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Abstract Class I-like CD1 molecules are in a family of
antigen-presenting molecules that bind lipids and
lipopeptides, rather than peptides for immune surveil-
lance by T cells. Since CD1 lacks the high degree of
polymorphism found in their major histocompatibility
complex (MHC) class I molecules, different species ex-
press different numbers of CD1 isotypes, likely to be
able to present structurally diverse classes of lipid anti-
gens. In this review, we will present a historical over-
view of the structures of the different human CD1
isotypes and also discuss species-specific adaptations
of the lipid-binding groove. We will discuss how single
amino acid changes alter the shape and volume of the
CD1 binding groove, how these minor changes can give
rise to different numbers of binding pockets, and how
these pockets affect the lipid repertoire that can be pre-
sented by any given CD1 protein. We will compare the
structures of various lipid antigens and finally, we will
discuss recognition of CD1-presented lipid antigens by
antigen receptors on T cells (TCRs).
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Introduction

Genes of the human CD1 family (CD1A-E) were first cloned
by Calabi and Milstein in 1986 (Calabi et al. 1989; Calabi and
Milstein 1986). They encode a family of antigen-presenting
molecules that are structurally related to the peptide-
presenting major histocompatibility complex (MHC) class I
molecules. Yet, rather than presenting peptides, CD1 proteins
present an array of different classes of lipids and glycolipids to
T cells for immune surveillance (Adams and Luoma 2013;
Bendelac et al. 2007; Girardi and Zajonc 2012; Mori et al.
2016; Rossjohn et al. 2015). Most CD1-restricted T cells ex-
press an antigen receptor (TCR) composed of an αβ hetero-
dimer (Brigl and Brenner 2004), but T cells expressing anγδ
(Luoma et al. 2013; Uldrich et al. 2013) or δ/αβTCR (Pellicci
et al. 2014) have also been reported. Since the discovery of the
human CD1 locus, CD1 has been found in many more species
and each species expresses different numbers of CD1 genes
(see also Reinink and Van Rhijn 2016).

Human CD1 proteins are categorized into group 1 (CD1a–
c), group 2 (CD1d), and group 3 (CD1e). CD1e is the only
isotype that does not directly present lipid antigens to T cells
but instead participates in lipid processing and subsequent
loading onto other CD1 family members (Angenieux et al.
2005; Angenieux et al. 2000; de la Salle et al. 2005;
Facciotti et al. 2011). Mice express two highly conserved
pseudoalleles of CD1d (CD1d1 and CD1d2), suggesting a
recent gene duplication event, and while mouse CD1 tran-
scripts are expressed equally well in the thymus, CD1d1 is
generally expressed at tenfold higher levels in other organs
(Bradbury et al. 1988).

In addition to mammals, CD1 has also been identified in
birds and reptiles, including lizards but not in amphibians
(Maruoka et al. 2005; Miller et al. 2005; Salomonsen et al.
2005; Yang et al. 2015). Guinea pigs and cows express
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multiple isoforms of CD1b (Dascher et al. 1999; Van Rhijn
et al. 2006). The functional consequence of expressing multi-
ple isoforms is not always known and whether these isoforms
can compensate for the lack of other isoforms, or whether they
were shaped by the lipid ligand repertoire of these organisms,
is not clear. While functional CD1d is found in cattle, guinea
pigs, for example, express CD1a, CD1b, CD1c, and CD1e
orthologs but not CD1d (Dascher et al. 1999; Nguyen et al.
2012). Mammalian CD1 molecules are widely expressed as
glycosylated proteins on many immune cells, including mye-
loid dendritic cells, thymocytes, B cells, and Langerhans cells
(Brigl and Brenner 2004).

CD1 protein structure and trafficking

Similar to MHC I, the CD1 heavy chain non-covalently
associates with β2-microbglobulin (β2M) to form a hetero-
dimer of about 45–50 kDa molecular weight, including N-
linked carbohydrates (Fig. 1). The CD1 heavy chain is
organized into three domains, namely α1, α2, and α3,
and is anchored to the cell membrane by a transmembrane
domain. While the α1 and α2 domains combine to form
the central binding groove of CD1 and are more divergent
among the various isotypes, the α3 domain is more con-
served as it associates with β2M (Fig. 1a). Like classical
class I molecules, the central binding groove of CD1 is
formed by two antiparallel α-helices (α1, α2), which sit
on top of a six-stranded β-sheet platform. The binding
groove of all mammalian CD1 isotypes contains at least
the two major binding pockets, A′ and F′, while human
CD1b has the most elaborate pocket architecture with an
additional T′ tunnel that connects the A′ and F′ pockets
just above the β-sheet floor, as well as a C′ portal that
opens underneath the α2 helix for lipid tail egress into the
solvent (Fig. 1b) (Moody et al. 2005). As a consequence,
the CD1b binding groove had originally been coined “a
maze for alkyl chains” (Gadola et al. 2002). A unique
feature of the CD1c binding groove is the D′/E′ portal,
which is analogous to the C′ portal of CD1b and provides
an exit portal underneath the α1 helix at the terminus of
the A′ pocket for possible egress of the antigen into the
solvent (Scharf et al. 2010). All mammalian CD1 isotypes
have a conserved A′ pole (Val/Cys/Met12 and Phe70) that
allows the alkyl chain to circle within the A′ pocket either
fully (CD1b, c, d, and e) or partially (CD1a). An excellent
depiction of all the human CD1 binding grooves is found
in Garcia-Alles et al. (2011b). A sequence alignment of
the crystallized CD1 proteins illustrates the CD1 isoform
and species-specific adaptations of CD1 binding grooves
that will be discussed later in more detail (Fig. 1c).

Although the overall three-dimensional structure among
the CD1 family is very similar, amino acid substitutions in
the α1-α2 superdomain are responsible for shaping the

individual grooves and for the formation of isotype-specific
pockets. These pockets or tunnels are very hydrophobic and
reach deep inside the protein. As a result, the lipid backbone of
all CD1 antigens is usually almost completely buried inside
the CD1 protein and shielded from the surrounding solvent
(Fig. 1a). The different carbohydrate or peptide headgroups
are exposed at the CD1 surface and can either directly serve as
the major T cell epitopes or affect the structure of the TCR
binding site by an induced fit mechanism to modulate TCR
recognition without direct antigen contact (Birkinshaw et al.
2015; Girardi and Zajonc 2012; Rossjohn et al. 2015).

