, mostly based on primary
amino acid sequence and three-dimensional structure
(MEROPS database). During the last few years, there has been
a keen interest in the analysis of the proteases, their inhibitors,
and degradation substrates in serum and lymph. The overall
goal of these liquid biopsies is to map changes during physi-
ological and pathological conditions, which can help identify
early stage of disease and monitor its progression. Indeed,
albeit a degradome can be mapped in both fluids under phys-
iological conditions, its composition changes both qualitative-
ly and quantitatively in pathological conditions generating
degradomic maps, and peptide hot-spots as potential disease
biomarkers. In the paragraphs below, we review current
literature on the known family of proteases generating
the degradome/peptidome in the blood and lymph in
physiological and pathological conditions. Although all
the below mentioned enzymes are involved in several
pathological processes, our analysis will only report on
enzymatic processing in relationship to the blood and
lymph peptidome.

MMPs and ADAMs

During physiological conditions, the lymphatic fluid
degradome is highly represented in byproducts derived from
the action of collagenolytic matrix metalloproteinase (MMPs)
and disintegrin metalloproteinases (ADAMs), which are in-
volved in extracellular matrix remodeling in parenchymal
organs.

There are over 20 MMPs and over 40 ADAMs family
members in the human genome. MMP proteolysis forms
space for cell migration by cleaving intercellular junctions or

Immunogenetics (2019) 71:203–216 207



the basement membrane, regulate tissue morphology through
proteolysis of cell-cell junctions, and by cleavage can activate/
deactivate signaling molecules (Sternlicht and Werb 2001).
For example, MMP9 cleavage of collagen IV α3 chain has
been shown to generate an anti-angiogenic peptide which
binds to the αvβ3 integrin (Hamano 2003). As such, the ma-
jority of the generated peptidome/degradome consists of col-
lagens, laminins, elastins, fbronectins, proteoglycans, and sur-
face molecules, such as cadherins, and integrins. Indeed,
cleavage products from all these proteins have been extensive-
ly mapped in the lymph and plasma (Clement et al. 2016;
Clement et al. 2010; Clement et al. 2011; Clement and
Santambrogio 2013; Shen et al. 2010b; Clement et al. 2018;
Farrah et al. 2011).

In pathological conditions, MMPs and ADAMs have been
closely associated with cancer growth, invasion, and metasta-
sis. Advancement in activity-based profiling of protease func-
tion has enabled tracking MMPs and ADAMs tissue proteo-
lytic activities in different stages of cancer (Kato et al. 2005).
Additionally, transgenic mice harboring gene deletion of indi-
vidual MMPs have shown how these proteases facilitate neo-
plastic progression by degrading the extracellular matrix
structure, processing cell-cell and cell-matrix adhesion mole-
cules. Indeed, MMP2, MMP13, and 14 have all been impli-
cated in pericellular tumor proteolysis (Affara et al. 2009).
Collagens, laminins, growth factors, and cytokine processing
have all been linked to MMP3, 7, 8, and 11 in different cancer
models spanning ovarian, liver cancer, intestinal adenomas,
and squamous cell carcinoma (Affara et al. 2009; Rudensky
et al. 1991). Besides aiding tumor invasion, MMPs also con-
tribute to tumor growth by VEGF cleavage that alters tissue
neo-angiogenesis (Affara et al. 2009).

Increased levels of active MMP9 and MMP2 have also
been found in the CSF and sera of patients with multiple
sclerosis (MS) prior to a relapse albeit their specific
substrates in the disease have not yet been characterized
(Scarisbrick 2008). Similarly, active ADAMs such as
ADAM-17 and its processing substrates (TNF-α and
CX3CL1) have been found in the serum of patients
with relapsing MS (Scarisbrick 2008).

