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HLA class I alterations in breast carcinoma are associated with a high
frequency of the loss of heterozygosity at chromosomes 6 and 15
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Abstract
HLA class I (HLA-I) molecules play a crucial role in the presentation of tumor antigenic peptides to CD8+ Tcells. Tumor HLA-I
loss provides a route of immune escape from T cell-mediated killing. We analyzed HLA-I expression in 98 cryopreserved breast
cancer tissues using a broad panel of anti-HLA-I antibodies. Genomic HLA-I typing was performed using DNA obtained from
autologous normal breast tissue. Analysis of the loss of heterozygosity (LOH) in the HLA-I region of chromosome 6 (LOH-6)
and in the β2-microglobulin (B2M) region of chromosome 15 (LOH-15) was done by microsatellite amplification of DNA
isolated from microdissected tumor areas. B2M gene sequencing was done using this DNA form HLA-I-negative tumors.
Immunohistological analysis revealed various types of HLA-I alterations in 79 tumors (81%), including total HLA-I loss in 53
cases (54%) and partial loss in 16 samples (14%). In 19 cases (19%), HLA-I expression was positive. Using microsatellite
analysis, we detected LOH in 36 cases out of 92 evaluated (39%), including 15 samples with only LOH-6, 14 with LOH-15, and
seven tumors with LOH-6 and LOH-15 at the same time. Remarkably, we detected LOH-6 in eight tumors with positive HLA-I
immunolabeling. We did not find any B2M mutations in HLA-I-negative breast tumors. In conclusion, LOH at chromosomes 6
and 15 has a high incidence in breast cancer and occurs in tumors with different HLA-I immunophenotypes. This common
molecular mechanism of HLA-I alterations may reduce the ability of cytotoxic T lymphocytes to kill tumor cells and negatively
influence the clinical success of cancer immunotherapy.
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Abbreviations
HLA Human leukocite antigens
MHC Major histocompatibility antigens
LOH Loss of heterozygosity
Β2Μ Beta-2-microglobilin
FFPE Formalin fixed paraffin embedded
IDC Infiltrating ductal carcinoma
ILC Infiltrating lobular carcinoma
TNM Tumor-node-metastasis
ER Estrogen receptor
PgR Progesterone receptor
SSO Sequence-specific oligonucleotide analysis
STR Short tandem repeat

Introduction

It is widely accepted that one of the principal mechanisms of
anti-tumor immunity is T cell-mediated cytotoxicity, which
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relies on the recognition of tumor antigenic peptides presented
by HLA class I (HLA-I) molecules expressed on tumor cell
surface (Boesen et al. 2000; Coulie et al. 2014; Wang et al.
2008; Ryschich et al. 2005). The absence of HLA-I expression
is a common finding in different tumor tissues (Lopez-Nevot
et al. 1989; Garrido et al. 1993; Marincola et al. 2000; Seliger
et al. 2002) and is a major mechanism used by tumor cells to
escape from T cell-mediated immune surveillance (Romero
and Coulie 2014; Boesen et al. 2000; Garrido et al. 1997a,
2017a). In addition, there is a growing evidence demonstrat-
ing that HLA-I expression in different types of cancer has a
prognostic value and is associated with disease progression,
invasiveness, metastatic potential, and resistance to therapy
(del Campo et al. 2014; Perea et al. 2017; Sade-Feldman et
al. 2017). It has been recently reported that adoptive transfer
of tumor-infiltrating lymphocytes specific for neo-antigens
detected in the tumor in conjunction with interleukin-2 and
checkpoint blockade induced a complete durable regression
of metastatic breast cancer (Zacharakis et al. 2018). This
neoantigen-specific T cell therapy requires normal expression
of HLA-I molecules on tumor cell surface. Therefore, the
status of tumor HLA-I expression is important for the success
of T cell and peptide-mediated cancer immunotherapy.

It is also well established that the molecular mechanisms re-
sponsible for the HLA-I loss plays a crucial role in the ability to
recover the HLA expression in different types of cancer immu-
notherapy. These mechanisms can be subdivided into two major
groups: reversible/Bsoft^ or irreversible/Bhard^ (Garrido et al.
2010a, 2010b). Reversible alterations are associated with tran-
scriptional downregulation of HLA-I and antigen-presentingma-
chinery (APM) genes and can be recovered by different cyto-
kines. The Bhard^ alterations are caused by mutations/deletions
in HLA-I, B2M, and/or IFN-gamma genes and cannot be
corrected by cytokines or by immunotherapy. Hence, it is essen-
tial to investigate molecular mechanisms responsible for HLA-I
alterations in cancer to understand the mechanisms of tumor
escape and predict the response to therapy.

There have been several reports describing the frequency
of HLA-I alterations in breast cancer, ranging from as high as
90% (Cabrera et al. 1996; Perez et al. 1986) to 30% (Kaneko
et al. 2011). This discrepancy could be due to the different
methods and anti-HLA antibodies used in various studies.
For example, in formalin fixed paraffin embedded (FFPE)
tissues, HLA heavy chain/B2M complex on the cell surface
loses conformational epitopes and cannot be detected by the
commonly used w6/32 antibody. In addition, there is little
information about the molecular mechanisms involved in
HLA-I altered expression in breast cancer (Madjd et al.
2005; Concha et al. 1991a, b; Pedersen et al. 2017).

