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Abstract Mycobacterium tuberculosis (MTB) is the causa-
tive agent of pulmonary tuberculosis (PTB), a major health
problem that leads to 1.5 million deaths annually. Host genetic
factors play a significant role in disease resistance/
susceptibility by altering immunity against MTB. Toll-like
receptor (TLR) sensors such as TLR2, TLR4, TLR8, and
TLR9 are known to play a pivotal role in PTB via modulating
sensor expression and/or effector responses. Single-nucleotide
polymorphism (SNP) rs187084 (T-1486C) of the TLR9

promoter is associated with various autoimmune disorders
and cancers. A recent bioinformatic analysis predicted that
the T-1486C SNP is involved in PTB, although its potential
role is unclear. To investigate the role of T-1486C in PTB, we
stimulated PBMCs with the H37Rv whole cell lysate. We
found that the presence of the “C” allele increases the tran-
scriptional activity of the TLR9, which in turn induces high
levels of Interferon gamma-induced protein 10 (IP-10), a
biomarker for PTB. However, the expression of protective
cytokines such as IFNγ and TNFαwas observed significantly
less with “C” allele in comparison to “T” allele. We further
selected three different tribe populations showing differential
susceptibility to PTB and performed genotypic analyses for
the TLR9 promoter. We found a significantly lower minor
allele frequency (MAF) of T-1486C in the Baiga tribe, where-
in fewer PTB cases were reported, than that in the Gond and
Korku tribes. Collectively, these data suggest that the minor
“C” allele at rs187084 locus may be associated with suscep-
tibility to PTB, which may explain the relatively lower PTB
rates observed in Baiga tribe members.
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Introduction

Pulmonary tuberculosis (PTB) is a major worldwide health
problem, with approximately one third of the global popula-
tion (~2 billion people) reported to be infected with the acid-
fast bacillus Mycobacterium tuberculosis (MTB). Although
two thirds of the infected individuals are latently infected
without any active disease, the remaining one third develop
active tuberculosis infections, which are responsible for 1.5
million deaths globally per year (Davila et al. 2008; Ottenhoff
and Kaufmann 2012; Zumla et al. 2013). Studies suggest that
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socioeconomic, environmental, immunogenetic, and nutri-
tional factors are responsible for the development of PTB
(Bhargava et al. 2013; Boccia et al. 2011; Pothlichet and
Quintana-Murci 2013; Schmidt 2008).

Innate immunity acts as the first line of defense against
infectious agents via innate immune cells expressing pattern
recognition receptors (PRRs). PRRs also play an important
role in the development of microbe-specific adaptive immu-
nity. Among the various families of PRRs, Toll-like receptors
(TLRs) are essential sensors that detect a wide variety of
molecular species in various cellular compartments (Harding
and Boom 2010; Kleinnijenhuis et al. 2011). Human TLR3,
TLR7, TLR8, and TLR9 (NM_017442) are primarily
expressed in the endolysosomes of phagocytic immune
cells where MTB resides and replicates during infection.
Human TLR8 and TLR9 are known to activate innate
immune responses against MTB and have been shown to
play important roles in determining infection outcomes
(Bafica et al. 2005; Davila et al. 2008) of TLR8, namely
C-129G, A-2167G, and A-1145G, were found to be associat-
ed with PTB in Indonesian and Russian population, suggest-
ing that SNPs in regulatory gene regions are critical in deter-
mining host susceptibility to PTB (Davila et al. 2008). Anoth-
er endolysosomal localized TLRs, TLR3 and TLR7 sense
RNA of RNA viruses, are not involved in limiting MTB
infection (Kumar and Bot 2013).

The majority of immune cells such as plasmacytoid den-
dritic cells, monocytes, macrophages, neutrophils, natural
killer (NK) cells, and B cells express TLR9 (Guillerey et al.
2012). Genetic studies with TLR9-deficient mice revealed the
functional importance of TLR9 is non-redundant in PTB, after
MTB infection via regulation of Th1 responses (Bafica et al.
2005). TLR9 recruits a sole adaptor, MyD88, which activates
a cascade of downstream signaling events for production of
inflammatory cytokines and type I interferons (IFNs) through
transcription factors NF-κB and IRF, respectively. Type I IFNs
further induce type I IFN-inducible chemokines such as in-
ducible protein 10 (IP-10) and RANTES.