A tyrosine-based sorting motif is encoded on the short cy-
toplasmic tail of CD1b, CD1c, and CD1d to which various
adaptor proteins (AP1-3) bind but is absent in CD1a (Sugita
et al. 2004). As a result, CD1b–d are sorted differentially into
late endosomal and lysosomal compartments (Jackman et al.
1998; Moody and Porcelli 2003; Sugita et al. 2004; Sugita
et al. 1999), while CD1a mainly recycles through early
endosomes (Salamero et al. 2001). While CD1a is S-
palmitoylated on its short intracellular tail (RKRCFC), possi-
bly impacting its intracellular trafficking and association with
detergent resistant membrane microdomains (lipid rafts), no
effect of palmitoylation on CD1a trafficking had been ob-
served (Barral et al. 2008). The ability of the CD1 family
members to traverse different endosomal compartments en-
ables each type of CD1molecule access to unique lipids, since
based on their particular structure, lipids associate and parti-
tion into distinct cellular compartments (Maxfield and Hao
2013).

This differential sampling of the various intracellular com-
partments allows CD1 to effectively monitor the lipid content
of antigen presenting cells. In addition to the isotype-specific
adaptation of the individual CD1 binding grooves, the co-
localization of certain lipids with particular CD1 isotypes is
a key factor in determining which antigens can be presented
by each of the CD1 molecules in vivo.

Lipid antigens and CD1 loading

The CD1 family can bind and display an array of struc-
turally diverse lipids, ranging from monoacylated lipids
or lipopeptides to tetra-acylated lipids. In addition to the
number of acyl chains contained in an antigen, the
chain length as well as natural alkyl chain substitutions
(methylation, hydroxylation, cyclization) can differ
greatly. While several unique mycobacterial antigens, includ-
ing mycolates (Moody et al. 1997), lipoglycans (Ernst et al.
1998; Fischer et al. 2004; Sieling et al. 1995), diacylated
sulfoglycolipids (Gilleron et al. 2004), lipopeptides (Moody
et al. 2004; Van Rhijn et al. 2005), and phosphomycoketides
(Matsunaga et al. 2004; Moody et al. 2000), can only be pre-
sented by certain CD1 isotypes, such as CD1b and CD1c
(phosphomycoketide), other more common lipids, such as self
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and foreign glycosphingolipids (Goff et al. 2004; Jahng et al.
2004; Kain et al. 2014; Kawano et al. 1997; Kinjo et al. 2005;
Mattner et al. 2005; Miyamoto et al. 2001; Schmieg et al.
2003; Shamshiev et al. 1999; Shamshiev et al. 2002; Wu
et al. 2005; Wu et al. 2003; Yu et al. 2005; Zhou et al.
2004b) and phosphoglycerolipids (Agea et al. 2005;
Gumperz et al. 2000; Joyce et al. 1998; Rauch et al. 2003),
can be presented by most CD1 isoforms, and specificity of

recognition is determined by the CD1-restricted T cell. An
overview of CD1-presented glycolipids is shown in Fig. 2. It
is important to note that while many lipids can be ligands for
CD1, they are not necessarily T cell antigens. Many self-
antigens associate with CD1 during de novo expression to
stabilize the CD1 protein on its way to the cell surface.
CD1-bound lipids can be replaced either at the cell surface
or during CD1 trafficking through endosomal compartments.

Fig. 1 CD1 structure overview and binding groove architecture. a
Cartoon representation of the mouse CD1d-BbGl-2c structure. CD1d
heavy chain in gray, b2M in blue gray. N-linked glycans in green and
lipid in yellow. b Lipid-binding groove of human CD1b in gray space
filling view with bound GMM lipid in yellow in a side view (top) and top
view, looking into the groove (bottom). Individual pockets (A′-T′) and
residues that delineate pockets are labeled. c Sequence alignment of all

crystallized CD1 proteins. Mammalian CD1 shares many features, while
avian CD1 is distinct in amino acid sequence and structure. Conserved
features are highlighted yellow (A′ pole, green in chCD1-1), light green
(conserved N-linked glycan), green (T′ tunnel in CD1b), dark green
(disulfide bond in A′ pocket), cyan (disulfide bond at C′ portal), blue (A
′ loop), and orange (acyl chain guide intoA′ pocket), while residues in red
block a particular feature
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While the focus of this article is not on the details of lipid
loading, many lipid transfer proteins are involved in this pro-
cess, including the GM2 activator protein (Zhou et al. 2004a),
saposins (Kang and Cresswell 2004; Winau et al. 2004; Zhou
et al. 2004a), apolipoprotein E (van den Elzen et al. 2005),
microsomal triglyceride tranfer protein (MTP) (Brozovic et al.
2004; Dougan et al. 2005), and fatty acid amide hydrolase
(FAAH) (Freigang et al. 2010).

T cell diversity and recognition

CD1-restricted T cells comprise roughly 10 % of all αβ T
lymphocytes in human peripheral blood, similar to MR1-
restricted T cells, while the remaining 80 % are peptide clas-
sical class I reactive. The majority of lipid-reactive T cells are
specific for CD1c (∼7 %), while CD1a (∼2 %), CD1b (∼1 %),
and CD1d (0.1 %) are less abundant (Young and Gapin 2011).

Fig. 2 Structures of certain crystallized CD1 lipid antigens. For
glycolipids, sugars are colored as follows: galactose in blue, glucose in
green, and mannose in brown. Only representative lipids are shown.
While CD1d-presented glycolipids are mostly based on either a

ceramide or a diacylglycerol backbone, CD1a, b, and c presents
structurally more unique lipids that, except for PIM6, cannot be
presented by CD1d, while many of the CD1d antigens can be presented
by the other CD1 proteins.
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However, most of our understanding of lipid-reactive T cells
stems from the work on CD1d-restricted T cells, termed
Natural Killer T (NKT) cells, which are activated within hours
after antigen challenge and express both NK cell receptors and
a TCR (Bendelac et al. 2007). A large subset of NKT cells
express a semi-invariant TCR formed by a conserved
Vα24Jα18 chain (Vα14Jα18 in mice) that pairs with Vβ11
(Vβ8.2/Vβ7, and Vβ2 in mice). These semi-invariant or type
I NKT cells have broad substrate specificity and recognize
different carbohydrate epitopes (mostly galactose and glu-
cose) that are predominant ly l inked to ei ther a
diacylglycerolipid backbone or ceramide backbone using an
α-anomeric linkage (Girardi and Zajonc 2012). Many micro-
bial antigens have been discovered that follow these structural
principles, and type I NKT cells have been demonstrated to
protect against microbial infection (Kinjo et al. 2011; Kinjo
et al. 2006; Kinjo et al. 2005; Mattner et al. 2005; Sriram et al.
2005; Zajonc and Girardi 2015). Several β-anomeric glyco-
lipids can also be recognized by type I NKT cells, including
the self-antigen iGb3 (Zhou et al. 2004b). However, β-
anomeric glycolipids are much weaker antigens for type I
NKT cells than their α-anomeric counterparts. Sulfatide, a
β-anomeric myelin-derived glycosphingolipid is a potent an-
tigen for a subset of type II NKT cells (Blomqvist et al. 2009;
Jahng et al. 2004; Jahng et al. 2001; Rhost et al. 2012). Type II
NKT cells do not have a conserved TCR rearrangement and
can be formed by many different TCR α and β genes in mice,
most commonly Vα3/Vα1-Jα7/Jα9 and Vβ8.1/Vβ3.1-Jβ2.7
(Arrenberg et al. 2010).