In th i s manuscr ip t , we present the resul t s of
immunohistological and molecular analysis of HLA-I and
II (HLA-II) expression performed on 98 cryopreserved
breast cancer samples. We also evaluated 53 HLA-I-

negative samples for the presence of mutation/deletions in
B2M gene and investigated the frequency of the loss of het-
erozygosity at chromosomes 6 (LOH-6, HLA heavy chain
genes) and 15 (LOH-15, B2M gene) in 92 samples.

Material and methods

Patients and samples

Ninety-eight patients with breast carcinoma were included in
this study. All patients were female and their mean age was 59
(ranging from age 26 to 81). Patient samples (tumor speci-
mens and autologous normal breast tissue samples) were ob-
tained from Virgen de las Nieves University Hospital
(Granada, Spain). Demographic, clinical, and histological
characteristics of the studied subjects/tumors are summarized
in Table 1. Before the study, all medical records and tumor
sections were reviewed by an oncologist and a surgical pathol-
ogist. Signed informed consent approved by the Ethics
Committee of our institution was obtained from all the pa-
tients. The specimens included 67 infiltrating ductal carcino-
ma (IDC), 17 infiltrating lobular carcinoma (ILC), and 14
tumors of various histological type (see Table 1) based on
WHO criteria of histopathological classification. Tumors were
classified as stages I (n = 24), II (n = 27), III (n = 46), and IV
(n = 1) based on the American Joint Committee on Cancer
Guidelines, tumor-node-metastasis (TNM) (Sobin et al.
2009). Expression of the estrogen receptor (ER), progesterone
receptor (PgR), and HER2 were examined by immunohisto-
chemical staining.

HLA typing

HLA typing of the patients using DNA isolated from the au-
tologous normal breast tissue was performed in our laboratory
using low-resolution genomic sequence-specific oligonucleo-
tide analysis (SSO) from Dynal RELI HLA-A, B, C, DR kits
(Dynal Biotech Ltd., Wittal, UK).

Immunohistological analysis of HLA-I and HLA-II
expression in breast cancer specimens

Tumor samples from primary breast tumors and autologous nor-
mal breast tissue samples were obtained by surgical excision and
immediately stored at − 80 °C. Four to eight-micrometer-thick
cryopreserved tumor tissue sections were allowed to dry at room
temperature for 4–18 h, fixed in acetone at 4 °C for 10 min, and
stored at − 40 °C until immunohistological analysis using Biotin-
Streptavidin System (NovolinkTM Polymer Detection System).
Table 2 summarizes all mouse monoclonal antibodies (mAbs)
used to analyze HLA-I and HLA-II expression. Total HLA-I loss
was considered when less than 25% tumor cells were stained.
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When between 25 and 75% of tumor cells were labeled positive-
ly, tumor was considered to have a heterogeneous pattern.
Finally, immunolabeling was considered to be positive when
more than 75% of tumor cells labeled with W6/32 and GRH-1
mAbs according to the criteria established by the HLA and can-
cer component of the 1996 International Histocompatibility
Workshop (Garrido et al. 1997b; Cabrera et al. 2003). In negative
controls, the primary antibody was replaced with PBS.

Tumor microdissection and DNA isolation

Four to eight-micrometer-thick cryopreserved tumor tissue
sections were fixed in 70% ethanol, stained with a 0.05% w/
v solution of toluidine blue and microdissected using a laser
micromanipulator (PALM Micro Laser Systems, ZEISS).
Microdissected tumor fragments were collected in PALM
Adhesive Caps and used to isolate DNA with Qiagen DNA

isolation kit (QIAamp Tissue Kit, the Netherlands). This DNA
was used for microsatellite analysis (LOH studies) and for
B2M sequencing (in HLA-I-negative tumors).

Microsatellite analysis to detect LOH at chromosomes
6 and 15

This analysis was done on 92 of the studied tumors. Eight
short tandem repeat (STRs) markers (7 in 6p21 y 1 in 6q21)
were used for the LOH study at chromosome 6 (HLA heavy
chain genes) (D6S291, D6S273, D6S265, D6S105, D6S276,
C.1.2.C, C.1.2.5, and D6S311 respectively). Five markers
spanning B2M genes were used for the analysis of LOH-15
(D15S126, D15S146, D15S1028, D15S153 in the 15q21 ad-
jacent to the B2M gene and a telomeric marker D15S209)
(Maleno et al. 2001; Maleno et al. 2006; Ramal et al. 2000).
The amplification reaction was done in 15 μl volume using

Table 1 Association between
clinicopathologic parameters and
HLA class I expression in 98
breast cancer patients

Negative (n = 79) Positive (n = 19) p value

Medium age 59.88 ± 13.30

Tumor size T1 26 (33%) 11 (57.9%)

T2 48 (60.7%) 6 (31.5%)