The PTB occurrence at different rates among different
populations indicates that host genetic factors play crucial
roles in differential susceptibility. The SNPs in the regulatory
element/promoter region of the TLR9may play a direct role in
PTB by affecting TLR9 expression levels. Several SNPs have
been identified in the TLR9 promoter region, among all,
rs187084 (T-1486C) and rs5743836 (T-1237C) SNPs, have
been shown to be associated with various autoimmune disor-
ders and cancers (Pothlichet and Quintana-Murci 2013; Tao
et al. 2007); however, its role in PTB is currently unknown.
Although, it has been predicted by using bio-informatics
approach that rs187084 may be involved in tuberculosis.

In the present study, we performed functional analysis of
the rs187084 C allele and found that rs187084 C allele ele-
vates TLR9 expression, as well as production of IP-10 (a

biomarker for active PTB). However, the C allele of
rs187084 was associated with decreased levels of IFNγ (a
protective cytokine) in peripheral blood mononuclear cells
following stimulation with H37Rv whole cell lysate (wcl).
To further confirm the findings, we performed genotypic
analysis of the TLR9 promoter region in the Baiga tribe,
which can be relatively resistant to PTB compared to the Gond
and Korku tribes (Yadav et al. 2010). We found that the
rs187084 C allele is present at low frequency (18 %) among
Baigas compared to global, Gond, and Korku tribes (40–
42 %). Collectively, these results provide an evidence that
rs187084 may be associated with PTB susceptibility.

Material and methods

Study populations

Three hundred individuals from three tribes, Baiga, Gond, and
Korku (100 from each) of Central India belonging to Mandla
and Betul districts of Madhya Pradesh (M.P.), were included
in this study. Baiga, Gond, and Korku have a population size
of 248,949; 534,988 and 66,781, respectively, in M.P. All
experiments using blood samples were performed in accor-
dance with relevant guidelines and regulation after approval
from Institutional Ethical Committee (IEC), IISER Bhopal.
Informed consent was also obtained from all the individuals/
subjects.

Polymerase chain reaction and sequencing

Blood samples from the individuals were spotted onWhatman
FTA Classic Cards (GE healthcare) and processed for poly-
merase chain reaction (PCR) as per manufacturer’s instruc-
tions. The region containing the SNP (rs187084) was ampli-
fied using Phusion Blood Direct PCR Kit (Thermo scientific)
as per manufacturer’s protocol using primers (forward: GCCT
GCCATGATACCACCCA and reverse: GCAGAGAGCA
GGGCAGGACAG-3′). The sequencing of PCR product
was performed using 3730 DNA Analyzer Applied
Biosystems sequencer by using the same forward primer used
in the PCR amplification. The SNP was then analyzed by
using Sequencing Analysis v5.4.

Population frequencies

TLR9 SNP genotype and allele frequency were calculated
manually using formulae given below:

Genotype Frequency

¼ Number of individuals having that particular genotypeð Þ
.

Total Number of individualsð Þ
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For example, f (PP)=A/D, f (pp)=B/D, f (Pp)=C/D, where
A, B, C, and D represents number of individuals homozygous

for genotype PP, pp, heterozygous for genotype Pp, and total
number of individuals, respectively.

Allele Frequency

¼ 2 � Number of individuals having genotype homozygous for that particular alleleð Þ þ Number of individuals having heterozygous genotypeð Þf g
.

2 � Total Number of individualsð Þ

For example, P= f (PP)+1/2f (Pp), p=f (pp) +1/2f (Pp),
where f (PP), f (pp), and f (Pp) represent frequency of homo-
zygous genotype PP, pp, and heterozygous Pp, respectively.

Hardy–Weinberg Equilibrium (HWE) consistency was de-
termined by comparing observed number of different geno-
types with those expected under the HWE by using formulae
given below: Exp (PP)=P2n, Exp (Pp)=2pqn, and Exp (pp)=
p2n, where P and p are two alleles. Pearson’s chi-square:
χ2=∑ (O-E) 2/E, where O and E represent observed and
expected number of genotypes, respectively.

The probability value (p) was calculated by using 2×2
contingency chi- square test.

Cell culture

Peripheral blood mononuclear cells (PBMCs) from the blood
of healthy tribe donors were isolated using Histopaque-1077
(Sigma) as per manufacturer’s protocol. PBMCs were cultured
in RPMI 1640 medium supplemented with 10 % fetal bovine
serum after counting and testing viability using trypan blue
exclusion method. Cells were plated at a density of 1×106/
200 μl in 96-well plates and stimulated with H37Rv wcl and
incubated at 37 °C, 5 % CO2. Cells were harvested at 24 and
48 h following infection for RT-PCR and ELISA, respectively.