While type I NKT cells are immunomodulatory, due to
their potent production of both pro- and antiinflammatory cy-
tokines, type II NKTcells are considered immunosuppressive.
Activation of type II NKTcells can in turn lead to inhibition of
type I NKT, reducing their IFN-y production and thus prevent
liver damage (Arrenberg et al. 2011).

Interestingly CD1b-restricted Tcells contain a subset called
germline-encodedmycolyl lipid-reactive (GEM) Tcells that is
characterized by higher binding affinity to CD1d-glucose
monomycolate (GMM) (Van Rhijn et al. 2013). Similar to
type I NKT cells, GEM T cells also utilize a limited TCR
repertoire using TRAV1-2/TRAJ9 with few N additions.
CD1b-GMM-reactive T cells that bind with lower affinity re-
vealed a more diverse TCR repertoire. GMM-specific T cells
were also shown to be antimicrobial (Van Rhijn et al. 2013).

CD1a-restricted T cells are autoreactive and recognize an-
tigens that lack a polar headgroup, suggesting an indirect rec-
ognition of the antigen (de Jong et al. 2014). Interestingly,
lipids that contained a polar headgroup blocked T cell activa-
tion (de Jong et al. 2014). Since many glycolipids share com-
mon structural features, such as number and length of alkyl
chains or the same carbohydrate moiety, recognition of any
given lipid is generally achieved by TCR-binding specificity
toward both the CD1 protein and the glycolipid, while CD1a

autoreactive T cells follow different rules for activation. TCR
recognition of permissive CD1a-presented antigens versus di-
rect recognition of CD1d-presented antigen will be discussed
in detail later.

Human/mouse CD1 isotype-specific adaptations

Mouse/human CD1d (1997/2005)

In 1997, the crystal structure of mouse (m) CD1d was first
reported, followed by human CD1d in 2005 (Koch et al. 2005;
Zeng et al. 1997). CD1d is the most studied isotype, since it is
the only CD1 molecule expressed in mice. The CD1d struc-
tures represent the benchmark for comparing the CD1 isotype-
specific adaptations of the lipid-binding groove. CD1d has a
medium size binding groove (∼1650 Å3 volume) and the two
main pockets A′ and F′ (Fig. 3). The A′ pocket is deeply buried
and doughnut shaped, while the F′ pocket descents straight
down from the groove opening toward the β-sheet floor.
The A′ pocket is larger in length and can accommodate the
alkyl chains of up to 29 carbons, while the F′ pocket is shorter
and limits alkyl chain length to roughly 18 carbons. This size
distribution favors sphingolipid binding to CD1d, which gen-
erally contains a 26-carbon fatty acid that is N-amide-linked to
a sphingoid base of 18 carbons. Lipids that are considerably
shorter are usually found in conjunction with spacer lipid mol-
ecules that fill and presumably stabilize the remainder of the
groove. These can range from short C8 to C16 fatty acid,
although the exact nature has not always been precisely deter-
mined. The spectrum of lipid antigens that bind CD1d ranges
from sphingolipid to glycerolipids, to cholesterol derivates, to
small hydrophobic molecules, to even amphipathic α-helical
peptides and lipopeptides (Fig. 2). Lipid antigens that have
been crystallized bound to mouse or human CD1d include
phosphatidylcholine (PC), acquired during expression of
CD1d in insect cells (Giabbai et al. 2005); C8-α-
galactosylceramide (PBS-25) together with a C16 spacer lipid
(Zajonc et al. 2005a); α-galactosylceramide (α-GalCer)
(Koch et al. 2005) and α-galacturonosylceramide (GalA-
Gsl) (Wu et al. 2006); sulfatide (Luoma et al. 2013; Zajonc
et al. 2005c); phosphatidylinositol-dimannoside (PIM-2)
(Zajonc et al. 2006); isoglobotrihexosyl ceramide (iGb3)
(Zajonc et al. 2008a); phenyl group-containing α-GalCer an-
alogs C6Ph, C8Ph, C10Ph, and C8PhF (Schiefner et al. 2009);
short chain α-GalCer analog OCH (Sullivan et al. 2010);
Borrelia burgdorferi glycolipid 2c and 2f (BbGL-2c, -2f)
(Wang et al. 2010); tetra-myristoyl cardiolipin (Dieude et al.
2011); Streptococcus pneumonia glucosyl-diacylglycerol
(Glc-DAG-s2) (Kinjo et al. 2011); ganglioside GD3
(Mallevaey et al. 2011); lyso PC (Lopez-Sagaseta et al.
2012); and even a synthetic peptide p99, as well as the related
lipopeptide p99p (Girardi et al. 2016).
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A common feature of antigen presentation by CD1d is the
intimate interaction of the core CD1d residues Asp80, Asp151
(Asp153 in mice), and Thr154 (Thr156 in mice) with the polar
regions of the lipid antigen. For glycosphingolipids, an

intricate hydrogen bond network orients the glycolipid at the
entrance of the binding groove for the carbohydrate epitope to
be presented to the corresponding TCR for subsequent TCR
binding and T cell activation (Borg et al. 2007; Pellicci et al.

Fig. 3 CD1-binding pockets and structural features. All CD1 proteins,
expect for chCD1-2 have anA′ pole and at least the two pockets A′ and F′.
Structural differences are the closed A′ roof of CD1a; the D′ portal, open
F′ pocket, and G′ portal of CD1c; the open groove of CD1e; the T′ tunnel

