
ORIGINAL PAPER

MHCcluster, a method for functional clustering
of MHC molecules

Martin Thomsen & Claus Lundegaard & Søren Buus &

Ole Lund & Morten Nielsen

Received: 20 March 2013 /Accepted: 4 June 2013 /Published online: 18 June 2013
# Springer-Verlag Berlin Heidelberg 2013

Abstract The identification of peptides binding to major
histocompatibility complexes (MHC) is a critical step in
the understanding of T cell immune responses. The human
MHC genomic region (HLA) is extremely polymorphic
comprising several thousand alleles, many encoding a dis-
tinct molecule. The potentially unique specificities remain
experimentally uncharacterized for the vast majority of HLA
molecules. Likewise, for nonhuman species, only a minor
fraction of the known MHC molecules have been character-
ized. Here, we describe a tool, MHCcluster, to functionally
cluster MHC molecules based on their predicted binding
specificity. The method has a flexible web interface that
allows the user to include any MHC of interest in the anal-
ysis. The output consists of a static heat map and graphical
tree-based visualizations of the functional relationship be-
tween MHC variants and a dynamic TreeViewer interface
where both the functional relationship and the individual
binding specificities of MHC molecules are visualized. We
demonstrate that conventional sequence-based clustering
will fail to identify the functional relationship between mol-
ecules, when applied to MHC system, and only through the
use of the predicted binding specificity can a correct cluster-
ing be found. Clustering of prevalent HLA-A and HLA-B

alleles using MHCcluster confirms the presence of 12 major
specificity groups (supertypes) some however with highly
divergent specificities. Importantly, some HLA molecules
are shown not to fit any supertype classification. Also, we
use MHCcluster to show that chimpanzee MHC class I
molecules have a reduced functional diversity compared to
that of HLA class I molecules. MHCcluster is available at
www.cbs.dtu.dk/services/MHCcluster-2.0.

Keywords MHC . HLA . Binding motif . Functional
clustering . MHC specificity . Supertypes

Introduction

Major histocompatibility complex (MHC) molecules play a
central role in generating specific T cell-mediated immune
responses. T cells scrutinize small peptide fragments, also
called epitopes, presented in a complex with MHCs on the
surface of most cells in the host. Cytotoxic T cells kill cells that
present peptides of foreign or abnormal origin in a complex
with MHC class I molecules. T helper cells, on the other hand,
orchestrate the immune response by stimulating other immune
cells and are stimulated by antigen-presenting cells that display
peptides in complex withMHC class II molecules. The binding
of peptides to MHCmolecules is hence a prerequisite for T cell
immunogenicity. Identifying which peptides will be presented
in complex with a given MHC molecule is therefore of pivotal
importance for our understanding of cellular immunity.

In general, MHC molecules are highly specific, binding
only a minor fraction of the set of possible peptides (Yewdell
and Bennink 1999; Rao et al. 2009). Moreover, the genomic
region encoding MHC molecules is extremely polymorphic
comprising several thousand alleles, many encoding a distinct
molecule, making the peptide-binding repertoire of each indi-
vidual unique. The most recent IMGT/human leukocyte anti-
gen (HLA) database (Robinson andMarsh 2007) contains close
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to 5,000 HLA (the human version of MHC) class I protein
sequences. This immense polymorphism of MHC molecules
makes it a very costly endeavor to experimentally characterize
the binding specificity of each molecule. Despite the significant
experimental progress in high-throughput screening technolo-
gies (Harndahl et al. 2009, 2011), less that 80 HLA class I
molecules have to this day been characterized with peptide
binding data, allowing an accurate characterization of their
binding motif (data taken from the IEDB; Vita et al.
2010). For nonhuman species including life-stock animals, the
situation is even worse. Here, only a minor fraction of the
knownMHCmolecules have been functionally characterized.

Due to the high selectivity of the MHC molecules, major
efforts have been dedicated to characterize their binding
specificity and several in silico methods have been devel-
oped allowing prediction of the binding affinity of peptides
to MHC molecules (reviewed in Lundegaard et al. (2010)
and Nielsen et al. (2010b)). These state-of-the-art methods
make it possible to predict not only the MHC binding reper-
toire of any MHC molecule of interest (Hoof et al. 2009;
Nielsen et al. 2010a; Karosiene et al. 2011), but also to
characterize the subtle difference in the MHC specificities
imposed by the allelic difference (Erup Larsen et al. 2011).