Cleavage products following regulated-proteolysis of
membrane receptors have also been found released in the in-
terstitial fluid/lymph (Clement et al. 2013; Clement et al.
2016; Clement et al. 2010; Clement et al. 2011; Clement and
Santambrogio 2013; Clement et al. 2018), including products
derived from IL-6R and IL-11R proteolysis by ADAM10 and
ADAM17, which releases peptide fragments of around 20
amino acids (Goth et al. 2015), similarly an 11 amino acid
fragment is released from proteolysis of the TNF-R (Mukaro
et al. 2018), or fragments released following proteolysis by
α-β and γ secretases of the IL-1R and IL-2R, EGFR, TLR-
superfamily, and other chemokines or cytokines (Levine
2008; Blobel 2005; Huovila et al. 2005; Garton et al. 2006).

Serine proteases

Serine proteases are a large family of proteases whose most
notable members include chymotrypsin, trypsin, elastase,
clotting factors (Xa, XI, thrombin, plasmin, plasminogen ac-
tivators), kallikreins, granzymes, cathepsin G, and factors
from the complement cascade (C1r, C1s, and C3 convertases).
Although the degradome of some of these proteases is only
present in biological fluids in pathological conditions, other
enzymes of this family are active in a wide variety of physio-
logical functions. For example, a degradome derived from the
activity of clotting factors is physiologically present in both
serum and lymph (Clement et al. 2013; Clement et al. 2016;
Clement et al. 2010; Meng and Veenstra 2007; Farrah et al.
2011; Anderson et al. 2004; Omenn et al. 2005). Similarly,
kallikrein-related degradomes, due to their involvement in
fluid and electrolytes regulation, have also been mapped in
the lymph (Clement et al. 2016).

On the other hand, serine proteases, which are essential
mediators of gastrointestinal physiology, serving digestive
purposes as well as mucosal tissue homeostasis (Denadai-
Souza et al. 2018), are only found in serum and plasma during
pathological conditions. Increased plasma serine protease ac-
tivity has been observed in inflammatory bowel disease,
Ulcerative Colitis, and Crohn’s disease (Denadai-Souza et al.
2018). The pathological relevance of these enzymes is
highlighted by the finding that re-establishment of proteolytic
homeostasis, using protease inhibitors, reduces the se-
verity of these conditions (Denadai-Souza et al. 2018).
Degradation products from trypsin, chymotrypsin, elas-
tase, and other serine proteases have been mapped in
the lymph collected from patients or mice models of
bowel disease (D'Alessandro et al. 2014; Dzieciatkowska
et al. 2011; Benoit and Zawieja 1992).

Three main pathways characterize the complement system:
classical, lectin, and alternative. Although the classical and
lectin pathways generally are activated following recognition
of exogenous/pathogenic materials, the alternative pathway is
constitutively active at low levels in physiological conditions
(Noris and Remuzzi 2013). This is often referred to as the
tickover mechanism and allows the system to stay primed
for rapid activation (Noris and Remuzzi 2013). Indeed, a
degradome for the alternative pathway has been mapped in
lymph and plasma collected from healthy individuals
(Clement et al. 2013; Clement et al. 2016; Clement et al.
2010; Meng and Veenstra 2007; Farrah et al. 2011;
Anderson et al. 2004; Omenn et al. 2005). On the other hand
the activity of the complement cascade is highly increased in
acute and chronic inflammatory conditions as well as degen-
erative pathologies in every parenchymal organ (Antwi et al.
2009b; Bedin et al. 2016; Bery et al. 2014; Fredolini et al.
2010; Greening et al. 2017; Liotta and Petricoin 2006;
Petricoin et al. 2006; Armandola 2003; Affara et al. 2009).
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The serine proteases subfamily of elastase, tryptase, pro-
teinase 3, and Cathepsin G are mostly active during inflam-
mation when they are released from mast cells and
granulocytes and rapidly degrade connective tissue proteins
(Korkmaz et al. 2010).