of CD1b; the partially closed A′ pocket of bovine CD1d; the lipid-binding
pore of chCD1-2; and the A′ and F′ cleft of chCD1-1. CD1 residues
beneath the binding groove are labeled in gray
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2009). The shape complementarity of the CD1d binding
groove portal together with the precise interaction of the
CD1d core residues with the antigen, rather than the size of
the lipid alkyl chains or the antigen binding pockets, are the
key factors that determine the binding orientation of all
glycosphingolipids. Since most common glycosphingolipids
consist of a fatty acid with a length of 24–26 carbons, which
can only be bound within the A′ pocket of CD1d, the typically
C18 sphingoid base becomes inserted into the F′ pocket.
However, even if the acyl chain is truncated to 8–16 carbons,
the sphingolipid binds in the same orientation, rather than
inserting the longer sphingoid base into the larger A′ pocket
and the shorter acyl chain into the smaller F′ pocket (Zajonc
et al. 2005a). This “headgroup anchoring” for glycolipids is
manifested with generally very well-defined electron density
for glycosphingolipids. Much of our understanding of the
binding of diacylglycerolipids (DAG lipids) has been through
studies of bacterial antigens (Girardi et al. 2011; Kinjo et al.
2011; Kinjo et al. 2006; Wang et al. 2010). DAG lipids are
more flexible in structure, since they lack the planar N-amide
linkage. As a consequence opposite binding orientations have
been observed (Wang et al. 2010). In these cases, it appeared
as if the nature of the fatty acid (length and level of
unsaturations) dictated the binding orientation of the DAG
lipid, which directly affected the presentation of the carbohy-
drate headgroup and its T cell antigenicity (Kinjo et al. 2011;
Kinjo et al. 2006; Wang et al. 2010). Since DAG lipids can
bind in opposite orientation, meaning that either the acyl chain
that is connected to sn-1 or sn-2 position of the glycerol can
bind inside either the A′ or F′ pocket, antigenicity for DAG-
based glycolipids is difficult to predict. For Borrelia glyco-
lipids, the A′ pocket of mCD1d favors binding of oleic acid. In
the glycolipid BbGL-2c, the oleic acid was at the sn-1 position
and a palmitic acid at sn-2, presenting a viable antigen for
iNKT cell recognition (Kinjo et al. 2006). The glycolipid
BbGL-2f, however, which has an sn-2-linked oleic acid but
an sn-1-linked linoleic acid bound in the reversed orientation,
was not recognized by murine iNKT cells. Surprisingly, how-
ever, human CD1d can present BbGL-2f as an antigen to
human iNKT cells, suggesting that subtle differences in anti-
gen presentation exist between human and mouse CD1d that
govern differences in antigenicity. Antigenicity of a DAG lip-
id can also be achieved by the combination of a unique fatty
acid with an otherwise low antigenic carbohydrate epitope,
such as glucose (Girardi et al. 2011; Kinjo et al. 2011). The
S. pneumonia antigen GlcDAG-s2 contains an sn-1-linked
palmitic acid and an sn-2-linked vaccenic acid (C18:1, n-7).
Since the sn-2-linked vaccenic acid, similar to the oleic acid of
the Borrelia glycolipids, binds in the A′ pocket and as such
mimicks the binding orientation of BbGl-2f, we would expect
the lipid to be presented in a non-antigenic orientation to the T
cell. However, the combination of the unusual fatty acid,
which, compared to oleic acid, has the unsaturation moved

by 1 carbon with the glucose, leads to a novel interaction of
the glucose with CD1d, which would not be seen using an
oleic acid in combination with glucose or a vaccenic acid with
galactose (Girardi et al. 2011). As a result, Glc-DAG-s2 stim-
ulates both mouse and human iNKT cells.

CD1b (2002)

CD1b has the largest binding groove of all CD1 isotypes
(∼2200 Å3) and the most elaborate pocket network. Not sur-
prisingly, CD1b can bind the largest of the CD1 antigens,
namely mycolates of up to C80 in length. The first crystal
structures of CD1b in complex with either phos-
phatidylinositol (PI) or gangliosides (GM2) (Gadola et al.
2002) revealed that the binding groove was composed of four
interconnected pockets, termed A′, C′, F′, and T′ (Fig. 3). The
T′ tunnel was essentially created by small, CD1b-specific gly-
cine residues 98 and 116 on the β-sheet floor. In other CD1
isotypes, valine or leucine residues blocked the T′ tunnel. The
structure of glucose monomycolate bound to CD1b revealed
the connection of the pockets in such a way that the longer β-
hydroxy chain was inserted into the A′ pocket, traversed
through the T′ tunnel, and up through the F′ pocket with the
tail end sticking out into the solvent, while the shorter α-alkyl
side chain descended down into the C′ pocket (between the A′
and F′ pocket) and out into the solvent through the C′ portal
(Batuwangala et al. 2004). This portal, which is kept open by a
disulfide bridge (Cys131-Cys145) is instead blocked in CD1d
and other isotypes by bulky residues, such as Trp133 (Fig. 3).
Other CD1 isotypes are more restricted in size and cannot bind
lipids that would exceed the size of the groove. Since the first
human CD1b-lipid structures, phosphatidylcholine (Garcia-
Alles et al. 2006) as well as synthetic diacylsulfoglycolipid
SGL12 (Garcia-Alles et al. 2011a), have been crystallized
bound to CD1b. Interestingly, except for SGL12, which has
a di-saccharide headgroup, little hydrogen bond interaction
between the ligands and CD1b is formed. Since CD1b has
the largest binding groove, CD1b recruits the most spacer
lipids when average size glycolipids (∼40 carbons) are
presented.

CD1a (2003)

The first structure of CD1a in complex with the
glycosphingolipid sulfatide revealed that CD1a has the
smallest and most restricted of the human CD1 binding
grooves (∼1350 Å3 volume) (Zajonc et al. 2003). In contrast
to CD1b and d, the A′ pocket is not doughnut-shaped as Val28
(glycine in all human CD1 isotypes and serine in mCD1d)
blocks full encircling of the A′ pole (Fig. 3). As a conse-
quence, the A′ pocket is shaped like a hook which terminates
underneath the α1 helix and allows a total of approximately
36 carbon atoms to fit into the groove (Zajonc et al. 2003).
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CD1a has an atypical A′ and F′ pocket groove organization.
The A′ pocket is not directly connected to the CD1 surface,
since it is closed at the top (A′ roof). Instead, the A′ pocket
gradually merges with the F′ pocket, which runs less deeply
compared to CD1b and d. The A′ roof is formed by CD1a-
specific Arg73 that points toward the α2 helix, where it forms
a hydrogen bond with Thr158 and a salt bridge with Glu154.
In CD1b and CD1d, the corresponding Tyr73 points down
into the binding groove, where it guides the descending alkyl
chain into the A′ pocket. The crystal structure of CD1a in
complex with sulfatide revealed a different glycolipid presen-
tation compared to CD1b and d. Sulfatide sits much deeper
inside the CD1a binding pocket than it does when bound to
mCD1d (Zajonc et al. 2003; Zajonc et al. 2005c). Also, the
fatty acid, rather than the sphingoid base binds inside the A′
pocket and the fatty acid tail rather than reaching down into
the F′ pocket, ascends from the bottom of the F′ pocket up to
the groove opening. This deeply buried antigen binding places
only the 3′-sulfate group of the galactose moiety at the CD1
surface for T cell recognition.

