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Abstract The European rabbit (Oryctolagus cuniculus) natu-
ral populations within the species native region, the Iberian
Peninsula, are considered a reservoir of genetic diversity.
Indeed, the Iberia was a Pleistocene refuge to the species
and currently two subspecies are found in the peninsula
(Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus
algirus). The genes of the major histocompatibility complex
(MHC) have been substantially studied in wild populations
due to their exceptional variability, believed to be pathogen
driven. They play an important function as part of the adaptive
immune system affecting the individual fitness and population
viability. In this study, the MHC variability was assessed by
analysing the exon 2 of the DQA gene in several European
rabbit populations from Portugal, Spain and France and in
domestic breeds. Twenty-eight DQA alleles were detected,
among which 18 are described for the first time. The Iberian

rabbit populations are well differentiated from the French pop-
ulation and domestic breeds. The Iberian populations retained
the higher allelic diversity with the domestic breeds
harbouring the lowest; in contrast, the DQA nucleotide diver-
sity was higher in the French population. Signatures of posi-
tive selection were detected in four codons which are putative
peptide-binding sites and have been previously detected in
other mammals. The evolutionary relationships showed in-
stances of trans-species polymorphism. Overall, our results
suggest that the DQA in European rabbits is evolving under
selection and genetic drift
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Introduction

The effectiveness of innate and adaptive immune responses,
and hence the fitness of individuals and populations, is driven
by pathogen exposure history and therefore by the immuno-
genetic repertoire of the molecules that recognise the patho-
genic antigens. The major histocompatibility complex (MHC)
is a multigene family of receptors that encode, among others,
cell-surface class II glycoproteins that bind extracellular path-
ogenic antigens and present them to T lymphocytes to initiate
the immune response. Within the vertebrate’s genome, the
MHC complex contains some of the most polymorphic func-
tional loci being the variability of the MHC molecules corre-
lated with the diversity of T lymphocyte receptors which in
turn determine the resistance of an organism to a pathogen
(Piertney and Oliver 2005; Ujvari and Belov 2011). The
unique level of genetic polymorphism found in MHC genes,
when compared with other protein-coding genes, occurs pre-
dominantly at functional important sites, i.e., residues

The GeneBank accession numbers for the new sequences of the DQA
exon 2 determined in this study are: KR534620, KR534621, KR534622,
KR534623, KR534624, KR534625, KR534626, KR534627,
KR534628, KR534629, KR534630, KR534631, KR534632,
KR534633, KR534634, KR534635, KR534636 and KR534637.
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involved in peptide binding (peptide-binding regions, PBR)
such as those encoded by exon 2 of class II α and β chains,
(reviewed in Piertney and Oliver 2006). Several reports have
evidenced that MHC diversity is maintained by balancing
selection through pathogen-mediated selection (reviewed in
Bernatchez and Landry 2003; Piertney and Oliver 2006).
Another important feature of MHC polymorphism is its
trans-species mode of evolution (Klein et al. 1998).

The European rabbit (Oryctolagus cuniculus) (Leporidae,
Lagomorpha) originated in the Iberian Peninsula, where two
subspecies are found: Oryctolagus cuniculus algirus and
Oryctolagus cuniculus cuniculus (Cabrera 1914; Corbet
1994; Lopez-Martinez 1989). These two morphologically dif-
ferentiated subspecies evolved during the Pleistocene when
two distinct refuges in the Iberian Peninsula were occupied
by the European rabbit (Ferrand and Branco 2007). O. c.
algirus inhabits the southwestern Iberian Peninsula, while
O. c. cuniculus is present in the northeastern Iberian
Peninsula; through anthropogenic dispersal, the species ex-
panded to the Continental Europe, England, Australia, New
Zealand, North and South America and North Africa (Corbet
1994). A single origin of domestication from French wild
populations was initiated within the last 1500 years and led
to levels of genetic diversity in the domestic rabbits signifi-
cantly lower than those found in the wild populations
(Carneiro et al. 2011, 2014), reviewed in (Ferrand and
Branco 2007; Geraldes et al. 2005; Hardy et al. 1995). In the
last decades, the European rabbit populations, both in its na-
tive and non-native ranges, have suffered an alarming decline
mainly as a consequence of habitat loss and the emergence of
viral diseases (myxomatosis and rabbit haemorrhagic disease),
reviewed in (Abrantes et al. 2012, 2013b; Esteves et al. 2015;
Lopes et al. 2014a). In this context, the European rabbit pro-
vides an interesting system for the study of the dynamics of
host–pathogen interactions and their effect on the evolution of
immune genes. In addition, the European rabbit has been ex-
tensively studied as a laboratory model for human diseases in
both biomedical and fundamental research (Carneiro et al.
2011). Indeed, further to its use in the early understanding of
the genetics of antibody synthesis, it has been recently used in
the new smallpox vaccines and antiviral drugs research
(Adams et al. 2007) and in HIV vaccine research (Chen
et al. 2013). However, our current knowledge of rabbit immu-
nogenetics lags somewhat behind that of other model species,
such as the mouse, particularly at important loci such as the
MHC.