T3 2 (2.5%) 1 (5.3%) 0.044*

T4 3 (3.8%) 1 (5.3%)

Nodal invasion

Negative 39 (49%) 12 (63%) 0.280

Positive 40 (51%) 7 (37%)

Estrogen receptor

Negative 18 (23%) 6 (32%) 0.553

Positive 61 (77%) 13 (68%)

Progesterone receptor

Negative 24 (30%) 9 (47%) 0.159

Positive 55 (70%) 10 (53%)

Metastasis

Negative 65 (82%) 17 (90%) 0.730

Positive 14 (18%) 2 (10%)

TNM

I 9 (24%) 5 (26.3%)

II 22 (28%) 5 (26.3%)

III 38 (48%) 8 (42.1%)

IV 0 (0%) 1 (5.3%)

Histology

IDC 54 (68%) 13 (68%)

ILC 12 (15%) 5 (27%)

Other 13 (17%) 1 (5%)

HER2/neu receptor

Negative 67 (85%) 15 (79%) 0.506

Positive 12 (15%) 4 (21%)

*Statistically significant correlation between tumor size and HLA-I expression was found (p = 0.044) when
tumors were divided into two groups: T1 versus T2+T3+T4
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1.5 μl of DNA (0.50 μg/μl) and 1 μl of the primer mixture
(5 μl of each). The products of the amplification were ana-
lyzed by 5% acrylamide gel electrophoresis and sequenced
using an automatic sequencer ABI PRISM 377 ADN (PE
Applied Biosystems). Data analysis was performed using the
software Genotyper program (PE Applied Biosystem). As a
reference control, we used DNA obtained from normal autol-
ogous breast tissue. LOH was calculated as height of the sig-
nal of the tumor allele two/height of area of tumor allele one
divided by the height of the signal of normal allele two/height
of area of normal allele one. LOH was assigned when more
than 25% of signal reduction of one allele was observed in the
tumor simples as compared to the normal tissue. Haplotype
loss was considered to exist when a tumor exhibited an allelic
reduction in three or more STRs markers in chromosome 6.
LOH-15 was assigned to the sample when signal was reduced
in two or more STRs in chromosome 15 (Ramal et al. 2000).

B2M gene sequencing in HLA-I-negative tumors

The amplification of B2M gene from tumor fragments
microdissected from HLA-I-negative tumors was per-
formed using genomic DNA and Illustra PuRe-Taq
Ready-To-GoTM PCR Beads (GE Healthcare Europe,
Barcelona, Spain) with the following forward primers:
5′-CG ATATTCCTCAGGTACTC C-3′ and 5′-GGTG
AATTCAGTG TAGTACAAG-3′, and one reverse primer:
5′-ACACAACTTTCAGCAGCTTAC-3′. The predicted
PCR product sizes were 311 and 114 bp, respectively.
Sequencing was performed with the Big Dye Terminator
v1.1 Cycle Sequencing kit (Applied Biosystems,
Warrington, UK) using Centri-Sep Columns (Applied

Biosystems) and ABI 3130× = Genetic Analyzer and
Sequencing Analysis v5.2 software (Applied Biosystems).

Statistical analysis

All statistical analyses were performed using the Statistical
Package for the IBM-SPSS Statistics Ver.21. Variables
with normal distribution are expressed as means with stan-
dard deviation, minimum, maximum, and range. The cate-
gorical variables such as tumor size, nodal invasion, estro-
gen receptor, progesterone receptor, TNM, histological tu-
mor characteristics, HER2 receptor, and HLA-I expression
were coded in two groups and analyzed using the chi-
square (χ2) or Fisher exact test in case when the validity
criteria were not reached. Differences were considered sta-
tistical significant for p < 0.05.

Results

Immunohistological analysis of HLA class I expression
in breast cancer tissue samples

The expression of HLA-I antigens was evaluated in 98
breast cancer tissue using immunohistochemical staining
with monoclonal antibodies directed against B2M and
against monomorphic, HLA-A and HLA-B locus-specific
and HLA-I allelic determinants. We detected various types
of HLA-I alterations in 79 out of 98 studied samples
(81%) (Tables 3 and 4). Total HLA-I loss, with negative
immunolabeling of both Β2Μ (GRH-1 antibody) and
HLA-I/Β2Μ complex (W6/32 antibody), was found in

Table 2 Panel of monoclonal
antibodies Monoclonal antibody Specificity Laboratory

W6/32 HLA-ABC/ß2m Dr. W. Bodmer (Barnstable et al. 1978)

GRH1 ß2m Dr. F. Garrido (López-Nevot et al. 1986)

A131 HLA-A Dr. J. Kornbluth (Spear et al. 1985)

YTH-76 HLA-B Dr. C. Milstein (Burrone et al. 1985)

HC-10 HLA-BC free heavy chain Dr. H. Ploegh (Neefjes and Ploegh 1988)

Kre-501 HLA-A2,28 Dr. M. Kreisler (Madrid, España)

160-30 HLA-A3 Dr. K. Gelsthorpe (Sheffield, Inglaterra)