Cysteine proteases

Cysteine proteases include some of the Cathepsin
family members, Caspases and Calpains. Cathepsins
(F,K,L,O,S,V,X and W) are endopeptidases, whereas cathep-
sins B, H, X, and C possess exopeptidase activity. They are
mostly found in endolysosomal compartments and at least
some members are secreted extracellularly. Under physiolog-
ical conditions, an extracellular degradome has been associat-
ed with the role of cathepsins L in skin and hair follicle mor-
phogenesis (Roth et al. 2000) and cardiac remodeling
(Stypmann et al. 2002) and a cathepsin K role in bone resorp-
tion (Saftig et al. 1998). Cathepsins are up-regulated and se-
creted in almost every form of cancer, where they are gener-
ally associated with poor prognosis. The degradome associat-
ed with their functional activity relates to neoangiogenesis
(laminin, collagen IV, fibronectin proteolysis, processing of
angiogenic inhibitors, or proangiogenic factors), cell prolifer-
ation and invasiveness (ECM degradation, activation of
MMPs, processing of cell-cell adhesion) (Rudensky et al.
1991; Dabrosin et al. 2004; Frosch et al. 1999; Ito et al.
2000; Keppler et al. 1994). Additionally, during acute and
chronic inflammatory conditions, macrophages, dendritic
cells, and also non-immune cells secrete active Cathepsins,
which contribute to the tissue degradome (Caglic et al. 2013;
Poole et al. 1976; Moon et al. 2016; Mohamed et al.
2010; Yan et al. 2016).

A Caspase-generated degradome/peptidome is also ob-
served following physiological tissue apoptosis and presence
of apoptotic cells in the lymph (Olszewski 2001). Apoptosis
occurs physiologically, as a homeostatic mechanism to main-
tain cell populations in tissues and it is estimated that around
10 billion cells are made each day to balance the ones dying by
apoptosis (Renehan et al. 2001). Peptides derived from
Caspase 3 processing have been mapped to several intracellu-
lar proteins as detailed in the paragraph above (Clement et al.
2016; Clement et al. 2010). Both inflammatory (Caspases 1-4-
5 in humans and 1-11 and 12 in mice) and apoptotic Caspases
(initiators 2-8-9-10 and executioners 3-6-7) are critically ac-
tive in inflammatory responses where they participate in ma-
turing pro-inflammatory cytokines (IL-1β and IL-18), and as
the major executioners of cell death. As such, a Caspase
degradome has been mapped in the plasma during acute and
chronic inflammatory conditions such as myocardial infarc-
tion, chronic hepatitis C, and nonalcoholic Fatty liver disease,
COPD and hemorrhage (Soto-Hernandez 2008) (Agosto et al.
2011; Papatheodoridis et al. 2010; Hacker et al. 2009).

Calpains are non-lysosomal cytosolic proteases most-
ly involved in cleavage of intracellular proteins in-
volved in cellular motility and trafficking. Calpains
can also be secreted by immune cells and are present
on the plasma membrane where EGF activates calpain 2
via ERK/mitogen-activated protein kinases to facilitate
productive locomotion of adherent cells (Shao et al.
2006; Pontremoli et al. 1985; Kuboki et al. 1990). As
such, Calpain degradation products have been mapped
in the lymph and eluted from DC MHC II (Clement
et al. 2016). Notably, inflammatory conditions increase
Calpain secretion from activated macrophages and T
cells and tissue specific antigens, such as myelin proteins
(Scarisbrick 2008), have been shown to be processed by
Calpains.

Aspartic proteases

Cathepsin D and E are endo-lysosomal aspartic proteases. A
cathepsin D degradome has been previously reported in the
lymph; likely released from apoptotic cells or during
exosomal exit following fusion of the multivesicular late
endosomes with the plasma membrane (Clement et al. 2016;
Wan et al. 2018). Elevated plasma levels of Cathepsin D
have been reported in several inflammatory and neoplas-
tic conditions. In non-alcoholic steatohepatitis, plasma
levels of Cathepsin D directly correlate with disease
development and regression (Walenbergh et al. 2016).
Plasma Cathepsin D has also been found elevated fol-
lowing myocardial infarction, hepatic carcinoma, breast
cancer, and inflammatory joint disease associated with
cartilage degradation (Naseem et al. 2005; Brouillet et al.
1991; Duffy et al. 1991; Swingler et al. 2009).