However, since the fatty acid of sphingolipids can vary in
size, this deeply buried sphingolipid headgroup presentation is
greatly affected by the fatty acid chain length. A recent struc-
ture of CD1a with sphingomyelin, which had a longer C24:1
fatty acid (instead of the C16), demonstrated that the PC
headgroup is much more exposed compared to sulfatide, since
the longer fatty acid elevates the headgroup presentation
(Birkinshaw et al. 2015). In this case, the sphingoid base de-
scends down into the F′ pocket, similar to how CD1b and d
bind glycosphingolipids.

The structure of a synthetic lipopeptide (Zajonc et al.
2005b), which is similar in structure to the mycobacterial
didehydroxymycobactin (Moody et al. 2004; Van Rhijn
et al. 2005), revealed a binding mode in which the alkyl chain
was inserted into the end of the A′ pocket, with the peptidic
moiety folding up inside the F′ pocket for presentation to T
cells.

CD1c (2010)

CD1c is best known for its ability to bind phosphomycoketide
antigens, which are mycobacterial single alkyl chain antigens
with methyl substitution (Matsunaga et al. 2004; Moody
2001). CD1c structures are available with bound
phosphomycoketide and mannosyl-b1-phosphomycoketide,
as well as with fatty acids that were captured during protein
expression and serve as natural spacer lipids to stabilize the
groove (Mansour et al. 2016; Roy et al. 2014; Scharf et al.
2010). CD1c has the second largest human CD1 binding
groove (∼1780 Å3 volume). The binding groove contains an
A′ pocket that wraps almost fully around the A′ pole (Val12
and Phe70) but connects to the solvent via the D′ portal
(Fig. 3). The F′ pocket is rather broad, contains a small portal,

and is open to the solvent, as it does not form a F′ roof. The
authors, therefore, refer to the F′ pocket as the F′ groove
(Scharf et al. 2010). CD1c has neither a T′ tunnel nor a C′
portal.

The single chain phosphomycoketide antigen binds
deep inside the A′ pocket, with the terminal phosphate
or phosphoryl-mannose protruding from the groove open-
ing into the solvent. Phosphomycoketide presentation does
not require the F′ pocket, and instead, the F′ pocket is
occupied by a fatty acid spacer lipid. The structural data
also provide a model of how dual alkyl chain antigens,
such as sulfatide, would be able to bind within both
pockets, as sulfatide is common lipid that can bind to
CD1a–d (Shamshiev et al. 2002; Zajonc et al. 2005c). A
unique feature of CD1c is the D′ and E′ portals. The E′
portal is located in the F′ pocket, where it is formed by
the unique CD1c residues Phe16, Leu77, and Val96, with
contribution of residues that are shared with other CD1
isoforms (Phe18, Thr78, Ile81). However, the E′ portal is
not formed in all CD1c structures and appears too small
to serve as a functional exit portal unless ligand-induced
structural changes occur to open it further. In contrast, the
D′ portal appears to form a true exit portal within the
lateral wall of the A′ pocket next to the E′ portal. A
combination of an elevated α1 helix that in contrast to
CD1b increases the distance to the β-sheet floor of the
A′ pocket, as well as substitution of Thr26 with Gly26,
which allows the antigen to traverse underneath the helix
and into the solvent form the D′ portal (Fig. 3). Another
unique feature of the F′ pocket is its open nature, which
gave it the name “F′ groove” (Scharf et al. 2010). Such an
open pocket architecture had not been observed to this
time for any other human CD1 isoform. A recent study
demonstrated that the open F′ groove can form an F′ roof,
similar to other CD1 isoforms, especially CD1d. While the
F′ roof will close the F′ groove at the top, it does not
close the end of the F′ groove, which is open to the
solvent and referred to by the authors as G′ portal
(Fig. 3). In contrast to CD1a and CD1d, which have a
defined A′ pocket size and a closed F′ pocket, CD1c can
bind lipids that exceed the size of the lipid-binding groove
by using both the D′ and G′ portals. As a result, while
CD1a- and CD1d-presented antigens have a maximum
length in both alkyl chains, there is no length restriction
for CD1b and CD1c, since both alkyl chains of a dual
alkyl chain antigen can extend from the A′ and F′ pocket
into the solvent.

More recently, a study reported flexibility of the CD1c
binding groove (Mansour et al. 2016). The structure of
refolded CD1c identified two short spacer lipids in the F′
groove, which are bound on top of each other. This binding
mode suggests that larger lipid moieties can fit into the F′
groove of CD1c. Indeed, using thermodynamic simulations
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and functional T cell activation assays, the authors suggested
that cholesterol-based lipids can be presented by CD1c and
even stabilize the CD1c molecule for recognition by CD1c-
self-reactive T cells (Mansour et al. 2016).

CD1e (2011)

CD1e is the only human isotype that does not directly present
lipids to T cells. It is predominantly found in the lysosome of
antigen presenting cells and not on the cell surface
(Angenieux et al. 2005). The function of CD1e is to assist
with the processing of complex phosphatidylinositol
mannosides (PIMs) and their loading to CD1b for subsequent
presentation to CD1b-restricted Tcells (de la Salle et al. 2005).
The only available CD1e structure identified a few unique
characteristics, including an A′ and F′ pocket architecture sim-
ilar to CD1d (Garcia-Alles et al. 2011b). The doughnut-
shaped A′ pocket wraps fully around the A′ pole formed by
Met12 and Phe70 (Phe70 is conserved across all human and
mouse CD1 isoforms), while the F′ pocket descends toward
the β-sheet floor and is closed at the end by Phe88 (conserved
in CD1b) (Fig. 3). In contrast to CD1b, however, the F′ portal
is wider, since it is lined by Ser84. In CD1a, CD1b, and CD1d,
bulky hydrophobic residues (Tyr, Phe, Leu) form the lid or
neck of the F′ pocket (Zajonc and Wilson 2007). Unique to
CD1e, however, is the open nature of the binding groove,
which is very accessible to solvent and rather large (2000 Å3

volume). This suggests that in contrast to other CD1 isoforms,
CD1e binds lipids more transiently for fast transfer to CD1b.
Therefore, one would assume that CD1e interacts less inti-
mately with the lipid. Likely, a reflection of the transient
lipid-binding properties of CD1e is the lack of a well-
defined electron density for any self-antigen or spacer lipid
in the crystal structure. This also suggests that CD1e can re-
main temporarily empty without collapse of the binding
groove. Another feature of CD1e is its slightly positive charge
around the binding groove portal, while all other CD1 iso-
forms are rather negatively charged. This opposite charge
may help to transiently associate with CD1b for lipid
exchange.