41-HA HLA-A23,24 One Lambda

LT-129.11 HLA-A30,31 Dr. A.G. Palma-Carlos
(Lisboa, Portugal)

BB7.1 HLA-B7 Dr. W. Bodmer (Oxford, Inglaterra)

KS4 HLA-B7 CREG Dr. S. Ferrone

MRE-4 HLA-B8 Dr. R. Fauchet (Rennes, Francia)

66-HA HLA-B12 One Lambda

116-5-28 HLA-Bw4 Dr. K. Gelsthorpe

126.39 HLA-Bw6 Dr. K. Gelsthorpe

GRB-1 HLA-DR Dr. F. Garrido (Cabrera et al. 1986)
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Table 3 HLA class expression in breast cancer

Sample HLA typing
Normal tissue

Tumor size HLA-A-B-C-
B2M complex

B2M HLA-ABC free
heavy chain

HLA-A HLA-B HLA-DR

HLA class I negative (n = 53)

BC-1 A*32,*34; B*52,*53; C*04,*12 T2 − − − NT

BC-2 A*36,*68; B*14,*53; C*05,*08 T1 − − − NT

BC-3 A*02,*24; B*07,*44; C*02,*07 T2 − − − NT

BC-4 A*01,*02; B*08,*49; C*07,- T2 − − − NT

BC-15 A*18,-; B*24,-; C*07,- T2 − − − NT

BC-10 A*02,-; B*44,*57; C*05,*07 T1 − − − NT

BC-13 A*02,*30; B*35,*42; C*04,*17 T2 − − − NT

BC-14 A*01,*25; B*08,*18; C*07,*12 T2 − − − NT

BC-19 A*02,*32; B*41,*42; C*07,*17 T2 − − − NT

BC-30 NT T1 − − − NT

BC-31 A*01,*02; B*18,*49; C*05,*07 T1 − − − NT

BC-35 A*02,*03; B*08,*49; C*05,*07 T2 − − NT −
BC-36 A*11,*30; B*18,*35; C*04,*05 T2 − − − NT

BC-37 A*01,*02; B*8,*51; C*07,*15 T1 − − − NT

BC-38 A*26,*30; B*15,*18; C*05,*07 T1 − − − NT

BC-39 A*02,*24; B*18,*51; C*04,*15 T1 − − − −
BC-40 A*01,*02; B*35,*51; C*04,*15 T1 − − − −
BC-42 A*02,*11; B*40,*57; C*03,*04 T2 − − − −
BC-43 A*30,*32; B*18,*45; C*06,*12 T2 H − − NT

BC-45 A*02,*03; B*14,*41; C*15,*17 T2 − − H H

BC-48 A*30,*32; B*18,*44; C*04,*05 T1 − − − −
BC-49 A*29,*31; B*44,*45; C*06,*16 T2 − − − −
BC-50 A*24,*33; B*14,*44; C*05,*08 T1 − − + −
BC-51 A*01,*32; B*08,*38; C*07,*12 T1 − − − −
BC-52 A*2,*24; B*51,-; C*02,*14 T2 − − + +

BC-55 A*2,*68; B*14,*38; C*08,*12 T2 − − + −
BC-56 A*02,*11; B*44,*51; C*05,*16 T2 − − − −
BC-63 A*02,*68; B*15,*51; C*07,*16 T4 − − + −
BC-64 A*24,*29; B*39,*44; C*04,*12 T2 − − H NT

BC-65 NT T1 − − − NT

BC-68 A*11,*26; B*37,*52; C*06,*12 T2 − − NT NT

BC-70 A*23,*24; B*39,*78; C*07,*16 T2 − − − −
BC-73 A*24,*74; B*35,*37; C*04,*06 T4 − − + +

BC-74 A*03,*24; B*14,* 15; C*03,*08 T2 − H H −
BC-75 A*02,*24; B*35,*35; C*04,*04 T1 − − H −
BC-77 A*11,*33; B*14,*35; C*04,*08 T2 − − + −
BC-79 A*24,*25; B*07,*44; C*05,*07 T2 − − − −
BC-82 A*02,*29; B*44,*45; C*05,*06 T1 H H + +

BC-83 A*03,*24; B*35,*35; C*04,*06 T1 NT − − NT

BC-84 A*11,*24; B*35,*44; C*04,*05 T1 − H + NT

BC-85 A*03,*11; B*35,*51; C*24,*15 T1 − − − −
BC-86 A*02,*24; B*35,*45; C*04,*16 T1 − − − −
BC-87 A*02,*24; B*35,*45; C*04,*06 T4 − − + −
BC-88 A*02,*66; B*44,*49; C*04,*07 T1 − − − −
BC-91 A*24,*30; B*40,*50; C*04,*50 T3 − − − −
BC-92 A*02,*29; B*40,*57; C*02,*06 T2 − − − −
BC-95 A*23,*11; B*35,*35; C*02,*04 T2 − − + −

Immunogenetics (2018) 70:647–659 651



Table 3 (continued)