Not all MHC molecules are equally different in term of
function, and several approaches have been described
aiming to perform clustering of MHC molecules based on
different measures of (functional) similarity (Sette and
Sidney 1999; Doytchinova et al. 2004; Lund et al. 2004;
Hertz and Yanover 2007). In 1999, Sette and Sidney pro-
posed the HLA class I supertype concept, proposing that
allelic variants within a supertype would share a large func-
tional overlap, and nine such supertypes could cover the
HLA class I functional space (Sette and Sidney 1999).
Using data of known HLA class I ligands, Lund et al. refined
this in 2004, and suggested the presence of three additional
functional clusters (Lund et al. 2004). A limiting factor for
the HLA clustering approach suggested by Lund et al. is the
need for known ligands for the MHC molecules interest. In
the original NetMHCpan publication (Nielsen et al. 2007),
we therefore suggested the use of correlations between pre-
dicted binding affinities to perform functional clustering of
HLA molecules and demonstrated that this approach could
accurately reproduce the earlier proposed 12 HLA
supertypes (and similar results have been shown for MHC
class II; Nielsen et al. 2008). The functional clustering pro-
posed by NetMHCpan demonstrated that many HLA mole-
cules are characterized by specificities that are poorly charac-
terized by the common 12 supertypes. This underlines an
important shortcoming of the supertype concept.

Here, we describe a freely available web server,MHCcluster,
implementing the functional clustering procedure described
above to functionally cluster MHC molecules based on their
predicted binding specificity. The method can be applied

for both MHC classes I and II molecules for any MHC
molecule with a known protein sequence covered by the
NetMHCpan and NetMHCIIpan prediction methods (that
is any MHC class I molecule and any HLA-DR class II
molecule). Themethod has a flexible web interface that allows
the user to include any MHC of interest in the analysis. The
output from MHCcluster consists of a static heat map and
graphical tree-based visualizations of the functional relation-
ship between MHC variants and a dynamic TreeViewer inter-
face where both the functional relationship and the individual
binding specificities of MHC molecules are visualized.

We illustrate the power of theMHCclustermethod in three
distinct settings. First, we compare conventional sequence-
based clustering to the functional clustering of MHCcluster
and demonstrate situations where a sequence-based cluster-
ing, in contrast to MHCcluster, fails to identify the correct
functional relationship between alleles. Next, we apply
MHCcluster to the HLA-A and HLA.B. system investigating
to what extent the common 12 HLA supertypes give an
accurate representation of the functional diversity. Lastly, we
use the method to confirm earlier findings (van Deutekom
et al. 2011) demonstrating that chimpanzee MHC class I
molecules have a reduced functional diversity compared to
that of HLA class I molecules.

Materials and methods

Method

The MHCcluster server allows the user to select a set of
MHC alleles of interest including the option of uploading a
set of full-length MHC I protein sequences and the server
returns an unrooted tree and a heat map visualizing the
functional similarities between the MHC molecules. The
vehicles underlying the MHCcluster server are the
NetMHCpan (version 2.7) and NetMHCIIpan (version 2.1)
prediction methods. For each selected MHC allele, the
MHCcluster method predicts its binding to a set of
predefined natural peptides. Next, the similarity between
any two MHC molecules is estimated from the correlation
between the predictions of the union of the top 10 % stron-
gest binding peptides for each allele (the threshold value can
be altered by the user). This similarity is 1 if the two mole-
cules have a perfect binding specificity overlap and −1 if the
two molecules share no specificity overlap. Given this simi-
larity, a distance between two molecules is defined as 1–
similarity. The distance matrix is converted to an UPGMA
(unweighted pair group method with arithmetic mean distance)
tree. To estimate the significance of the MHC distance tree, a
large set of distance trees is generated using the bootstrap
method and a final tree is summarized in the form of a “greedy”
consensus tree with corresponding branch bootstrap values.
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Sequence logos

As part of the new MHCcluster, a sequence logo for each
allele is generated using the Seq2Logo service (Thomsen and
Nielsen 2012). The logos are created from the top 1 % stron-
gest binding peptides. For MHCII alleles, the logo is
constructed from the predicted 9mer binding cores. The se-
quences used in the logos are clustered using the Hobohm 1
algorithm (Hobohm et al. 1992) using a similarity threshold of
63 % to remove redundancy, and pseudo counts are applied
with a weight on prior of 200 (Altschul et al. 1997).