CD1 in other species

While human andmouse CD1 are the best studied members of
this family, structural data has also been obtained on CD1
from other species, including ruminants (Bos taurus) and birds
(Gallus gallus), which provide insight into species-specific
adaptations of the lipid-binding grooves and the lipid antigens.

Bovine CD1b3 (2010)

Cattle have three potentially expressed CD1b proteins, name-
ly CD1b1, CD1b3, and CD1b5 (Van Rhijn et al. 2006). The

structure of bovine CD1b3 (boCD1b3) with endogenously
bound lipids PC and phosphatidylethanolamine (PE) identi-
fied a binding groove that is identical in size to that of human
CD1b (Girardi et al. 2010). A doughnut-shaped A′ pocket that
circles around the conserved A′ pole (Leu12 and Phe70) di-
rectly connects with the solvent accessible F′ pocket (Fig. 3).
Interestingly, the T′ tunnel found in human CD1b is closed
byVal98. BoCD1b3 also has a centrally located C′ pocket
ending in a C′ portal that leads into the solvent. However,
His129 (Ala129 in hCD1b) blocks the terminal C′ portal
found in hCD1b and diverts the portal opening to both lateral
sides. In addition, the binding groove is narrower compared to
hCD1b, due to closure of the F′ roof through a triad of residues
including Glu80, Arg84, and Tyr151. Mass spectrometric
analysis of identified PC and PE as endogenously acquired
antigens during the course of recombinant protein expression
in insect cells. PC has before been identified as an endoge-
nously acquired antigen during mCD1d expression in insect
cells; however, boCD1b presents PC and PE differently in the
crystal structure. Since the F′ pocket is closed at the top, one
acyl chain binds inside the A′ pocket and one inserts into the C
′ pocket, from which it extends into the F′ pocket, rather than
entering the C′ portal (Fig. 3). In case of PE, the acyl chain
follows from the C′ pocket down into the F′ pocket and turns
upward, while the opposite orientation is observed for PC.
Here, the acyl chain traverses from the C′ pocket directly over
to the F′ pocket and down to the β-sheet floor, where it turns
upward to end close to the C′ portal. The difference in lipid
binding compared to hCD1b is likely driven by the lack of the
T′ tunnel, which now restricts the length of acyl chains accom-
modated inside the A′ pocket. In this binding orientation, lon-
ger acyl chains in the F′ pocket could potentially exit through
the C′ portal. The lack of the T′ tunnel suggests that boCD1b3
samples are different lipids, compared to hCD1b. The present-
ed lipid repertoire found in different organisms is likely the
reason for the species-specific adaptations (evolution) of the
CD1 binding grooves.

Bovine CD1d (2012)

While originally believed that cattle contain a CD1d
pseudogene that is not expressed due to the lack of a start
codon (Van Rhijn et al. 2006), cell surface expression of
bovine CD1d (boCD1d) was later confirmed, revealing the
usage of an alternate start codon (Nguyen et al. 2012). In
addition to boCD1d, cattle express the TCR genes neces-
sary to produce functional NKT cells, which are charac-
terized by their reactivity to CD1d-presented α-GalCer
(Reinink and Van Rhijn 2009). However, α-GalCer treat-
ment of cattle did not show any immune response against
this glycolipid, which raised the question as to whether
NKT cells are generated in cows.
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Lipid-binding assays first demonstrated that boCD1d
can bind glycosphingolipids with an acyl chain length of
C18 (GT1B) but not C24 (sulfatide) (Wang et al. 2012).
This led to the investigation whether the structure of
boCD1d differed greatly from that of hCD1d, resulting
in the inability of long chain glycosphingolipids to be
presented. Two crystal structures of boCD1d loaded with
either disulfatide (C12 acyl chain) or medium length α-
GalCer (C16 instead of C26 acyl chain) were determined
(Wang et al. 2012). These structures revealed that similar
to human and mouse CD1d, boCD1d has both A′ and F′
pockets and presents glycolipid with similar binding chem-
istries using many conserved CD1d residues, such as
Asp80, Tyr73, Phe77, and Thr154 (Thr156 in mice).
However, quite strikingly, the A′ pocket has a different
architecture. The conserved A′ pole is absent (Gly12 and
Leu70, instead of Cys/Val12 and Phe70) and instead of
the typical doughnut shape, the A′ pocket is straight and
approximately 300 Å3 smaller in volume than that of
mouse or human CD1d (Wang et al. 2012). While a di-
sulfide bond (Cys102-Cys166) in hCD1d widens the A′
pocket below the α2 helix, the bulky residue Trp166 in
boCD1d blocks that part of the pocket and closes the side
of the A′ pocket. As a result, acyl chains of only up the
C18 can bind. Also, the A′ pocket of boCD1d seems to
be more flexible and can slightly change its shape upon
binding to different size lipids. Most notably, Trp40 can
“swing in” when shorter acyl chains (C12) are bound, and
slight rotation of Trp166 and Leu161 has also been ob-
served that can broaden or restrict the volume but not
necessarily the length of the A′ pocket. However, despite
the ability of α-GalCer of medium-chain length to bind to
boCD1d, as mentioned, no immune reactivity has been
observed when injected in cattle (Nguyen et al. 2012),
suggesting that the self-antigens that would be responsible
for positive selection of this T cell subset might either not
bind to boCD1 or, alternatively, that boCD1d presents a
different lipid repertoire to different T cell subsets.

Avian CD1

While reptiles are the evolutionary oldest group of animals
that is known to express CD1, we lack any structural informa-
tion for reptile CD1 (Yang et al. 2015). Birds, however, ex-
press two CD1 genes that have likely evolved from a common
ancestral CD1 gene ∼310 mya (Dascher 2007; Miller et al.
2005; Salomonsen et al. 2005). Since MHC molecules are
found even earlier in evolution (>450 mya), as early as in
cartilaginous fish (e.g., shark), it is tempting to speculate that
a primordial CD1 can be found that is derived from an evolu-
tionary early MHC gene. The crystal structures of both chick-
en CD1-1 (chCD1-1) and chCD1-2 had been determined to
address this question (Dvir et al. 2010; Zajonc et al. 2008b).