Sample HLA typing
Normal tissue

Tumor size HLA-A-B-C-
B2M complex

B2M HLA-ABC free
heavy chain

HLA-A HLA-B HLA-DR

BC-96 A*03,*23; B*07,*44; C*07,*07 T1 − − + −
BC-97 A*26,*68; B*14,*49; C*07,*49 T2 − − + −
BC-27 A*01,*24; B*14,*44; C*02,*07 T2 H H H −
BC-41 A*01,*02; B*07,*18; C*05,*07 T2 − H H −
BC-80 A*02,*23; B*44,*49; C*05,*07 T2 H + H −
BC-93 A*26,*32; B*49,*50; C*07,*50 T2 H H + +

HLA locus (A or B) negative (n = 9)

BC-21 A*11,*26; B*50,*53; C*04,*07 T2 + + + H + −
BC-22 A*02,*24; B*07,*51; C*07,*02 T2 + + + H + −
BC-26 A*02,-; B*07,*44; C*05,*07 T2 + + NT + − −
BC-32 A*02,*11; B*35,*57; C*04,*06 T2 + + + H H +

BC-47 A*01,*02; B*15,*53; C*04,- T2 NT + + + H −
BC-59 A*24,*26; B*14,*40; C*02,*08 T2 − + + − + −
BC-62 A*02,*11; B*15,*50; C*03,*06 T1 − + − H + −
BC-24 A*02,*68; B*18,*40; C*05,*12 T1 + NT + NT − +

BC-81 A*02,*24; B*15,*38; C*04,*12 T2 + + + − + H

HLA haplotype loss (n = 8)

BC-7 A*11,*30; B*18,*51; C*05,*15 T1 + + + + + −
BC-11 A*03,*25; B*07,*15; C*03,*07 T2 + + + + + −
BC-20 A*02,*29; B*14,*44; C*05,*08 T2 + + + + + NT

BC-29 A*02,*68; B*14,*35; C*04,*08 T2 + + + + + −
BC-53 A*02,*25; B*15,*18; C*03,*05 T1 + + + + + −
BC-71 A*02,*24; B*07,*15; C*03,*07 T1 + + + + + +

BC-78 A*30,*33; B*14,*18; C*05,*18 T2 + + + + + −
BC-98 A*03,*25; B*35,*41; C*03,*07 T2 + + + + + NT

HLS allele loss (n = 5)

BC-16 A*02,*03; B*07,*57; C*06,*07 T2 + + + + + NT

BC-23 A*02,*30; B*15,*51; C*03,*14 T2 + + NT + + +

BC-28 A*02,*29; B*07,*44; C*07,*16 T2 + + + + + +

BC-54 A*11,*29; B*40,*44; C*03,*05 T2 + + + + + H

BC-46 A*02,*11; B*35,*52; C*04,*12 T2 + + + + NT +

Combined HLA losses (n = 4)

BC-33 A*03,*11; B*07,*51; C*04,*07 T1 + + H − − −
BC-67 A*24,*32; B*35,*44; C*04,*07 T2 + + + H + −
BC-34 A*01,*02; B*07,*18; C*05,*07 T2 + + + + − +

BC-90 A*03,*03; B*07,*52; C*07,*12 T3 − + + + H H

No alterations detected (n = 19)

BC-5 B*18,*51; C*05,*15 T2 + + + + + NT

BC-6 A*01,*02; B*27,*37; C*01,*06 T4 + + + + + −
BC-8 A*01,*31; B*18,*38; C*05,*12 T1 + + + + + −
BC-9 A*02,*23; B*14,*51; C*02,*08 T2 + + + + + +

BC-12 A*01,*11; B*08,*35; C*04,*07 T3 + + + + + −
BC-17 A*02,*23; B*18,*49; C*07,- T2 + + + + + NT

BC-18 A*02,-; B*07,*41; C*01,*04 T1 + + + + + NT

BC-25 A*23,*69; B*40,*44; C*03,*04 T1 + + NT + + +

BC-44 A*02,*03; B*35,*51; C*01,*04 T1 + + + + + +

BC-57 A*11,*23; B*07,*58; C*07,*07 T1 + + + NT NT

BC-58 A*29,*30; B*15,*18; C*03,*05 T1 + + + + + −
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54% (53 out of 98) of the samples. We also included in
this group 7 cases with heterogeneous HLA-I staining.
Interestingly, in 13 cases out of these 53 HLA-I-negative
cases, we observed positive intracellular labeling of free
heavy chains (HC-10 antibody). Sequencing of exons 1
and 2 of Β2Μ gene in all breast HLA-I-negative tumors
(n = 53) did not reveal any mutations/deletions. In 9 cases
out of 98 (9%), we detected a selective loss of HLA-A or
HLA-B locus expression and in 5 cases (5%), we ob-
served single HLA-I allelic losses. In 4 tumors, we found
a combination of different HLA-I alterations. Only 19 out
of 98 (19%) tumors showed Bnormal^ expression of HLA-
I antigens. We also studied HLA-II expression in 71 tu-
mors using monoclonal antibody against HLA-DR (GRB-
1), 54 of which (76%) were negative and 17 (24%) were
positive (Table 3). Figure 1 depicts representative images
of HLA-ABC-positive and HLA-ABC-negative tumors
(W6/32 antibody). Table 1 summarizes a correlation be-
tween different clinicopathologic parameters (age, tumor
size, nodal invasion, estrogen and progesterone receptor,
metastasis, TNM, histology, and HER2 receptor) and tu-
mor HLA expression. The only statistically significant
correlation (p < 0, 05) was found between HLA-I expres-
sion and tumor size demonstrating that tumor with larger
size have less HLA-I expression.