SYBR Green quantitative reverse transcription PCR

Total RNAwas isolated using Trizol RNA isolation protocol.
Two hundred nanograms of total RNAwas used for comple-
mentary (c)DNA synthesis using iScriptTM cDNA Synthesis
Kit (Bio-Rad) which uses random hexamer primers. One
microliter of the cDNA was used for the RT-PCR reaction.
All RT-PCR reactions were performed using SYBR Green
PCR Master Mix in StepOnePlusTM Real-time PCR System
(Applied Biosystems) and the cycling conditions were com-
posed of initial denaturation step at 95 °C for 10 min followed
by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The
experiments were carried out in triplicate for each gene. The
housekeeping gene 28S was used as an internal control for
normalization. The relative quantification in gene expression
was determined using the 2−ΔΔCT method.

Flow cytometry

PBMCs were harvested and fixed using 1 % PFA for 15 min at
RT. Fixation was blocked using 2 % fetal calf serum–phosphate-
buffered saline (FCS-PBS), and then, cells were stored in 2 %
FCS-PBS until further use. For intracellular staining of TLR9,
cells were permeabilized using 0.1 % Triton-X 100 for 15 min at
RT, washed twice with PBS, and incubated with antimouse
TLR9 antibody (IMGENEX; IMG-305A) at dilution of 1 μg/
106 cells for 30 min. Cells were incubated with antimouse
secondary antibody Alexa-Fluor-488 (A21202) for 30 min at
RT, washed twice with PBS and reconstituted in 500 μl of PBS,
and analyzed with BD FACS Aria III. PBMCs were gated
against FITC channel and analyzed using FACS Diva software.

ELISA

ELISA for TNFα, IFNγ, and IP-10 was performed according
to manufacturer’s instructions using human TNFα ELISA set
(25833), human IFNγ ELISA set (555142), and human IP-10
ELISA set (550926), respectively. Protocol procedures were
carried out using BD OptEIA reagent set B (550534) in 96-
well microtiter plate from BD (351172).

Statistical analysis

All the data was analyzed by GraphPad Prism 5 (USA). Two-
tailed Student’s unpaired t test was used to determine statisti-
cal significance (p<0.05). All experiments were performed at
least in triplicate.

Results

The “C” allele enhances transcription and translation of TLR9
after stimulation with M. tuberculosis

To investigate the functional consequences of “C” or “T” SNP
variants in the TLR9 promoter at -1486 position during the
development of PTB, the peripheral blood mononuclear cells
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(PBMCs) from individuals with TT, TC, and CC genotypes
were isolated and stimulated with heat-killed H37Rv wcl. To
this end, we used flow cytometry to determine when TLR9
protein expression in PBMCs was maximal after stimulation
with H37Rv wcl. We found that TLR9 expression in PBMCs
reached a maximum at 48 h post-H37Rv wcl exposure
(Figure S1). Subsequently, we tested TLR9 expression in
PBMCs from individuals with different genotypes (TT=6;
TC=5; and CC=3) and found that the CC and TT genotypes
were associated with the highest and lowest expression levels,
respectively (Fig. 1a). The TC genotype showed intermediate
TLR9 expression at 48 h (Fig. 1a). Next, we examined TLR9
mRNA expression associated with TT and TC genotypes by
using quantitative reverse-transcriptase PCR (qPCR). TLR9
expression was markedly higher (p=0.01), in individuals with
TC vs. TT genotypes (Fig. 1b). To confirm the differential
TLR9 expression observed with different genotypes, PBMCs
from individuals with TT and TC genotypes were stimulated
with H37Rv wcl for 48 h and visualized by confocal micros-
copy. Images were analyzed using ImageJ software and
showed that the fluorescence intensity in TT genotypes was
significantly reduced (p=0.002) compared to TC genotypes

(Fig. 1c). It is noteworthy that the numbers of individuals with
the CC genotype are very low in the populations studied;
therefore, we could not include CC genotype samples in the
qPCR or confocal microscopy experiments. Collectively, the-
se observations demonstrate that the “C” allele results in
increased transcriptional activity of TLR9 and TLR9 expres-
sions is related to genotypes in the order TT<TC<CC, which
may relate to PTB susceptibility/resistance.