The MHC class II region of the European rabbit, also re-
ferred to as the rabbit leukocyte antigen (RLA), contains sev-
eral clusters; the main clusters are the DP, DQ and DR and
each has genes coding for anα and aβ chains (A and B genes,
respectively) which are grouped together. The exons 2 of
DQA and DQB genes have attracted most attention since they
encode for highly polymorphic peptide-binding sites. The

exon 2 of DQA has further been shown to be under positive
selection (Amills et al. 2008; Bryja et al. 2006; Cutrera and
Lacey 2007; Surridge et al. 2008). Interestingly, the rabbit
DQA has been reported to appear as a single copy (Fain
et al. 2001; LeGuern et al. 1985; Sittisombut and Knight
1986) in contrast with the majority of vertebrates that carry
multiple copies of classical MHC loci (Flajnik and Kasahara
2001). The most recent study concerning the European rabbit
MHC class II focused on the exon 2 of the DQA locus and
compared its diversity in several leporid species (Surridge
et al. 2008). To date, 19 RLA-DQA alleles have been
described.

In this study, we investigated the genetic diversity and evo-
lutionary history of the exon 2 of the DQA locus in three wild
rabbit populations from Portugal, Spain and France and from
two domestic breeds representing different genetic back-
grounds with the following aims: (1) to investigate the occur-
rence of new DQA alleles and compare their distribution
among the assessed European rabbit populations, (2) to com-
pare the genetic diversity and the occurrence of trans-species
polymorphism and (3) to investigate the action of selective
forces and recombination at the DQA locus. This is, to our
knowledge, the first population genetics study carried on rab-
bit MHC.

Materials and methods

DNA sequencing and cloning

Exon 2 DQA sequences were obtained from 40 O. cuniculus
individuals from wild populations and domestic breeds. The
wild populations were Portuguese (O. c. algirus, 10 individ-
uals); Spanish (O. c. cuniculus, 10 individuals) and French
(O. c. cuniculus, 10 individuals) and the domestic breeds were
Lièvre belge (5 individuals) and Bélier français (5 individ-
uals). Despite the low number of samples from each popula-
tion, this study can provide a first insight concerning the over-
all picture of the variation of the genetic diversity between
several European rabbit populations. Genomic DNAwas ex-
tracted using an EasySpin Tissue Kit (Citomed) according to
the manufacturer’s recommendations. DQA exon 2 (nucleo-
tide positions 82–330 of the DQA gene), encoding the peptide
binding region was amplified using the primers 5′-
T C AT C A G C T G A C C A C G T T G G a n d 5 ′ -
AGGAGGAAAGATGTTGTCCAC described in (Fain et al.
2001). Amplifications were carried out by PCR in a total vol-
ume of 10 μl containing approximately 50 ng of genomic
DNA, 0.45 μM of each primer, 2.5 U Taq DNA polymerase,
0.2 nM dNTPs and 1.5 mMMgCl2 (5 μl 2× reaction mix, Taq
PCR Master Mix Kit, QIAGEN). Cycling parameters
consisted of an initial denaturation at 95 °C for 15min, follow-
ed by 30 cycles of 94 °C for 30 s, 57 °C for 30 s and 72 °C for
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30 s and a final extension step at 60 °C for 10 min. PCR
amplicons of the expected size were purified with Exo/Sap
and sequenced in both directions with the amplification
primers and using BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems, Foster City) according
to the manufacturer’s protocol. All sequences obtained in this
work are available in the GenBank (accession numbers:
KR534620-KR534637). Sequences were analysed and
aligned with BioEdit software (Hall 1999). Haplotype infer-
ence was performed with PHASE implemented in DnaSP v.
5.10 (Librado and Rozas 2009) with the ‘recombination’mod-
el (−MR0) and 1000 iterations after 100 burn-ins. Only hap-
lotypes with p>0.90 were considered as inferred reliably. For
heterozygous individuals who failed in the haplotype recon-
struction, the PCR amplicons were cloned and sequenced. For
this, PCR products were cleaned with the NucleoSpin® Gel
and PCR Clean-up kit (Macherey-Nagel) and cloned directly
using the pGEM®-T Easy Vector Systems (Promega) follow-
ing the manufacturer’s protocols. DNA inserts from at least
three white positive colonies were PCR amplified using pUC/
M13 primers (Promega) and sequenced using the pUC/M13
forward or reverse primers in the same conditions previously
described.

Population genetic analysis

For allele identification, the obtained exon 2 DQA allelic se-
quences were aligned in BioEdit using ClustalW multiple
alignment (Thompson et al. 1994) and compared with other
leporid sequences available in GenBank. The allelic numbers
for the new rabbit sequences were assigned according to the
guidelines of (Klein et al. 1990). The distribution of allelic
frequencies globally and per population, the number of effec-
tive alleles (Ae) and the expected heterozygosity (eHet) were
estimated using GENALEX v. 6.2 (Peakall and Smouse 2012)
and the allele richness (AR) was obtained using FSTAT ver-
sion 2.9.3.2 (Goudet 1995). The level of differentiation be-
tween the four studied rabbit populations was estimated di-
rectly from the aligned sequences using a matrix of pairwise
differences between haplotypes to perform a standard
AMOVA as implemented in ARLEQUIN 3.5.2.2 (Excoffier
et al. 2005). We selected this method since, contrasting with
other FST estimators such as GST, G ST and D, it takes the
information on the evolutionary relationships between haplo-
types into account, standardisation is not required and esti-
mates are independent from the mutation rate (Meirmans
and Hedrick 2011).