Chicken CD1-2 (2008)

ChCD1-2 has the most primitive and smallest of all CD1
binding grooves (470 Å3 volume) (Zajonc et al. 2008b).
Instead of a binding groove that contains two (A′ and F′) or
more (C′, T′) pockets, chCD1-2 has a simple pore, rather than
a broader pocket (Fig. 3). This already suggested that chCD1-
2 is not capable of binding common dual alkyl chain lipid
antigens, such as diacylglycerols or sphingolipids. Instead,
the structure revealed a linear electron density that could be
best described using a fatty acid, such as palmitic acid, ac-
quired during protein expression in insect cells (Zajonc et al.
2008b). While resembling the three-dimensional structures of
other CD1 or MHC molecules, the α1 helix is intersected in
the center by the A′ loop, a stretch of residues (Ser73, Met74,
Val75, and Gly76) that bridge over to the α2 helix and restrict
the groove opening dramatically. The fatty acid found inside
the chCD1-2 groove binds with the alkyl chain deep inserted
into the single pocket with the carboxylate extending out to-
ward the solvent. Here, the positively charged residue Arg82
binds to the carboxylate using an electrostatic interaction. This
binding is reminiscent of how Arg79 of human or mouse
CD1d can bind glycolipids and is in line with a possible direct
antigen presentation to T cells. While this structure revealed
how primitive a lipid-binding pocket of CD1 can look, it did
not identify an evolutionary and potentially hybrid structure: a
peptide-binding, MHC-like binding pocket with the ability to
bind lipids. Interestingly, however, the structure of the classi-
cal chicken MHC YF1*7.1 was determined, in which binding
of an alkyl chain was observed (Hee et al. 2010). However,
whether this structure represents a molecule related to the
common ancestor of classical class I and CD1 is not known.

Chicken CD1-1 (2010)

Since the structure of chCD1-2 revealed a primitive binding
pocket, the structure of chCD1-1 had been determined in an
attempt to structurally characterize all CD1 proteins of a single
species (Dvir et al. 2010). The structure of chCD1-1 identified
an unexpectedly complex lipid-binding groove. The size of
the binding groove is that of between human CD1a and
CD1d (1440 Å3 volume) (Dvir et al. 2010). It consists of a
rather large A′ pocket and a more restricted and narrow F′
pocket (Fig. 3). Both pockets are separated by Tyr72, by
which most other CD1 proteins guides the alkyl chain into
the F′ pocket. While the F′ pocket can accommodate alkyl
chains of up to 16 carbons in length, the A′ pocket is
doughnut-shaped and tilted 90° compared to mammalian A′
pockets. The A′ pole is not vertical but horizontally formed
between the α1 and α2 helices, however, using equivalent
residues (Leu11 and Ile 69). Interestingly, both A′ and F′
pockets open into a hydrophobic cleft at the protein
surface, which also participate in antigen binding. This lipid
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presentation is on top of the binding pocket, effectively in-
creasing the size of lipids that can be presented by chCD1-1
(Dvir et al. 2010). The crystal structure also revealed the pres-
ence of endogenous ligands in both the A′ and F′ pockets. A
C45 alkyl chain was found in the A′ pocket and extended into
the A′ cleft, while a C16 alkyl chain was found in the F′
pocket. Moreover, electron density for an unidentified mole-
cule was observed in the F′ cleft. The A′ pocket binds lipids
differently compared to mammalian A′ pockets. Since the
pocket is tilted by 90°, the terminal end of the acyl chain that
encircles the A′ pole ends up at the protein surface in the A′
cleft from where it can extend into the solvent. Therefore, the
alkyl chain of lipid antigens that are bound within the A′
pocket is not restricted and can exceed the length of 45 car-
bons, while the size of the F′ pocket restricts lipid tails to 16
carbons. Mycolic acids contain features that are compatible
with their presentation by chCD1-1, and lipid-binding studies
demonstrated that both glycosphingolipids and mycolic acid
can indeed bind (Dvir et al. 2010). Since Mycobacterium
avium is a known bird pathogen, its lipid repertoire could have
shaped the evolution of the chCD1-1 lipid-binding pocket.
Another surprising feature of the A′ pocket was the presence
of three short sidepockets that could potentially bind branched
alkyl chains, such as those found in either mycolic acids or
phosphomycoketides, also a common lipid class found in
mycobacteria.

TCR interaction with CD1-lipid (since 2007)

TCR recognition was first structurally characterized for
CD1d-restricted type I NKT cells presenting α-GalCer (Borg
et al. 2007; Pellicci et al. 2009). In contrast to the typical
diagonal binding orientation of the TCR above the antigen
binding groove of the MHC molecule, the semi-invariant
TCR of type I NKT cells bound parallel to the α helices of
CD1d and centered above the F′ pocket, rather than spanning
over both A′ and F′ pockets (Fig. 4). This places the invariant
TCRα chain directly over the carbohydrate headgroups of
CD1d-presented glycolipids. Complementarity determining
region (CDR) loops 1α (Asn30α in mouse, Ser31α in human)
and 3α (Gly96α) exclusively contact the antigen, while
CDR3 residue Arg95α (encoded by Jα18) also contacts the
3′-hydroxyl of the ceramide backbone. Leu99α forms critical
contacts with CD1d residues forming the F′ roof (L84,
Val149) and contributes greatly to the stability of the complex.
Before crystal structures were available, alanine-scanning mu-
tagenesis of CDR3α residues demonstrated that every amino
acid of this loop was required for activation of type I NKTcell
hybridomas, regardless of the presented antigen (Scott-
Browne et al. 2007). Since the structural characterization of
the recognition of α-GalCer and structural analogs of α-
GalCer, manymicrobial antigens, as well as self-antigens such
as iGb3, have been structurally characterized (Aspeslagh et al.

2011; Aspeslagh et al. 2013; Girardi et al. 2011; Kerzerho
et al. 2012; Li et al. 2010; Lopez-Sagaseta et al. 2012;
Mallevaey et al. 2011; Patel et al. 2011; Pellicci et al. 2011;
Wun et al. 2008; Wun et al. 2011; Wun et al. 2012; Yu et al.
2011). Surprisingly, despite being structurally diverse (Fig. 2),
the antigens are engaged by the TCR using nearly identical
binding chemistries. While α-GalCer is recognized by the
TCR using a lock-and-key mechanism (explaining both the
high-affinity TCR binding and potency of the antigen), other
lipids have to be molded into the position that α-GalCer al-
ready adopted when it is presented by CD1d (Li et al. 2010;
Pellicci et al. 2011; Yu et al. 2011). As a consequence, self-
antigens and microbial antigens activate type I NKT cells less
potently compared to α-GalCer. In case of iGb3, the TCR
squashes the triglycosyl headgroup over the α2 helix of
CD1d, where CD1d now interacts and binds the terminal α-
linked galactose to allow the TCR to bind with relatively high
affinity (Pellicci et al. 2011; Yu et al. 2011) (Fig. 4). This TCR
molding forces the proximal β-anomeric glucose into a posi-
tion where it mimics an α-anomeric sugar, which is the main
structural signature of potent type I NKT cell antigens.