The “C” allele induces significantly higher expression
of the PTB biomarker, IP-10

To investigate whether increased TLR9 expression is as-
sociated with PTB, we examined expression of the type I
IFN-inducible protein IP-10 (CXCL10), which is a well-
known biomarker for PTB (Aabye et al. 2013; Hong et al.
2014; Ruhwald et al. 2012). We stimulated PBMCs with
H37Rv wcl from individuals with TT (n=5) and TC (n=
5) genotypes, and the expression of IP-10 transcripts was
quantified by qPCR. We observed that IP-10 transcript
levels were significantly higher with the TC genotype,
relative to TT individuals (p=0.0043; Fig. 2a). We further
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Fig 1 Minor Allele enhances the
transcriptional activity of TLR9. a
Human PBMCs with TT, TC, and
CC genotypes were stimulated
with MTB H37Rv wcl for 48 h
and stained for TLR9. The TLR9-
positive cells were measured by
flow cytometer. The results are
representative of five individuals
with TT and TC genotypes. The
TLR9 expression for CC is
representative of two CC
genotype individuals. b Human
PBMCs (peripheral blood
mononucleated cells) with
genotypes TT and TC were
stimulated with or without
H37Rv wcl. The expression of
TLR9 was measured by
quantitative PCR (qPCR) and
normalized to the expression of
28S. Un-stimulated cells were
considered to be 1. The results are
representative of three individuals
for each genotype. *p=0.01,
calculated by t test. cCells used in
flow cytometer were processed
for confocal microscopy, and
relative fold (RF) for TLR9
expression was calculated. Un-
stimulated cells were considered
to be 1. **p=0.002, calculated by
t test
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confirmed the observation by measuring the production of
IP-10 by ELISA following stimulation of PBMCs from
different genotypes with H37Rv wcl. We observed that
IP-10 production was significantly higher in TC, relative
to TT individuals (p = 0.0290) , consis tent wi th

observations relating to IP-10 mRNA expression
(Fig. 2b). Collectively, these results indicate that the num-
ber of C alleles in the TLR9 promoter at position -1486 is
directly linked to TLR9 expression and IP-10 production
and may influence the development of PTB.
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Fig 3 Increase of IFNγ and
TNFα, a protective cytokine
against PTB in “TT,” compared to
“TC” individuals. PBMCs from a
TT (n=5) and TC (n=6), b TT
(n=2) and TC (n=6)/CC (n=2), c
TT (n=4) and TC (n=4), and d
TT (n=3), TC (n=3)/CC (n=1)
genotype individuals were
stimulated with MTB H37Rv wcl
or left un-stimulated. After 12 h, a
IFNγ and c TNFαmRNA for and
b IFNγ and d TNFα in culture
supernatant were quantified by
qPCR and ELISA, respectively.
The p=0.0027 (a), p=0.0017 (b),
p=0.0115 (c), and p=0.0084 (d)
were calculated by t test
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The “C” allele of rs187084 induces significantly low
expression of IFNγ and TNFα, protective cytokines
against PTB

The IFNγ, and the proinflammatory cytokine TNFα play a
pivotal role in MTB clearance. These cytokines activate alve-
olar macrophages and promote efficient clearance of MTB in
phagolysosome to overcome infection. Therefore, we stimu-
lated PBMCs from individuals with the different genotypes
with H37Rv wcl and examined expression of IFNγ and tumor
necrosis factor (TNFα) mRNAs by qPCR. We observed sig-
nificantly higher IFNγ and TNFα mRNA expressions in
individuals with the TT genotype than in those with TC
genotype (p=0.0027, p=0.0115; Fig. 3a, c). Production of
IFNγ and TNFα in culture supernatants were also significant-
ly higher (p=0.0017, p=0.0084) in TT genotype than in TC or
CC genotype individuals as tested by ELISA (Fig. 3b, d). It is
noteworthy that the TC and CC genotypes showed the same
levels of IFNγ and TNFα in ELISA. This might be due to the
decisive role of even a single T to C allele substitution. Thus,
our results demonstrate that the “C” allele which enhances
TLR9 expression and TLR9-dependent responses and partic-
ularly type I IFN-dependent responses that is IP-10 induces
less production of IFNγ and TNFα and promotes PTB
development.