Prevalent HLA molecules

Prevalent HLA-A, B, and Cmolecules were identified for the
European population from the dbMHC (NCBI Resource
Coordinators 2013) using an allele frequency threshold of
0.5 %. The set of alleles defined as “HLA Prevalent and

Characterized” consists of the HLA molecules characterized
with more than 50 peptide binding data points and more
than 0.5 % worldwide prevalence (as defined by the
Allele Frequency Net database (Middleton et al. 2003),
for populations characterized with more than 500 fully
typed samples).

The MHCcluster server

The submission interface to theMHCcluster server is shown
in Fig. 1. Here, the users can specify whether they wish to
analyze MHC class I or MHC class II molecules, subse-
quently select the set of molecules to compare (including
the option to analyze novel MHC molecules), define how
many bootstrap samples to use, the number of peptides to
include in the functional correlation analysis, and the thresh-
old used to select peptide from the correlation analysis. To

Fig. 1 Interface to the MHCcluster server

Immunogenetics (2013) 65:655–665 657



aid the selection of predefined sets of alleles, a “Select All”
option is included.

The output from the server consists of a static heat map
and graphical tree-based visualizations of the functional
relationship between MHC variants and a dynamic
TreeViewer interface where both the functional relationship
and the individual binding specificities of MHC molecules
are visualized. An output example of the static output from
the server is shown in Fig. 2. Several result files are available
for download including the distance file used to construct the
heat map and tree, a zip file with the sequence logos of the
predicted binding motif for each MHC molecule analyzed,
and a file containing the estimated accuracy of the predicted
sequence motifs. This accuracy is estimated from the dis-
tance to the nearest MHC molecules included in the training
of the peptide binding prediction method (for details, see
Hoof et al. (2009)). A value greater than 0.90 indicates high
accuracy and values down to 0.70 are considered accurate
predictions (Karosiene et al. 2011). Since MHCcluster pro-
vides prediction of binding motifs for the MHC molecules
analyzed, it is important to take the accuracy values into
account when interpreting the results.

By clicking on the tree or following the link below the
tree, the user is taken to the dynamic TreeViewer interface
(see Fig. 3). Here, the user can customize the tree of the
functional relationship of the selected MHC molecules in
different ways including the option of adding visualization of

the individual binding specificities in terms of sequence
logos.

The allele liston the right side of the tree lists all the alleles
on the tree and presents the user with several functions.
Firstly, it allows the user to locate the allele on the tree by
showing the motif next to the node on the tree when the
mouse cursor hovers over the allele name. Secondly, it al-
lows the user to permanently add the motifs of selected
alleles by selecting them on the list. These can be removed
again by double clicking on either the motif or the allele, and
thirdly, it shows the user which alleles have their motifs
shown on the tree. The estimated accuracy value of the
predicted sequence motif, a number between 0 and 1, is also
provided next to the allele names.

The comparison bar below the tree shows the motifs of the
selected alleles side by side to make it fast and easy for the
user to compare the motifs of the alleles. The alleles can be
selected in two ways either by selecting alleles on the allele
list or by right clicking on the alleles on the tree and choosing
a slot in the pop-up menu.

The tree (see Fig. 4) is generated through a simple algo-
rithm, which computes the tree from a Newick file where the
branches are spatially distributed according to their relative
sizes. After the tree has been computed, it is rescaled to fit the
predefined box. The tree is drawn as sticks, and in the
terminal of all branches a circle is drawn to represent the
node. The corresponding label (if any) is drawn in extension

Fig. 2 The static output from the MHCcluster server. The figure displays the functional clustering of 12 HLA-A class I molecules. The left panel
shows the unrooted tree visualization and the right panel shows the corresponding heat map
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hereof. On the branches with bootstrap values, the value is
drawn in a centered position above the branch.