Genomic HLA typing of normal breast tissue

Table 3 shows the results of HLA-A, B, and C locus
genomic typing performed on normal autologous tissue
of 98 breast cancer patients. Only patient BC15 was ho-
mozygous for HLA-I. Loss of single HLA-I alleles was
determined by lack of immunostaining of tumor tissue
with specific antibodies and confirmed by its presence in
patient’s HLA haplotype. In Table 4, HLA-I alleles lost in
tumors are in italics.

Molecular mechanisms involved in the alterations
of HLA class I expression: analysis of LOH and B2M
sequencing

One of the objectives of our work was to investigate the mo-
lecular mechanisms involved in HLA-I alterations in breast
cancer. Of the 92 cases studied for LOH-6 and LOH-15
(Table 4), 36 cases (39%) showed LOH at one or both chro-
mosomes. Using microsatellite analysis, loss of heterozygos-
ity was detected in 36 cases (39%). Among them, 15 cases had
only LOH-6, 14 tumors only LOH-15, and in 7 samples, we
detected LOH at chromosomes 6 and 15 (Table 4).
Interestingly, some tumors positive for HLA-I expression by
immunohistochemistry (w6/32 MoAbs) had LOH in chromo-
somes 6 or 15 (Table 4). Figure 2 illustrates a localization of
STR markers at chromosome 6 and demonstrates representa-
tive results of the LOH-6 analysis in some breast cancer sam-
ples, including samples with haplotype loss.

Discussion

Tumor HLA-I expression is one of the fundamental factors
responsible for the efficacy of adaptive anti-tumor immune
response, while the high frequency of HLA-I loss suggests
that this is a key route of cancer immune escape from T cell-
mediated lysis (Garrido et al. 1997b; Garrido and Algarra
2001; Aptsiauri et al. 2007).

In this work, using immunohistochemistry with a large
panel of monoclonal antibodies against monomorphic, locus
and allelic specific HLA-I and HLA-II determinants, we
found that loss and downregulation of HLA-I expression is a
frequent event in breast cancer. Around 81% of the studied
tumors demonstrated various types of HLA-I alterations.
Molecular analysis of the microdissected tumor samples re-
vealed that 39% of the tumor samples have loss of heterozy-
gosity (LOH) at chromosomes 6 and/or 15, which harbor the

Table 3 (continued)

Sample HLA typing
Normal tissue

Tumor size HLA-A-B-C-
B2M complex

B2M HLA-ABC free
heavy chain

HLA-A HLA-B HLA-DR

BC-60 A*01,*02; B*08,*51; C*07,*15 T1 − + + + −
BC-61 A*03,*30; B*07,*08; C*05,*07 T1 + + + + NT +

BC-66 A*31,*36; B*38,*50; C*12,*16 T1 + + + + + −
BC-69 A*02,*11; B*35,*40; C*03,*04 T2 + + + + + +

BC-72 A*26,*26; B*38,*51; C*14,*16 T1 + + H NT + H

BC-76 A*02,*26; B*41,*51; C*12,*17 T2 + + + + NT −
BC-94 A*02,*32; B*18,*44 T2 + + + + + H

BC-89 A*24,*30; B*44,*50; C*04,*07 T1 + + H + + +

HLA-I alleles presented in italics are lost in the corresponding tumor samples

H heterogeneous immunolabeling pattern, NT not tested
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HLA-I region (6p21) and B2M gene (6p15), respectively.
Previous studies demonstrated that HLA-I expression is often
downregulated in different types of malignancy, including

breast cancer (de Kruijf et al. 2010; Aptsiauri et al. 2007).
There have been several reports showing different results of
the immunohistological analysis of HLA expression in breast

Table 4 LOH at chromosomes 6
and 15 affecting HLA class I
heavy chain and B2M genes

Tumor sample LOH chromosome 6 LOH chromosome 15 HLA class I expression

LOH-6 (n = 15)

BC-40 + − HLA-I negative

BC-48 + − HLA-I negative

BC-49 + − HLA-I negative

BC-83 + − HLA-I negative

BC-96 + − HLA-I negative

BC-97 + − HLA-I negative

BC-1 + − HLA-I negative

BC-33 + − HLA-A and HLA-B negative

BC-20 + − HLA-I positive**

BC-71 + − HLA-I positive**

BC-78 + − HLA-I positive**

BC-7 + − HLA-I positive**

BC-11 + − HLA-I positive**

BC-29 + − HLA-I positive**

BC-53 + − HLA-I positive**

LOH-6 and LOH-15 (n = 7)