Sequence-level allelic diversity values, such as the nucleo-
tide diversity (π), the number of segregating sites (S), the
average number of nucleotide differences (k) and the
Watterson’s mutation parameter (θw), were estimated using
DnaSP v. 5.10. To evaluate if the observed differences be-
tween nucleotide diversity were statistically significant, we

performed a jackknife resampling analysis. For that, we esti-
mated all the possible π values per population excluding one
individual and obtained four distributions of nucleotide diver-
sities (one per population). Then, we compared these distribu-
tions using a Mann–Whitney test as implemented in the base
package in R.

In order to perform comparative analysis of the evolution-
ary history of the exon 2 DQA in leporids, we have established
two datasets: (1) the 28 European rabbit DQA sequences,
detected in this study (Fig. 1) and (2) a 75 DQA sequences
dataset comprising several leporid species available in
GenBank (in Electronic supplementary material, ESM 1).
Since intragenic recombination has been suggested to play
an important role in determining variability at MHC loci
(Schaschl et al. 2006), we firstly looked for evidence of re-
combination in the detected DQA sequences or in the larger
dataset. Evidence for recombination was assessed by the
GARD tool which uses a genetic algorithm to search a
multiple-sequence alignment for putative recombination
break points, on the Data Monkey web server (http://www.
datamonkey.org) and by four different programs
implemented in RDP v.3.44 beta package (Martin et al.
2010): (1) RDP, (2) GENECONV, (3) Maxi Chi2 and (4)
BootScan, using the default settings. No evidences of recom-
bination were detected in the DQA sequences dataset used in
the phylogenetic analyses. The software MEGA6 (Tamura
et al. 2013) was used to construct the neighbour-joining (NJ)
trees either of the detected rabbit DQA sequences (28 se-
quences) or the larger leporid DQA dataset (75 sequences).
The NJ tree of the larger dataset was rooted using human and
sheep DQA sequences (GenBank accession numbers
NM002122 and AY312383, respectively) and the length of
the sequences was restricted to 243 bp (complete exon 2,
249 bp) which corresponds to the common part of the includ-
ed sequences. The best nucleotide and amino acid substitution
models were chosen according to the Bayesian Information
Criterion and used to compute evolutionary distances by the
Kimura 2-parameter method through 1000 bootstrap repli-
cates. MEGA6 was also used to compute pairwise and overall
mean nucleotide and amino acid distances. Phylogenetic rela-
tionships among the European rabbit exon 2 DQA haplotypes
found in our study were further examined by performing a
network analysis using NETWORK 4.6.1.3 (Fluxus
Technology Ltd; www.fluxus-engineering.com) by a
median-joining (MJ) algorithm using the default parameters.

Signatures of positive selection are inferred if the ratio of
non-synonymous (dN) over synonymous (dS) substitutions is
statistically higher than the value observed under neutrality
(dN/dS=ω=1). To detect such signatures in individual co-
dons, two ML frameworks were used: the HyPhy package
implemented in the Data Monkey Web Server and
CODEML implemented in PAML version (Delport et al.
2010; Yang 1997). In the Data Monkey Web Server, the
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best-fitting nucleotide substitution model was first determined
using the automated tool available. Sequences of the exon 2
DQA gene were analysed under six available models, single
likelihood ancestor counting (SLAC), fixed-effect likelihood
(FEL), internal fixed-effect likelihood (IFEL), mixed effects
model evolution (MEME), random effect likelihood (REL)
and fast unconstrained Bayesian approximation (Fubar).
Details of the models can be found in (Kosakovsky Pond
and Frost 2005; Murrell et al. 2012, 2013). In CODEML,
the alignments were fitted to NSsites models where no codons
could have a dN/dS ratio >1 (M0,M1a andM7) and tomodels
that could incorporate a class of sites with a dN/dS >1 (M2a,
M3 and M8). Details of the models can be found in (Yang
et al. 2000, 2005). For each pair of nested models used in this
study, the log-likelihood values were compared using a like-
lihood ratio test. We comparedmodel M0 toM3 to test for dN/
dS heterogeneity and both M1a to M2a and M7 to M8 to test
for the presence of positive selection. Adaptive evolution was
inferred if the model allowing positive selection estimates a
value of ω greater than 1 and twice the difference in the log-
likelihood values between nested models is greater than the
chi-square critical value for the appropriate degrees of free-
dom. The comparison between models M0 and M3 was per-
formed using four degrees of freedom, and in the comparisons
between M1–M2 and M7–M8, two degrees of freedom were
used. Finally, the Bayes empirical Bayes approach (BEB,
(Yang et al. 2005)) was used to identify codons with ω>1.
Sites with posterior probabilities >0.95 were considered likely

to have evolved under adaptive evolution. Furthermore, to
detect population-level evidence of current selection, we cal-
culated Tajima’s D (Tajima 1989) and Fu & Li D* (Fu and Li
1993) using DnaSP v.5.10; these are tests based on allele
frequency spectrum of nucleotide polymorphisms and details
can be found in (Fu and Li 1993; Tajima 1989).