Frequency of the minor “C” allele of rs187084 is significantly
less in the comparatively PTB-resistant tribe

To test the hypothesis that SNPs in the promoter region of
TLR9 may affect PTB susceptibility, we PCR-amplified and
sequenced a region harboring rs187084 SNP by using samples
from 100 individuals from the Baiga, Gond, and Korku tribes
of Central India. The population sizes of the indicated tribes
are approximately 534,988, 248,949, and 66,781, respective-
ly. Sequencing was performed using primers that flanked base
coordinates 52,260,689–52,261,463. Genotype and allele fre-
quencies were calculated using the sequencing data. The
minor allele frequencies (MAFs) of rs187084 were found to
be 0.18, 0.41, and 0.42 for the Baiga, Gond, and Korku tribes,
respectively (Fig. 4). The tribes were found in Hardy–Wein-
berg Equilibrium (Table S1). We found that the frequency of
“C” allele of rs187084 for the Baiga tribe members (18 %)
was significantly lower than those for the global, Gond, and
Korku tribes (40–42 %; p<0.001 in each case).

Collectively, this observation suggests that rs187084 may
be linked to the low prevalence of PTB in Baiga tribe (146/
100,000) relative to the non-tribal Indian populations (186/
100,000). If such a causal association exists, it is indicative of
the fact that individuals with the “C” allele are more suscep-
tible to PTB than individuals with “T” allele of rs187084,
which may be explained by differential induction of transcrip-
tional activity of TLR9 via the creation or disruption of

transcription factor-binding sites in its promoter region
(Carvalho et al. 2011).

Discussion

TLR9 plays a pivotal role in PTB via modulating sensor
expression and/or effector responses. Genetic variation in
TLR9 gene can modulate the PTB susceptibility/resistance.
Sequencing of the promoter region of TLR9 revealed the
higher frequency of TT genotype in Baiga tribe demonstrating
that relative frequency of the “C” allele is low in compara-
tively resistant Baiga tribe compared to frequencies observed
in the phylogenetically similar Gond and Korku. We showed
that the expression of TLR9 is inducible in PBMCs after
stimulation with H37Rv wcl and those individuals having
the “C” allele show increased transcriptional activity of
TLR9. Increase in TLR9 expression results in enhancement
of the type I IFN-inducible gene IP-10, which is a biomarker
for active PTB. Recently, it has been shown that type I IFNs,
which play an indispensable role against viral disease, down-
regulate the production of protective cytokines such as TNFα
and type II IFN (IFNγ) and IL-1β during mycobacterial
infection (Novikov et al. 2011; Teles et al. 2013). TNFα is
produced by several types of innate immune cells such as
monocytes, macrophages, and dendritic cells (Lin et al.
2007), whereas IFNγ is produced by both innate and adaptive
immune cells such as monocytes, NK cells, neutrophils, T
lymphocytes, and B lymphocytes (Bao et al. 2014;
Matsumura et al. 2012). These cytokines play pivotal roles
in macrophage activation during the elimination of intracellu-
lar MTB (Harding and Boom 2010). Baiga tribe possesses a
low frequency of the “C” allele, which results in reduced
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Fig. 4 Minor allele frequency at -1486 (rs187084) of TLR9 promoter is
significantly less in Baiga compared to other tribes and global frequency.
Comparison of MAF (minor allele frequency) between Baiga, Gond,
Korku tribes and global (http://www.ncbi.nlm.nih.gov/snp/). Asterisks
represent p<0.001, calculated by chi-square test
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expression of TLR9 and IP-10 individuals; however, these
individuals induced high IFNγ and TNFα expressions, which
inhibit the intracellular replication of MTB and development
of PTB. In contrast, Gond and Korku tribes and global pop-
ulations show relatively high prevalence of PTB as well as
high frequencies of the “C” allele. In addition to TLR9, there
are likely to be several other genetic factors that may influence
the development of PTB; many of which have already been
described in previous studies and literature. Also, several
other unknown factors, which need to be further investigated
to understand MTB susceptibility, develop better diagnostic
tools and improved molecular strategies for controlling MTB
infection. Thus, one concludes that TLR9 T-1486C polymor-
phism is one of the several factors which may decide the
degree of susceptibility of an individual towards tuberculosis.

Additionally, our study also suggests that therapeutic inter-
vention of PTB can be achieved through inhibition of the
expression of type I IFN and the type I IFN-inducible gene
IP-10, which enhances the production IFNγ. These pharma-
cological blockers are not only important for PTB intervention
but may also be helpful in the treatment of drug-resistantMTB
or other intracellular bacterial infections.
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