User interaction

After everything is drawn, a few user interaction events are
added to the tree elements. The nodes and labels receive a
hover event, which shows a motif for the corresponding
MHC allele next to the cursor, and they also receive a
right-click event, which activates a menu where the user
can add the corresponding MHC allele motif to a slot in the
comparison bar. In addition, the labels and the permanent
motifs (motifs from the selected alleles in the allele list) can
now be dragged to any location in the box by left clicking,
holding and dragging the element with the cursor. When the

user left clicks on a motif or a label, the motif/label is brought
to the front of the screen. This feature makes it possible for
the user to arrange the overlapping images and labels as
preferred. Finally, a copy of TreeViewer, including the tree
file and corresponding sequence logos, can be downloaded as
a zip file allowing the user to work and generate figures
locally.

Results

To illustrate the important difference between sequence and
function-based clustering, we generate a clustering of the
HLA-A*68:01 and HLA-A*68:02 molecules with a set of
HLA-A and HLA-B alleles representing the 12 supertypes
using the conventional phylogenetic approach based on the

Fig. 3 The dynamic TreeViewer interface. Upper left panel The setting
panel of the TreeViewer presents the user with several options to
customize the tree. At the top are listed the settings, which directly
impact the form and size of the tree. Next, follows the labels and
bootstrap settings to adjust the size, color and font of the text in the
tree. Thirdly, the branch, node, and image appearance settings are given.
Another option is the buttons to update the tree with your changes.
Lastly, the show and hide buttons allows to hide bootstrap values,

nodes, and labels on the tree. To pick a new color, click on the colored
field, then choose the preferred color by moving the mouse cursor over
the color palette and then left click to select the color. Hit enter to accept.
Upper right panel The allele list of the TreeViewer, where the alleles
HLA-A*03:01 and HLA-A*11:01 have been selected on the list, and its
motif is shown next to the node. The lower panel The comparison bar
shows the motifs of the selected alleles side by side to make it fast and
easy for the user to compare the motifs of the alleles
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full-length protein sequence of the different HLA molecules.
The result of this clustering is shown in Fig. 5.

One thing that is important to note in this figure is the very
close distance between the HLA-A*68:01 and HLA-A*68:02
molecules. On the sequence level, these two molecules share
close to 99 % similarity differing by only five amino acid
substitutions. However, when we look at the binding specific-
ity as represented by the logos, it is apparent that these two
molecules are very different in terms of function. The HLA-
A*68:01 molecule has an A3 supertype specificity with a
preference for basic amino acids at the C terminal whereas
HLA-A*68:02 has a mixed A2/A26 specificity matching
A26 at the N terminal and A2 at the C terminal.

If we repeat the analysis using the functional clustering of
the MHCcluster method, we obtain the result displayed in

Fig. 6. Using functional clustering, the functional difference
between the HLA-A*68:01 and HLA-A*68:02 molecules
becomes apparent. In the functional tree, HLA-A*68:01 is
shown to have an A3 like specificity whereas HLA-A*68:02
has a mixed A2 and A26 specificity (see heat map in right
panel of Fig. 6).

We next apply the functional clustering to a set of 42
prevalent HLA-A and HLA-B molecules. From the results
of this analysis (Fig. 7), it is clear that the clustering to a very
high degree reproduces the 12 HLA supertypes. However, it
is also apparent from the figure that some HLA-A and B
molecules are not well characterized by the specificities of
the common 12 supertypes. In particular, is it clear that the
A3, B7, and B44 “clusters” consist of HLA molecules with
highly divergent specificities, and that some molecules like
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Fig. 4 The tree is a visualization of the Newick file generated during theMHCcluster computations. This tree has been recolored and the motifs of all
the alleles have been arranged around the tree to provide the viewer with quick information of the different binding motifs
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HLA-A*30:01, HLA-A*29:02, and HLA-B*38:01 are poorly
characterized by the specificities of the 12 supertypes. Note,
that these molecules all have a predicted accuracy value of
1.00, indicating that the molecules are characterized by the
peptide binding data. The calculated binding motifs thus with
a high likelihood give a correct representation of the specificity
of the molecules in question.