Results

Variation in MHC-DQA exon 2

A total of 28 exon 2 DQA alleles were detected among the
40 O. cuniculus individuals analysed, of which 18 repre-
sent new leporid DQA alleles (Table 1). These 18 novel
DQA sequences coded for proteins differing by one or
more amino acids and their authenticity was verified by
repeated PCR and cloning. Nine sequences attributed to
the Orcu DQA*14 haplotype had a C/T synonymous sub-
stitution in position 246 and were assigned as Orcu
DQA*14 haplotype. Similarly, six sequences had a synon-
ymous T/C substitution in position 243 of the Orcu
DQA*18 allele and were considered also as Orcu
DQA*18. No insertions or deletions were detected. The
amino acid alignments of the 28 detected exon 2 rabbit
DQA sequences are displayed in Fig. 1 along with the
assigned haplotype number; those of the larger leporid
dataset are presented in ESM 1. Since 19 DQA alleles have

Assigned 30   40 50 60 70 80       90   100 110
Haplotype .|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| Acession No Population

*   *       *  *
Ϯ Ϯ Ϯ ϮϮ Ϯ Ϯ Ϯ ϮϮ ϮϮ ϮϮ Ϯ

1 Orcu DQA*18 DHVGAYGMELYQYYGPSGQYTHEFDGDEQFYVDLDKKETVWRLPEFSKFTSFDPQGGLREIATAKYNLNNLMKRTNSTAAVN EU686523 DB, FR
2‡ Orcu DQA*20 .......INVC.S..........................I................A.GN....R...DL.I.DS....... KR534620 DB
3 Orcu DQA*07 .......INVC.S..........................I.......R........A.GN....R...DL.I.DS....... EU686527 DB, FR, PT
4 Orcu DQA*13 ....S..INV..S...............E............S..M.RE........A.GN...I....DIMI..S....... EU686525 DB, SP
5 Orcu DQA*01 ....S..INV..S..........................I...S...R.A......A.GN........DIII..S.......  EU427436 DB, PT
6 Orcu DQA*14 ....S..INV..S......F........E............S..M.RE........A.GN...T....DIMI..S....... EU686532 DB, SP, PT
7‡ Orcu DQA*21 .......INV..S.....................N......S..M.RE.R......A.GN........DI.I..S.......  KR534621 FR 
8 Orcu DQA*03 ....S..INV..S......F...................I.......R.A......A.GN...I....DIII..S....... EU686529 FR
9 Orcu DQA*11 .......INV..S..........................I.......R........A.GN........DIMI..S....... EU686530 FR, SP

10 Orcu DQA*17 ....S..INV..S...............E............S..M.RE.R......A.GN......T.DIII..S....... EU686528 FR, SP
11‡ Orcu DQA*22 .......INF..S.DL..................G....I.........A......A..N..SGRLT.DVM...S....... KR534622 FR
12‡ Orcu DQA*23 ....S..INF..S.DL.................................A.............T..................  KR534623 FR, PT
13‡ Orcu DQA*24 ....S..INV..S..........................I.......R........A.GN........DI.I..S....... KR534624 SP
14‡ Orcu DQA*25 .......INV..S..........................I.......R.L......A.GN........DI.I..S.......  KR534625 SP 
15‡ Orcu DQA*26 ....S..INV..S......F........E............S..M.RE.R......A.GN........DIMI..S....... KR534626 SP
16‡ Orcu DQA*27 ....S..INV..S...............E............S..M.RE........A.GN...T....DL.I.HS....... KR534627 SP
17 Orcu DQA*02 ....S..INV..S..........................I.......R.A......A.GN...E....DIII..S....... EU686533 SP
18‡ Orcu DQA*28 ....S..INV..S..........................I...S...R.A......A.GN........DI.I.CS....... KR534628 SP
19‡ Orcu DQA*29 ....S..INV..S..........................I...S.....R....H....D........DI.I.CS....... KR534629 SP
20‡   Orcu DQA*30 ....S..INV..S..........................I.......R........A.GN...I....DI.I..S....... KR534630 PT
21‡  Orcu DQA*31 ....S..INV..S...............E............S..M.RE.R......A.GN...I....DIMI..S....... KR534631 PT 
22‡ Orcu DQA*32 .......INV..S......F...................I.......R.L......A.GN...I....DIVI..S....... KR534632 PT
23‡  Orcu DQA*33 ....S..INV..S......F...................I.......R.L......A.GN...I....DIVI..S....... KR534633 PT
24‡  Orcu DQA*34 ....S..INV..S...............E.....N......S..M.RE.R......A.GN........DI.I..S....... KR534634 PT
25‡  Orcu DQA*35 ....S..INV..S...............E.....N......S..M.RE.R......A.GN........DIII..S....... KR534635 PT
26‡  Orcu DQA*36 ....S..INV..S...............E............S..M.RE.R......A.GN...T....DI.I..S....... KR534636 PT
27‡  Orcu DQA*37 ....S..INVC.S..........................I.......R........A.GN....R...DL.I.HS....... KR534637 PT
28‡  Orcu DQA*16 ....S..INV..S...............E............S..M.R..R......A.GN...I....DIMI..S....... EU686535 PT

Fig. 1 Amino acid alignment of the 28 detected exon 2 DQA European
rabbit Orcu (Oryctolagus cuniculus) sequences. Amino acids are
numbered according to the aligned protein translation given for the
human and rabbit DQA gene in Ensembl (www.ensembl.org). The
nomenclature for rabbit alleles follows that of Surridge et al. (2008).
denotes putative peptide binding sites (PBS) based on the HLA-DQA

(Gouy de Bellocq et al. 2009). * denotes amino acid positions under
positive selection with posterior probability of 99 % as identified by the
BEB method in CODEML implemented in PAML (Yang et al. 2005).
‡ denotes the new DQA haplotypes detected in this study. DB, FR, SP
and PT refer to the allelic sequences found in domestic breeds and wild
French, Spanish and Portuguese rabbits populations, respectively
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already been described, the total number of European rab-
bit alleles increased to 37 being the new DQA alleles
named from Orcu DQA*20 to Orcu DQA*37. Pairwise
distances between the different obtained nucleotide se-
quences ranged from 0.004 to 0.313 with a mean of
0.093. Amino acid distances ranged from 0.012 to 0.507
with a mean of 0.179.