BC-50 + + HLA-I negative

BC-38 + + HLA-I negative

BC-79 + + HLA-I negative

BC-67 + + HLA-A negative

BC-90 + + HLA-B negative

BC-34 + + HLA-A2 negative

BC-98 + + HLA-I positive**

LOH-15 (n = 14)

BC-35 − + HLA-I negative

BC-37 − + HLA-I negative

BC-45 − + HLA-I negative

BC-65 − + HLA-I negative

BC-77 − + HLA-I negative

BC-87 − + HLA-I negative

BC-70 NI + HLA-I negative

BC-21 − + HLA-A negative

BC-47 − + HLA-B negative

BC-62 − + HLA-A negative

BC-46 − + HLA-A2 negative

BC-18 − + HLA-I positive

BC-57 − + HLA-I positive

BC-76 − + HLA-I positive

Ninety-two breast tumor tissues were analyzed for LOH at chromosomes 6 and 15. This table includes 39 samples
with LOH and corresponding HLA-I immunophenotype

NI not informative

**These tumors were classified as Bpositive^ based on immunohistology with anti-HLA-I antibodies directed
against HLA-I monomorphic determinants (w6/32). Nevertheless, LOH-6 was detected in these tumors, which is
usually associated with HLA-I haplotype loss. We could not specify which HLA-I alleles were missing in each
case
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Fig. 2 Localization of STR markers on chromosome 6 and representative results of the LOH analysis at chromosome 6 in breast cancer samples.
D6S291 is centromeric, and D6S105 and D6S276 are telomeric to the HLA region. L, LOH; N, normal, absence of alterations; NI, not informative

Fig. 1 Representative images of
HLA-ABC positive (left) and
negative (right) breast carcinoma
samples. Immunohistological
analysis was done with w6/32
monoclonal antibody. a HLA-
ABC positive. b HLA-ABC
negative

Immunogenetics (2018) 70:647–659 655



cancer in correlation with clinical parameters. The discrepan-
cy could be associated with the type of tissue and antibodies
used.

On the other hand, there are only few publications on
molecular analysis of genetic defects in HLA-I genes re-
sponsible for HLA alterations in breast cancer. These alter-
ations could be due to structural defects in HLA-I genes
(Bhard^ lesions) or regulatory aberrations (Bsoft^ lesions)
reversible by pro-inflammatory cytokines in the tumor mi-
croenvironment (Garrido et al. 2010b; Garrido et al.
2016; Aptsiauri et al. 2014). HLA-I expression in tumors
can potentially predict the response to immunotherapy in
cancer patients, and it depends on the nature of the alter-
ation. It is believed that if the defect is genetic, it is unlike-
ly that immunostimulation of T cells in tumor microenvi-
ronment induced by immunotherapy can upregulate nor-
mal HLA-I expression and antigen presentation. In this
case, the escape mechanisms could prevail and lead to
the generation of dangerous HLA-I-negative tumor escape
variants providing the basis for tumor heterogeneity.
Therefore, the success or failure of immunotherapy de-
pends on the nature of preexisting HLA-I alterations
(Garrido et al. 2016).

Among the structural (Bhard^) HLA-I alterations, LOH-6 is
an important mechanism that generates HLA-I haplotype loss
in various human tumors with high incidence (Maleno et al.
2004; Maleno et al. 2006). Mutations in B2M gene together
with the loss of another gene copy caused by LOH-15 are also
responsible for the irreversible total HLA-I and have been
described in various types of malignancy, both in cell lines
and in tumor tissues, including a proportion of HLA-I-
deficient melanoma and MSI-H colorectal cancers (Bernal et
al. 2012). In the present study, we did not find mutations/
deletions in B2M gene. LOH-15 may be unnoticed in tumor
cells with Bnormal^HLA-I immunolabeling pattern and could
represent one of the early events in malignant transformation
driving pre-committed tumors to become HLA escape vari-
ants. Most tumors derive from HLA-I-positive normal epithe-
lia and constantly acquire new HLA-I alterations during can-
cer progression and dissemination. It creates variability within
primary tumors as well as between the primary carcinoma and
metastases and may negatively impact survival and treatment
efficacy.

In our study, we found a significant correlation between
tumor size and HLA-I expression (when tumors were divided
into two groups: T1 versus T2+T3+T4), demonstrating that
tumors with larger size have less HLA-I expression. It can be
explained by a gradual elimination of HLA-positive tumor
cells by CTLs and escape of HLA-I-negative cells during
tumor growth.