Having demonstrated that the automated MHCcluster
method is capable of producing a functional clustering of
the HLA-A and HLA-B molecules that fits the picture of 12
distinct specificity groups, we apply the method to illustrate
how the method in a highly intuitive manner can be used to
address questions related to comparative functiomics of MHC
genes. This we do by comparing the human HLA-A, -B and

Fig. 5 Phylogenetic clustering using full-length protein sequences of HLA-A*68:01, HLA-A*68:02 and alleles representing the common 12 HLA
supertypes. The clustering was made using ClustalX (Larkin, Blackshields et al. 2007) and the tree was visualized using the TreeViewer ofMHCcluster

Fig. 6 Functional clustering of HLA-A*68:01, HLA-A*68:02, and
alleles representing the 12 HLA supertypes usingMHCcluster. The left
panel shows the tree representation of the clustering and the right panel
shows the heat map representation. The tree was visualized using the

advanced tree-viewer ofMHCcluster. Logos are included for the HLA-
A*68:01, HLA-A*68:02, as well as for the A2, A3, and A24 supertype
representatives. HLA-A*68:01 and HLA-A*68:02 are highlighted in
the heat map with arrows
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chimpanzee Patr-A, -B molecules investigating whether a loss
in functional diversity could be observed in the Patr-A loci as
suggested by the selective sweep theory (de Groot et al. 2008;
van Deutekom et al. 2011). The result of this analysis is given
in Fig. 8.

The figure shows a specificity-tree of the 42 prevalent
HLA-A and B alleles included in Fig. 7 combined with a set
of 31 Patr-A alleles (including the additional chimpanzee A-
like MHC class I molecule, Patr-AL) and 47 Patr-B alleles.
Note, that more than 92 % of the Patr (and all of the HLA)
motifs are predicted with an accuracy value greater than 0.7.
The figure supports the notion (de Groot et al. 2008; van
Deutekom et al. 2011) that chimpanzees have a reduced
MHC class I binding specificity repertoire compared to
humans. In particular, the figure suggests that the Patr-A loci
has a reduced specificity repertoire compared to the HLA-A
loci, and that chimpanzees seem to lack specificities
matching the human HLA-A26, and to some extent the
HLA-A2 supertypes. We can quantify this observation cal-
culating the pairwise functional distances between molecules
within the HLA-A, HLA-B, Patr-A, and Patr-B loci (see
Fig. 9). Doing this clearly reveals the great loss of specificity
diversity of the Patr-A locus compared to that of the human
HLA-A locus. Close to 95 % of the total number of large
(>0.8) intralocus functional distances stem from the HLA-A
loci, the last 5 % stem from the Patr-A, and none stem from
the HLA-B and Patr-B loci. Likewise, 79 % of the pair-wise
HLA-A distances are greater than 0.6, whereas less than

45 % of the pairwise Patr-A distances are greater than 0.6.
In terms of statistics, these differences are highly significant
(p<0.001, comparison of ratio). With regards to the two B
loci, only minor differences are observed. A few HLA-B
specificities seem to be missing from the Patr-B loci
(HLA-B08, HLA-B27, and HLA-B39), but in terms of
functional diversity they are to some degree compensated
for by a set of novel specificities unique to Patr (rep-
resented by for instance Patr-B0601, Patr-B1701, and
Patr-B2202).

Discussion and conclusion

Functional clustering of MHC molecules is a highly chal-
lenging task due to the vast polymorphism of the MHC
genomic region and the very delicate relationship between
subtle amino acid substitutions and dramatic variations in
binding specificity. Here, we have illustrated how conven-
tional sequence-based methods due to this subtle relationship
in many cases will fail to produce a correct clustering and
functional annotation for MHC molecules.

Given this observation, we argue that clustering and func-
tional annotation for MHC molecules must be made based on
information reflecting the peptide binding preference for each
molecule and propose theMHCclustermethod as an effective
visual tool to compare functional similarities between large
sets of MHC molecules.
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Fig. 7 Funcional clustering of 42 prevalent HLA-A and B molecules
using the MHCcluster method. The left panel shows the tree represen-
tation of the clustering and the right panel shows the heat map repre-
sentation. The tree was visualized using the tree viewer ofMHCcluster.