Threonine proteases

The Proteasome is the enzyme complex harboring the
threonine class of proteases and its role in MHC I and
MHC II-cross presentation has been very well charac-
terized. In physiological conditions, low levels of cir-
culating proteasomes have been observed in normal
human blood (Sixt and Dahlmann 2008). Also few
proteasome-cleaved peptides have been mapped in the
lymph. Likely, these peptides are either secreted from
parenchymal or immune cells (Wan et al. 2018) or
released from the cytosol of apoptotic cells (Olszewski
2001). On the other hand, high levels of proteasomal ac-
tivity have been mapped in the plasma of patients with
solid tumors and hemopoietic malignancies, metastatic
melanoma, different kinds of trauma, rheumatoid arthri-
tis and SLE (Sixt and Dahlmann 2008; Stoebner et al.
2005; Matuszczak et al. 2015; Zoeger et al. 2006;
Lavabre-Bertrand et al. 2001).
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Lymph Peptidome and Degradome
contribution to the MHC I and MHC II
immunopeptidome

Research in the last 30 years has clearly established that MHC
I and MHC II molecules sample both exogenous and endog-
enous antigens. The former paradigm that MHC I would only
bind cytosolic antigens and MHC II would sample phagocy-
tized proteins is now rectified through the discovery of cross-
presentation and autophagy. It is now apparent that bothMHC
molecules intersect intracellular and extracellular pathways
(Roche and Furuta 2015; Santambrogio et al. 1999a;
Santambrogio et al. 1999b; Geng et al. 2018). As such, many
more non-canonical pathways have been added to the canon-
ical MHC-I proteasome and MHC-II- endosomes pathway.
Additionally, from early analysis in which only a few MHC
peptides could be reliably fragmented and analyzed, several
groups have now reported very large sets of naturally proc-
essed peptides (Clement et al. 2016; Antwi et al. 2009a; Stern
and Santambrogio 2016; Tan et al. 2011; Caron et al. 2015;
Fugmann et al. 2017; Bassani-Sternberg et al. 2016; Loffler
et al. 2018; Neidert et al. 2018; Shao et al. 2018; Di Marco
et al. 2017a; Di Marco et al. 2017b; Schuster et al. 2017;
Kowalewski et al. 2015; Rammensee et al. 1999). The in-
creased number of mapped epitopes associated with the avail-
ability of incrementally sophisticated software programs that
allow mapping of the processing proteases (MEROPS,
BRENDA, CutDB) or the analysis of post-translational mod-
ifications has allowed the field to move from a merely
compilative analysis of the MHC-eluted immunopeptidome
to a more mechanistic analysis of how differential MHC-
immunopeptidomes contribute to immunosurveillance.We re-
cently sequenced over 3000 HLA-DR1-eluted peptides de-
rived from ex vivo purified dendritic cells (Clement et al.
2016). The eluted immunopeptidome was analyzed using a
series of databases comprising experimentally determined
peptide cleavage sites. The analysis underscored the wide va-
riety of enzymes and processing pathways that contribute to
the MHC II immunopeptidome; besides the endosomal pro-
cessing pathway that generates Cathepsins-cleaved peptides,
tissue-specific proteases, including MMPs, ADAMs,
Caspases, Granzymes among many others, were shown to
add to theMHC II self peptidome. Some of the eluted peptides
overlapped with those found in the lymph and did not derive
from cathepsin processing (Clement et al. 2016). Overall, this
ensures that dendritic cells present a broad self-peptidome
which includes epitopes generated by a multiplicity of prote-
ases with the ultimate goal to present the sampled environ-
ment to patrolling T cells (Clement et al. 2016).