Allelic diversity in the four groups of European rabbit,
differentiation and population genetics

The number of alleles per population ranged from five in the
domestic breeds to 13 in the Portuguese population and their
frequencies varied among populations (Table 1). In the do-
mestic breeds, we detected five DQA haplotypes; a new allele
was found (Orcu DQA*20) and the most frequent allele was
Orcu DQA*07 (0.600; Table 1). In the French wild popula-
tion, we detected nine DQA haplotypes, of which three were
new:OrcuDQA*21 toOrcuDQA*23, andOrcuDQA*11was
the most frequent allele (0.500, Table 1). In the Spanish pop-
ulation, we detected 11 DQA haplotypes with 3 new haplo-
types, Orcu DQA*24 to Orcu DQA*26, and with no occur-
rence of a dominant haplotype. In the Portuguese population,
we found 13 DQA haplotypes, of which 9 of them were new:
Orcu DQA*23 and fromOrcu DQA*30 toOrcu DQA*37, and
with no occurrence of a dominant haplotype.

Table 2 shows the allelic diversity indexes and DNA se-
quence diversity values concerning the DQA locus of the four
analysed populations. The Spanish and Portuguese popula-
tions have the higher number of DQA haplotypes, higher
number of effective alleles and higher allelic richness, provid-
ing for the higher heterozygosity in these groups. In contrast,
the DNA sequence diversities, S, π, k and θWare higher in the
French rabbits and domestic breeds. Accordingly, the mean
nucleotide and amino acid distances are also higher in these
groups. For domestic rabbits, pairwise distances between
DNA sequences ranged from 0.008 to 0.144 with a mean of
0.082. For the wild populations, the pairwise genetic distances
ranged from 0.026 to 0.199 with a mean of 0.108 in the French
wild rabbits; from 0.009 to 0.155 with a mean of 0.069 in the
Spanish wild rabbits and from 0.004 to 0.223 with a mean of
0.081 in the Portuguese wild rabbits (Table 2). Differences in
nucleotide diversity between domestic breeds and French pop-
ulations were marginally significant (p=0.059), whereas the
remaining population pairs showed significant differences in
π (p<10−4). Concerning the genetic differentiation among the
four European rabbit groups, the calculated FST parameters
clearly indicate the existence of significant population struc-
ture. Only the Portuguese and Spanish populations did not
show any statistically significant genetic differentiation
(Table 3). The estimates of Tajima’s D and Fu and Li’s D*
were not statistically significant.

Recombination and selection analysis

No evidence of recombination occurring at the DQA se-
quences obtained in this work was detected either using
GARD (in Data Monkey Web Server) or any method in
RDP (Martin et al. 2010). Signatures of positive selection
were detected on the leporid DQA sequences. Four codons

Table 1 RLA-DQA1 alleles detected in this study, GenBank accession
numbers and its frequency in rabbits from the domestic breeds, French,
Spanish and Portuguese rabbit populations

Group Allele name Accession number Frequency

Domestic breeds Orcu DQA*07 EU686527.1 0.600

Orcu DQA*18 EU686523.1 0.250

Orcu DQA*13 EU686525.1 0.050

Orcu DQA*01 EU427436.1 0.050

Orcu DQA*20‡ KR534620 0.050

France Orcu DQA*11 EU686530.1 0.500

Orcu DQA*07 EU686527.1 0.100

Orcu DQA*17 EU686528.1 0.100

Orcu DQA*18 EU686523.1 0.050

Orcu DQA*14 EU686532.1 0.050

Orcu DQA*03 EU686529.1 0.050

Orcu DQA*21‡ KR534621 0.050

Orcu DQA*22‡ KR534622 0.050

Orcu DQA*23‡ KR534623 0.050

Spain Orcu DQA*14 EU686532.1 0.200

Orcu DQA*17 EU686528.1 0.150

Orcu DQA*13 EU686525.1 0.050

Orcu DQA*02 EU686533.1 0.050

Orcu DQA*24‡ KR534624 0.200

Orcu DQA*25‡ KR534625 0.100

Orcu DQA*26‡ KR534626 0.100

Orcu DQA*27‡ KR534627 0.050

Orcu DQA*28‡ KR534628 0.050

Orcu DQA*29‡ KR534629 0.050

Portugal Orcu_DQA*14 EU686532.1 0.200

Orcu DQA*07 EU686527.1 0.100

Orcu DQA*01 EU427436.1 0.050

Orcu DQA*16 EU686535.1 0.050

Orcu DQA*30‡ KR534630 0.100

Orcu DQA*31‡ KR534631 0.100

Orcu DQA*34‡ KR534632 0.100

Orcu DQA*23‡ KR534633 0.050

Orcu DQA*32‡ KR534634 0.050

Orcu DQA*33‡ KR534635 0.050

Orcu DQA*35‡ KR534636 0.050

Orcu DQA*36‡ KR534637 0.050

Orcu DQA*37‡ KR534638 0.050

‡Denotes the new DQA haplotypes detected in this study
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were considered to be significant positively selected codons:
amino acid sites 33, 78, 92 and 99 (Tables 4 and 5).