Logos are included for alleles representing the 12 common supertypes.
The location of the two outliers alleles mentioned in the text is
highlighted with arrows in the heat map

662 Immunogenetics (2013) 65:655–665



Fig. 8 Funcional clustering for prevalent HLA, Patr A and B molecules
using theMHCclustermethod. Patr-A alleles are shown in orange, HLA-
A alleles in red, Patr-B alleles in light blue, and HLA-B alleles in blue.
Logos for the 12 HLA-A and B supertypes are included, as well as logos

for the three unique Patr specificities (logos in shaded gray). The con-
sensus tree generated by MHCcluster was visualized using SplitsTree
(Huson and Bryant 2006) and logos were added manually

Fig. 9 Histogram of the
pairwise HLA-A HLA-B,
Patr-A and Patr-B distances.
The histograms were calculated
from the 120 MHC molecules
included in Fig. 8. P(d) gives the
fraction of distances found
within a given distance d.
Note that the distances are
normalized so that the distance
between any two MHC
molecules falls between 0 and 1
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The MHCcluster method estimates the functional relation-
ship between two molecules from the overlap in prediction
binding specificity, and returns a heat map and graphical tree-
based visualizations of the functional relationship between
MHC variants. Besides these conventional representations of
the functional map of the MHC molecules of interest, the
MHCclustermethod provides a dynamic TreeViewer interface
where both the functional relationship and the individual
binding specificities of MHC molecules are visualized (the
later in terms of sequence logos). This TreeViewer is a unique
feature of the MHCcluster server that allows in a highly
intuitive manner for functional interpretations of the MHC
map proposed by the MHCcluster method. Earlier methods
have been proposed for functional clustering of MHC mole-
cules (Sette and Sidney 1999; Doytchinova et al. 2004; Lund
et al. 2004; Hertz and Yanover 2007), and for the browsing of
predicted binding motifs of MHC molecules (Rapin et al.
2008; Rapin et al. 2010). But to the best of our knowledge,
no method has combined these two approaches allowing for
the direct functional mapping of MHC molecules in terms of
both clustering and visualization of binding motifs.

Using the MHCcluster method, we confirm the existence
of the 12 HLA supertypes earlier proposed to characterize
the specificity space of HLA-A and HLA-B molecules.
However, the analysis also clearly revealed that not all
HLA molecules fit equally well into a supertype classifica-
tion scheme, and that some supertype “clusters” consist of
molecules with highly divergent specificities. Finally, mov-
ing to nonhuman primates, we compare the MHC class I
specificity space of human and chimpanzee using the
MHCcluster method and demonstrate that the Patr A locus
has significantly reduced functional diversity compared to
the human HLA-A locus manifested by the almost complete
loss of HLA-A2 and HLA-A26 supertype specificities.

In this work, we have focused on demonstrating the use of
the MHCcluster method to analyze functional diversities of
MHC class I molecules. The method is equally well suited
for making functional analysis and clustering for MHC class
II molecules, and the server does include an option to ana-
lyze MHC class II molecules. However, as no pan-specific
prediction algorithm currently exists to allow for the predic-
tion of peptide binding to any MHC class II molecule, the
analysis is limited to the HLA-DR loci molecules covered by
the NetMHCIIpan method (Nielsen et al. 2008, 2010a).

In conclusion, we have demonstrated that theMHCcluster
method can be used as an effective visual tool to compare
functional similarities between MHC molecules. The method
is highly flexible and allows the user to analyze any MHC
variant of interest.MHCcluster is available at www.cbs.dtu.dk/
services/MHCcluster-2.0.

Even though we here have limited the applications of the
MHCcluster method to the comparison of functional simi-
larities between large sets of MHC molecule, many other

types of important questions that can be addressed by the
method. Some could be as a guide to help researchers inter-
pret immunological phenotypic similarities between patients
using information about HLA types (i.e., understand for
instance why patients with no overlap in HLA types can
share an overlap in T cell epitopes), as a guide to see where
a specific allele (maybe present at a high frequency in a
particular cohort) fits in to the specificity space covered by
the common MHCs.
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