Intratumor heterogeneity among cancer cells is promoted by
reversible or irreversible genetic alterations, by different micro-
environmental factors and also by immunotherapy. In patients

with bladder carcinoma, recurrent tumors after BCG therapy
have a higher percentage of LOH-6 and LOH-15 and increased
incidence of other HLA-I alterations (Carretero et al. 2011).
Deletion of HLA genes may enable the clonal expansion of
HLA-negative tumor cells and this selective pressure could
explain the increased frequency of LOH within the HLA genes
after immunotherapy. In melanoma, we have previously ob-
served that LOH-6 and LOH-15 were the earliest HLA-I alter-
ations occurring in a primary tumor, followed by an emergence
of a Β2Μ mutation and complete loss of HLA-I in successive
metastatic lesions (del Campo et al. 2014). The role of LOH in
HLA genes during cancer evolution has been also recently de-
scribed by us in a lung cancer study (Perea et al. 2017). In this
context, another group reported that LOH affecting HLA-I
genes in lung cancer is one of the immune escape mechanisms
that is subject to strong immune selection pressure during tumor
evolution (McGranaham et al. 2017). Selective allelic HLA-I
losses caused by LOH-6 (HLA haplotype loss) could also po-
tentially compromise T cell cytotoxicity directed against tumor
antigenic peptide presented by a particular HLA-I allele.

Loss of HLA class I expression should render tumor tissues
prone to destruction by NK cells. However, as it has been
reported in different types of solid tumors, NK cells are rarely
detected in the tumor infiltrate or even in the tumor margin
(del Campo et al. 2014; Garrido et al. 2017b). In addition,
tumor area in lung cancer has been reported to be enriched
with the NK cell subpopulation with non-ctytotoxic
CD56bright CD16− phenotype (Del Mar Valenzuela-
Membrives et al. 2016). It is probably induced by the tumor
microenvironment, which could locally impair NK homing
and differentiation rendering these cells less cytotoxic and
favoring the immune escape of HLA-I-negative tumor cells.

The results reported in this work suggest that a combination
of multiple molecular mechanisms is responsible for HLA-I
loss in breast cancer. It has been previously reported that
HER2/neu oncogene expression in breast cancer has a correla-
tion with HLA-I downregulation (Vertuani et al. 2009;
Herrmann et al. 2004; Seliger and Kiessling 2013). However,
in this study, we did not find any association between HLA-I
and HER2/neu receptor expression (see Table 1).

Overall, the findings presented in this article indicate that
LOH has a high frequency in breast cancer, even in tumor
samples with positive HLA-I expression. These tumors were
classified as positive with the anti-HLA-I antibody directed
against HLA-I monomorphic determinants (w6/32).
Nevertheless, these tumors harbor molecular HLA-I alter-
ations, such as LOH-6 causing loss of HLA-I haplotype.
However, we could not define the missing HLA-I alleles in
each case. LOH, as a mechanism of HLA-I alteration, is def-
initely underestimated and may negatively influence T cell-
mediated tumor rejection and clinical success of cancer
eradiation by immunotherapy. We believe that the high fre-
quency of LOH-6 and/or LOH-15 in breast cancer
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(approximately in 39% of the samples) and especially the
coincidence of the LOH at chromosomes 6 and 15 might have
a strong impact on tumor immunogenicity and on the efficacy
of cancer immunotherapy, since the loss of any given HLA-I
locus or of a single allele could result in the lack of CD8+T
cell stimulation by a potentially important tumor-associated
neo-antigen.

It is becoming increasingly evident that immune check-
point blocking therapies are associated with recurrent meta-
static tumor lesions harboring mutations in B2M and IFN
genes (Zaretsky et al. 2016), which are interfering with tumor
antigen presentation to T lymphocytes (Sade-Feldman et al.
2017). However, the massive sequencing techniques used in
these modern studies do not take into account loss of genetic
material in chromosomes 6 and 15, which represent structural/
Bhard^ HLA-I lesions described by us and other groups in
different types of cancer.

With the recent development of the field of cancer immu-
notherapy, the focus has shifted to the investigation of how
tumors acquire resistance to treatment and to the discovery of
novel predictive markers of the efficacy of therapy. Although
anti-Bimmune checkpoint^ immunotherapies have produced
dramatic results in a subset of somemalignancies, the percent-
age of non-responders, mixed responders, and post-treatment
recurrences is rather high. Based on the existing scientific
evidence, it could be, at least partially, explained by the loss
of tumor HLA-I expression caused by structural genetic le-
sions in HLA-I/B2M genes. Therefore, investigation of genet-
ic aberrations underlying altered tumor HLA-I expression is
necessary for developing effective therapies.

Conclusions

Based on immunohistological and molecular analysis of
breast tumor tissues, we discovered that partial and total
HLA-I loss is a frequent finding in breast carcinoma. Here,
we demonstrated that the leading molecular mechanism re-
sponsible for HLA-I altered expression is a loss of heterozy-
gosity in the HLA-I region of chromosome 6 and in the B2M
region of chromosome 15, which was detected in about 39%
of studied tumors. It can be potentially overlooked and
underestimated in tumors analyzed only by immunohisto-
chemistry, when apparently HLA-I-positive tumors (labeled
with antibodies against HLA monomorphic determinants)
harbor potentially dangerous structural/irreversible genetic ab-
errations. These alterations may reduce the ability of tumor
cells to present antigens to T lymphocytes in the context of
HLA-I molecules and, consequently, could lead to immune
escape and resistance to immunotherapy. Nevertheless, mech-
anisms responsible for total HLA-I loss (observed in 54% of
the studied breast tumors) still remain to be defined.
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