Phylogenetic relationships among alleles and trans-species
polymorphism

The phylogenetic relationships among the 28 O. cuniculus
DQA alleles identified in this study (Fig. 1) and the larger
dataset of leporid DQA alleles (ESM 1) were assessed by
the construction of NJ trees. The NJ tree of the 28 rabbit
DQA sequences show that the alleles fall into three clades
(referred to as G1, G2 and G3) with bootstrap support >95 %
(Fig. 2). The clades G1 and G2 contain DQA haplotypes pres-
ent in all the analysed European rabbit populations: G1 con-
tains 11 DQA haplotypes, mostly of Portuguese and Spanish
origin (each 40.7 %); G2 contains 15 haplotypes, of which the
majority are DQA alleles from the French population and
domestic breeds (30.7 and 35.9 %, respectively); G3 contains
the previously described Orcu DQA*18 and the newly

described Orcu DQA*23 alleles which are present in the
French and Portuguese rabbit populations and in the domestic
breeds. In accordance with the NJ tree, the network also
showed three clusters, each one containing the DQA haplo-
types of the corresponding clade in the NJ tree (G1, G2 and G3,
Fig. ESM 2). For the larger dataset (75 DQA alleles) (ESM 1),
the NJ tree also shows three clades (designated C1, C2 and C3),
in which each clade presents a mixture of alleles from several
leporid species, supporting the trans-species polymorphism
origin of MHC DQA alleles in leporids (Fig. 3).

Discussion

In this study, we investigated the genetic diversity and evolu-
tionary history at the exon 2 of the rabbit DQA locus within
and among three European wild rabbit populations from
Portugal, Spain and France and two domestic breeds.
Among the 28 DQA detected alleles, 18 were new, taking
the total number of DQA alleles described for this species to
37. These results show a substantial level of allelic polymor-
phism for the DQA locus, in line with that described for other
small mammals such as the Australian bush rats (Seddon and
Baverstock 1999) and water voles (Bryja et al. 2006).

Portuguese and Spanish European rabbit populations ex-
hibited the greatest levels of DQA polymorphism since higher
allelic diversity and heterozygosity levels were detected.
Decreasing levels of polymorphism are observed towards
the French population and domestic breeds. This is in agree-
ment with the history of this species which originated from the
Iberian Peninsula. Indeed, a pattern of higher diversity in this
region compared to the rest of Europe and to domestic breeds
is also observed for proteins, mitochondrial DNA,
microsatellites and other nuclear markers (Abrantes et al.

Table 2 Genetic diversity values for the RLA-DQA locus in the different rabbit groups

Genetic diversity parameters Nucleotide distancea Amino acid distanceb Tajima’s D Fu and Li D*

Population n H AE AR eHet S π k θW

Domestic 10 5 2.33 5.00 0.570 42 0.0764 18.80 0.0820 0.082 (0.013) 0.172 (0.033) −0.508 −0.508
French 10 9 3.51 9.00 0.715 54 0.0816 20.08 0.0867 0.108 (0.012) 0.241 (0.050) −0.301 −0.067
Spain 10 11 8.70 10.0 0.865 30 0.0479 11.78 0.0458 0.069 (0.018) 0.145 (0.048) 0.212 0.051

Portugal 10 13 10.0 13.0 0.900 43 0.0586 14.82 0.0602 0.081 (0.018) 0.163 (0.044) −0.124 −0.198

n sample size,H number of haplotypes, Ae number of effective alleles, AR allelic richness, eHet expected heterozygosity, S number of segregating sites, π
nucleotide diversity, k average number of nucleotide differences, θw Watterson’s mutation parameter
a The number of nucleotide substitutions per site between the sequences were obtained by a bootstrap procedure (1000 replicates) being the standard error
estimates shown in brackets. Analyses were conducted using the Kimura 2-parameter model (K2) for the domestic rabbits, the K2 with a gamma
distribution shape parameter (G) for the French and Portuguese rabbits and the Jukes-Cantor model with G for the Spanish rabbits
b The number of amino acid substitutions per site between the sequences were obtained by a bootstrap procedure (2500 replicates) being the standard
error estimates shown in brackets. Analyses were conducted using the Jones-Taylor-Thornton matrix-based model (JTT, with G for the French, Spanish
and Portuguese wild populations)
a,bAnalysis involved 5, 9, 11 and 13 sequences for the domestic breeds and French, Spanish and Portuguese wild populations, respectively