Nevertheless, novel epitopes can be generated during path-
ological conditions through different mechanisms including
(i) up-regulation and down-regulation of various tissue prote-
ases which contribute to changes in protein processing and

sequence of processed epitopes, (ii) changes in the redox mi-
croenvironment which favors protein post-translational mod-
ifications, such as carbonylation, glycation, and nitrosylation
and (iii) changes in the expression of proteins of the antigen
processing machinery, such as HLA-DM and HLA-DO,
which contribute to peptide selection mechanisms (Kim and
Sadegh-Nasseri 2015).

Proteomic analysis of blood and lymph under physiologi-
cal or pathological conditions has clearly underscored how the
degradome signature can change; the next challenge is to de-
termine whether distinctive degradomic signatures can be spe-
cifically associated to disease states and used as liquid biopsy
for diagnostic and therapeutic purposes. Additionally, how
changes in tissue-specific proteins and proteases affect epitope
processing, formation of neo-epitopes, and epitope copy num-
ber presented by MHC I and MHC II molecules are still ques-
tions to be addressed.

An additional aspect arising from these studies is the influ-
ence of drugs on the MHC ligandome. For example,
gemcitabine, a cytostatic drug used in cancer chemotherapy,
not only increases the density of MHC I molecules on the cell
surface but also alters immunoproteasome composition and
the MHC ligandome (Gravett et al. 2018). For another exam-
ple, carfilzomib alters the HLA-presented peptidome of mye-
loma cells and impairs presentation of peptides with aromatic
C-termini (Kowalewski et al. 2016).

Similarly, tissue redox changes, associated with acute and
chronic inflammatory states, degenerative conditions, and
cancer have been extensively mapped. During these
conditions, the cellular and extracellular proteome is
qualitatively modified by oxidation (carbonylation,
nytrosilation, formylation), glycation (carboxymethylysine
or carboxymethylarginine) and l ipoxidat ion (4-
hydroxynonenal (HNE), malonaldehyde), to name a few of
the over 400 possible modifications. Both MHC classes are
found to present phosphorylated peptides (Meyer et al. 2009),
and for MHC class I ligands glycosylations have also been
reported (Kastrup et al. 2000).

Although most amino acids are susceptible to oxidation by
these reactive species, lysine, arginine, methionine, and cys-
teine are the most susceptible due to the presence of free ami-
no and sulfhydryl groups on their side chains. For example, in
our extensive database of HLA ligands from human tumor and
normal tissues, around 8% of HLA class II and 6% of HLA
class I ligand entries are oxidized at one or more amino acids
(Neumann et al. 2004; Wagner et al. 2003). Other notable
modifications are arginine citrullination, which has been
linked to autoimmune diseases such as rheumatoid arthritis
(Fox 2015), peptide oxidative cleavage for generation of
neo-epitopes and autoimmunity (Sadegh-Nasseri and Kim
2015), and peptide glycation in diabetes and metabolic syn-
drome (Horvat and Jakas 2004; Walcher and Marx 2009). The
full effects of protein modifications on theMHC I andMHC II
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antigen processing machinery, peptide processing loading af-
finity and presentation need to be further evaluated.
Additionally, how peptides and specific PTM can be exploited
diagnostically and therapeutically, in cancer, autoimmune and
degenerative diseases are also an important open question.

Conclusions

Overall, the literature from the last decade has solidified the
notion that plasma and lymph provides a rich degradome/
peptidome that could facilitate the discovery of novel bio-
markers that reflect disease status (Clement et al. 2011;
Dzieciatkowska et al. 2014; Ling et al. 2010; Quesada et al.
2009; Petricoin et al. 2006; Meng and Veenstra 2007;
Anderson et al. 2004; Omenn et al. 2005). In contrast to organ
biopsies, which are limited to a small number of cells, liquid
biopsy can provide a more accurate fingerprint of the overall
organ physiological or pathological state. In particular, unlike
the blood, liquid biopsy of lymphatic fluid can provide
a specific signature of the organ from which it drains
(Santambrogio 2013). How to diagnostically use the
blood and lymphatic fluid peptidome/degradome and how to
therapeutically exploit it for immunotherapy design are impor-
tant challenges for the future.
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