Interestingly, type II NKT cells that recognize the β-
anomeric self-antigen sulfatide bind their antigen with strik-
ingly different chemistries (Fig. 4). Here, the TCR sits in an
almost perpendicular orientation over the A′ pocket of CD1d
and interacts with the ligand only through the TCRβ chain,
while the TCRα chain only contacts CD1d (Girardi et al.
2012; Patel et al. 2012). While CDR1β residue His29β forms
a single H bond with the sulfate moiety of sulfatide, Phe96β
of CDR3β packs against the β-anomeric galactose for hydro-
phobic interactions. As a result, the type II NKT TCR is op-
timized for binding to extended ligands, especially β-
anomeric sugars. Also, since this TCR can recognize also
the uncharged lipid β-GlcCer and the phospholipid LPC, it
appears that the contact with H29β is dispensable for T cell
activation (Maricic et al. 2014; Rhost et al. 2012), while
Phe96β and Trp97β are crucial for TCR binding (Girardi
et al. 2012). Trp97β forms crucial interactions with the A′
roof of CD1d, similar to what L99α does in the type I NKT
TCR does with the F′ roof of CD1d. In addition, CDR3α
residues Asn96α, Asn97α, and Tyr98α are also indispensable
for TCR binding, as demonstrated by single alanine scanning
mutagenesis, since these residues interact with CD1d (Girardi
et al. 2012). In summary, both types I and II NKT TCRs (from
hybridoma XV19; Cardell et al. 1995) recognize the antigen
with both CDR1 and 3 of only a single TCR chain, while
peptide/MHC-restricted T cells generally discriminate the
peptide antigens with both CDR3α and 3β (Rossjohn et al.
2015).

For CD1a, two modes of T cell recognition of antigens
exist. Both are antigen-dependent, but in the case of sulfatide,
the TCR is expected to directly contact the glycolipid
(Shamshiev et al. 2002), while permissive antigens that are
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mostly buried within CD1a allow the BK6 TCR to contact the
CD1a molecule, without directly contacting the antigen
(Birkinshaw et al. 2015; de Jong et al. 2014) (Fig. 4).
Interestingly, similar to the type II NKT TCR, the CD1a-
restricted BK6 TCR also binds in a perpendicular orientation
above the A′ pocket (Birkinshaw et al. 2015). However, since
the A′ pocket is closed at the top compared to CD1d, the TCR
does not engage the antigen directly. Instead, the TCR uses its
β chain to form H bond interactions with CD1a residues that
form the neck of the A′ pocket (Arg76 and Asn151) (Fig. 4).
Also, in analogy to both types I and II NKT cell TCRs, the
BK6 TCR also uses a hydrophobic finger (L97β) to bind to
the hydrophobic A′ roof (Leu69 and Ile157 among others) of

CD1a. TCR interaction with Leu69 appears crucial for T cell
activation (Birkinshaw et al. 2015). It is proposed that glyco-
lipids, such as sulfatide, disrupt a second salt bridge formed
between Arg76 and Glu154 (in addition to Arg73/Glu 154)
and that the Arg76 would than collide with the BK6 TCR to
prevent binding. However, ligands that bind CD1a and do not
disrupt this interaction (permissive ligands, e.g., oleic acid)
would allow the autoreactive BK6 TCR to bind to CD1a
(Birkinshaw et al. 2015). Since the normal human T cell rep-
ertoire contains a number of CD1a-autoreactive T cells
(Bourgeois et al. 2015; de Jong et al. 2014; de Lalla et al.
2011; Jarrett et al. 2016), this mode of recognizing permissive
CD1a-presented ligands could be a common theme for CD1a.

Fig. 4 TCR recognition of CD1-presented antigens. Structures of the
XV19.3 type II NKT TCR in complex with CD1d-lysosulfatide (LSF),
the type I NKT TCR bound to mCD1d-presented αGalCer (αGC), and
the BK6 TCR bound to CD1a presenting the permissive ligand
lysophosphatidyl choline (LPC) are shown at the top, with detailed
interactions shown below. Note that the BK6 TCR does not directly

contact the lipid antigen, while both types I and II NKT TCRs require
contacts with the antigen for binding. Hydrogen bonds in blue dashed
lines; lipids in yellow and cyan; TCRα chain in green; TCRβ chain in
orange; CD1 in gray. Note that theβ-anomeric glucose of iGb3 is molded
upon TCR binding into the approximate position ofα-GalCer to allow for
conserved TCR interactions (bottom middle panel)
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Recently, γδ T cell recognition of CD1d-presented lipids
has also been reported, and the binding orientation roughly
corresponds with that of the type II NKT TCR (Luoma et al.
2013; Uldrich et al. 2013). In contrast to αβ TCR recognition,
however, the structurally characterized γδ T cells are highly
autoreactive and often bind the antigen-presenting molecule
also in the absence of a defined added antigen, drawing some
parallels to autoreactive CD1a-restricted T cells. It appears
that addition of certain antigens can increase the TCR binding
affinity by providing additional TCR interactions. Since rec-
ognition of glycolipids by γδ T cells is not the focus of this
article, more information can be found here (Adams et al.
2015; Luoma et al. 2013; Uldrich et al. 2013).

Conclusion

T cells are able to sense three broad classes of antigens.
Peptides, presented by classical MHC I and MHC II are
recognized by CD8 and CD4 T cells, respectively; lipids
and lipopeptides are recognized by CD1-restricted T
cells; and microbial vitamin b metabolites are presented
by MR1 to MAIT cells (Mori et al. 2016; Rossjohn
et al. 2015). While peptides represent the largest num-
ber of antigens and are also presented by the largest
family of polymorphic antigen presenting molecules,
MR1-restricted T cells are seemingly limited in recog-
nizing a particular biosynthetic pathway that does not
exist in mammals. CD1-restricted T cells recognize an
intermediate number of different antigens that are found
across most living organisms. Lack of CD1 polymor-
phism is, in part, compensated for by the expression
of different CD1 isotypes within a given species. In
addition, certain CD1-restricted T cells, such a type I
NKT cells, are multi-specific and share properties of
innate pattern recognition receptors, as they seem to
have evolved to optimally recognize the α-anomeric
linkage (pattern) of glycosphingolipids. However, quite
strikingly, phospholipids, lysolipids, ether bonded lipids,
and even cholesterol-derived antigens are recognized by
this T cell population (Chang et al. 2011; Ito et al.
2013). Our understanding of CD1 group 1-restricted T
cell still falls short of that of NKT cells, but recent
technological advances, such as group 1 and group 2
CD1 tetramers, are now paving the way for studying
the entire family of lipid-reactive T cells in health and
disease (Birkinshaw et al. 2015; Kasmar et al. 2011; Ly
et al. 2013; Matsuda et al. 2000).
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