Table 3 Subpopulation
differentiation analysis FST

Domestic/French 0.148**

Domestic/Spanish 0.346***

Domestic/Portuguese 0.302**

French/Spanish 0.126**

French/Portuguese 0.122**

Spanish/Portuguese −0.0124
All 0.191***

Pairwise Fst values within population and
overall fixation index

Asterisks denote significance tested with
9,999 permutations (*p<0.05, **p<0.01,
***p<0.001)
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2013a; Branco et al. 2000; Carneiro et al. 2011; Esteves et al.
2004; Geraldes et al. 2006; Pinheiro et al. 2015; Queney et al.
2001; Surridge et al. 1999; van der Loo et al. 1999). The
reduced genetic diversity in non-Iberian populations has been
partially assigned to the founder effect that occurred when the
species expanded its range north after the Pleistocene glacia-
tions (Hewitt 2000; Taberlet et al. 1998). However, several
studies indicate that the diversity of the DQA locus may not
agree with this phylogeographic scenario (Koutsogiannouli
et al. 2009; Stamatis et al. 2009), showing that theMHC genes
combine high rates of mutation and recombination with a
complex evolutionary mode that extends beyond historical
demography and biogeography. In fact, the phylogeny of the
28 exon 2 Orcu DQA alleles showed a poor phylogeographic
signal, a characteristic feature of some MHC loci (Klein et al.
1998), since alleles that belonged to a specific population did
not group together (Fig. 2, ESM 2). Nevertheless, some DQA
haplotypes can be considered representatives of each group,
e.g., H1 and H3 are mainly represented in the domestic breeds
and H9 in the French population, while others are shared be-
tween populations, e.g., H6 and H10 (Fig. 2, ESM2). Both the
NJ tree and the MJ network retrieved three clusters containing
the same DQA haplotypes (G1, G2 and G3, Fig. 2, ESM 2). In
the MJ network, the considerable number of alternative more
parsimonious connections found among the DQA alleles,
mainly those in the core (ESM 2), show the intricate relation-
ships within this genealogy. Moreover, the long branches ex-
hibited by some haplotypes tips suggest that they are divergent
alleles with high genetic distances (e.g., H1 and H11, ESM 2).
No evidence of intragenic recombination occurring at the
DQA sequences obtained in our study was detected.
Moreover, although there are indications that intergenic

recombination has contributed to the evolution of MHC class
II loci in Canidae (concerning the DRB1 and DQB alleles)
(Seddon and Ellegren 2002), we did not find any reports in the
literature regarding this occurrence in DQA alleles.

Although the Iberian European rabbit populations have a
higher allelic diversity, there was a greater sequence diversity
in wild rabbits from France and domestic breeds, shown either
in the higher values of sequence diversity parameters (number
of segregating sites, nucleotide diversity, average number of
nucleotide differences andWatterson’s mutation parameter) or
in the higher genetic distances (Table 2). The higher sequence
diversity parameters exhibited in the domestic breeds and
French population might be attributed to a compensatory
mechanism to maintain a higher amount of diversity in the
presence of a lower number of alleles to preserve the efficien-
cy of pathogen recognition. Indeed, to explain the widespread
occurrence of the d11 and e14 allotypes (localised in the hinge
and in the second exon of the heavy chain constant region of
rabbit IgG) (Appella et al. 1971; Esteves et al. 2002, 2006;
Hamers and Hamers-Casterman 1965; Mage 1981; Pinheiro
et al. 2014b; Prahl et al. 1969) only outside the Iberian
Peninsula, van der Loo (1993) hypothesised “compensatory
overdominance”’ as a mechanism to compensate the lack of
diversity shown by the non-Iberian populations at the a and b
loci (IGHV and IGKC, respectively) when compared to the
Iberian Peninsula populations (Esteves et al. 2004; Pinheiro
et al. 2011; van der Loo 1993; van der Loo et al. 1999).

Signatures of selection were observed in our sample of 28
detected rabbit DQA alleles. Indeed, four codons were detect-
ed as under positive selection (Tables 4 and 5). Three of the
four codons under positive selection (78, 92 and 99) are locat-
ed in putative peptide-binding sites, based on the HLA-DQA

Table 4 Phylogenetic tests of
selection acting on codons of
DQA exon 2 in the 28 detected
allelic sequences of the European
rabbit using the HyPhy package
implemented in the Data Monkey
Web Server

DQA gene SLAC FEL IFEL REL MEME FUBAR Total number
of sites

Positive
selection

78, 92 33,78, 92 78, 92 33, 38, 44, 48,
72, 76, 78,
88, 92, 94,
98, 99, 102

33, 78,
92, 99

33, 78, 92,
98, 99

4 (33, 78, 92, 99)

Negative
selection

56 56, 61 56 – – 56 1 (56)

Table 5 Phylogenetic tests of positive selection acting on sites of the European rabbit DQA exon 2 using likelihood ratio statistics (2ΔlnL) for
comparisons of different models of codon evolution and the Bayes empirical Bayes (BEB) approach

Population Models compared 2ΔlnL Significancea Positively selected sitesb

All detected individuals (28seq) M0 (1 ratio) vs M3 (discrete) 75.43 p<0.001 Not allowed

M1a (nearly neutral) vs M2a (selection) 48.19 p<0.001 33, 78, 92, 99

M7 (beta) vs M8 (beta and ω) 47.89 p<0.001 33, 78, 92, 99

a In M0 vs M3 model, 4 degrees of freedom were used; in M1a vs M2a and in M7 vs M8 models, 2 degrees of freedom were used
b Sites inferred to be under selection with posterior probabilities ≥95 %; numbers in italics with posterior probabilities ≥99 %
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(Gouy de Bellocq et al. 2009). These four codons under pos-
itive selection were also predicted in previous studies
concerning leporids (Surridge et al. 2008), voles (Bryja et al.
2006) and wolves (Arbanasic et al. 2013; Galaverni et al.
2013) emphasising their important role in the interaction with
antigens. This probably reflects an adaptation pressure to an-
tigenic peptides resulting in the variability of some sites (PBR)
and the neutrality of others in maintaining the integrity of the
protein’s structure and function (TCR-binding regions). Given
the central role of MHC in the vertebrate immune system, it is
generally accepted that pathogen-driven balancing selection is
the most likely mechanism that explains the high level of
MHC polymorphism.

In agreement to results previously reported for lagomorphs
(Gouy de Bellocq et al. 2009; Koutsogiannouli et al. 2009;
Surridge et al. 2008), our results also show that rabbits and
hares share similar allelic sequences exhibiting trans-species
polymorphism (Fig. 3) This is aMHC feature already reported
in several mammals groups, such as primates (Otting et al.
2002), rodents (Cutrera and Lacey 2007; Edwards et al.
1997; Seddon and Baverstock 1999), canids (Seddon and
Ellegren 2002) and ungulates (Hedrick et al. 2000), that may
be an evidence of the need for a specific immune response to
common or similar pathogens. Rabbit haemorrhagic disease
virus (RHDV) and European brown hare syndrome virus are
examples of similar pathogens that affect rabbits and hares,
respectively. Although being mostly species-specific
(Abrantes et al. 2012), RHDV infections in several Lepus

species have been recently reported (Camarda et al. 2014;
Lopes et al. 2014b; Puggioni et al. 2013). Although MHC
class II genes are classically related with the presentation of
antigenic peptides released from extracellular pathogens, a
recent study suggests a link between class II MHC and viral
infections (Deter et al. 2008). Moreover, there are other evi-
dences in the leporids immune system that support this idea:
trans-species polymorphismwas also observed for two immu-
noglobulin genes, the IGKC and IGHV (Bouton and van der
Loo 1997; Esteves et al. 2005; Pinheiro et al. 2011, 2013,
2014a).

Overall, our results can be interpreted in the light of both
neutral–selective forces, although it is rather difficult to assess
their relative contributions. On the one part, either the reduced
allelic diversity in the French population and in domestic
breeds or the high genetic differentiation between groups is
in line with a strong genetic drift. On the other part, our results
evidence the occurrence of historical balancing selection (dN/
dS>1) favouring amino acid changes mainly in the PBR sites.
The maintenance of shared DQA haplotypes between rabbits
and hares supports the idea of a strong evolutionary/selective
pressure likely providing an appropriate regulated immune
response which is also in line with the occurrence of historical
balancing selection. On the relative contribution of neutral and
adaptive forces shaping MHC variation, there are several re-
ports that support genetic drift as playing a prominent role,
e.g., (Eimes et al. 2011; Luo et al. 2012; Strand et al. 2012;
Zeisset and Beebee 2014), mainly in small and fragmented
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 Orcu DQA*37 (PT,H27)
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 Orcu DQA*11 (FR,SP,H9)
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76

0.02
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Fig. 2 Neighbour-joining tree of
the 28 European rabbit DQA
exon 2 sequences detected in this
study with branch support
provided by 1,000 bootstraps
replicates. The evolutionary
distances were computed using
the Kimura 2-parameter method
with a gamma distribution (shape
parameter=0.17). DB, FR, SP
and PT refer to the allelic
sequences found in domestic
breeds and wild French, Spanish
and Portuguese rabbits
populations, respectively. H1-
H28 corresponds to the assigned
haplotypes (see Fig. 1). G1, G2

and G3 refer to the three assigned
clades with bootstrap support
>95 %
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populations in contrast with the paradigm that MHC polymor-
phism is mainly maintained by pathogen-mediated balancing
selection, reviewed in (Bernatchez and Landry 2003; Piertney
and Oliver 2005; Ujvari and Belov 2011).

In summary, we characterised the DQA locus in wild and
domestic European rabbits and identified 18 new alleles that
further support the high diversity at this locus. This diversity is
higher in the Iberian wild populations and decreases in the
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Fig. 3 Neighbour-joining tree of exon 2 DQA sequences of the 75
sequences leporid dataset with branch support provided by 1,000
bootstrap replicates using human (HLA) and sheep (OLA) DQA
sequences (accession numbers NM002122 and AY312383) as
outgroups. The evolutionary distances were computed using the Kimura

2-parameter method with a gamma distribution (shape parameter=0.50).
Instances of trans-species and trans-generic polymorphism are indicated
by shadow and striped bars, respectively. Filled circles DQA alleles
found in this study. Species abbreviations are given in ESM 1 caption
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French wild population; the lowest diversity is found in the
domestic breeds. Recombination, regarded as an important
evolutionary mechanism for the generation of diversity, does
not seem to be responsible for the detected DQA high allelic
diversity in the European rabbit. Given the central role of
MHC in the vertebrate immune system, it is likely that
balancing selection may be pathogen driven. Nonetheless,
neutral forces may have a role in shaping DQA allelic diver-
sity. Adaptive immune diversity at the domestic breeds and
French population might be maintained by higher levels of
genetic variation in the presence of a lower number of alleles.
Instances of trans-species evolution were observed. Future
studies are warranted to investigate the link between the
European rabbit immunogenetic diversity and pathogen com-
munity structure to better understand the mechanisms under-
lying adaptation.
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