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Abstract Oncogenic fusion proteins belong to an important
class that disrupts gene expression networks in a cell.
Astonishingly, fusion-positive prostate cancer cells enable
the multi-gene regulatory capability of miRNAs to remodel
the signal transduction landscape, enhancing or antagoniz-
ing the transmission of information to downstream effectors.
Accumulating evidence substantiates the fact that miRNAs
translate into dose-dependent responsiveness of cells to
signaling regulators in transmembrane protease serine 2:
ETS-related gene (TMPRSS2-ERG)-positive cells. Wide
ranging signaling proteins are the targets for the degree of
quantitative fluctuations imposed by miRNAs. miRNA sig-
natures are aberrantly expressed in fusion-positive cancer
cells, suggesting that they have a cumulative effect on tumor
aggressiveness. It seems attractive to note that TMPRSS2:
ERG fusion has a stronger effect as tumors positive for the
oncogenic TMPRSS2:ERG have dysregulated oncomirs and
tumor suppressor miRNA signature. It is undeniable that a
comprehens ive ana lys is of the pros ta te cancer
microRNAome is necessary to uncover novel microRNAs
and pathways associated with prostate cancer. Moreover, the
identification and validation of miRNA signature in
TMPRSS2-ERG-positive prostate cancer cells may help to
identify novel molecular targets and pathways for personal-
ized therapy.
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Introduction

Numerous recurrent chromosomal rearrangements are char-
acterized and categorized in prostate cancer that are usually
generated by the fusion of various 5′ regulatory elements to
E twenty-six (ETS) transcription factors that results in an
overexpression of these oncogenic transcription factors.
Transmembrane protease serine 2:ETS-related gene
(TMPRSS2:ERG), present in over 50 % of all prostate
cancers, is the most commonly identified fusion gene
(Kumar-Sinha et al. 2008). It is becoming progressively
more understandable that the transcript abundances of
miRNAs are subject to regulatory control by many more
loci than previously observed for mRNA expression partic-
ularly in TMPRSS2-ERG-positive prostate cancer cells.
Substantial fraction of information verifies the fact that
miRNAs exist as highly connected hub–nodes and function
as key sensors within the transcriptional network. There is
an overwhelming list of high impact research that addresses
miRNAs and fusion genes as independent determinants
linked to prostate disease and progression. We provide an
emerging landscape of the possible connection between
miRNA regulation, prostate cancer, and TMPRSS2:ERG
gene fusion status.

miRNAs in prostate cancer: oncomirs and tumor
suppressors hold opposite ends of tug of war

miR-15a and miR-16-1 are tumor suppressors, which
are homozygously deleted in a subset of prostate can-
cers (Porkka et al. 2011). These miRNAs are documented
to target the oncogene BCL2, CCND1, and WNT3A.
Introduction of miR-15a- and miR-16-specific antagomirs to
normal mouse prostate results in marked hyperplasia, in-
creased survival, proliferation, and invasiveness and enhances
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tumor load in immunodeficient NOD-SCID mice (Bonci et al.
2008). miR-224 expression is notably downregulated in ma-
lignant prostate cancer (Mavridis et al. 2012). hsa-miR-141,
hsa-miR-298, and hsa-miR-375 are upregulated in prostate
tumors (Selth et al. 2012). Ten microRNAs (hsa-miR-16,
hsa-miR-31, hsa-miR-125b, hsa-miR-145, hsa-miR-149, hsa-
miR-181b, hsa-miR-184, hsa-miR-205, hsa-miR-221, hsa-
miR-222) are downregulated and five miRNAs (hsa-miR-96,
hsa-miR-182, hsa-miR-183, hsa-375) are upregulated
(Schaefer et al. 2010).

miRNA expression in TMPRSS2-ERG-positive prostate
cancer cells

From various studies, it seems that miRNAs may be sensing
network states and responding to an entire network changes
ranging from genesis of genomic rearrangements to miRNA
regulation in fusion-positive cancer cells. We have just
started to understand that miRNAs respond in a
programmed manner to drive pathway changes via modula-
tion of specific sets of mRNA. However, it is also reason-
able to comprehend that regulation of targets by miRNAs is
subject to various levels of control, and recent findings have
presented a new paradigm: targets can reciprocally regulate
the level and function of miRNAs. This mutual regulation of
miRNAs and target genes is challenging our knowledge and
interpretations of the gene-regulatory role of miRNAs in
vivo. Mounting laboratory investigations have clarified the
fact that miRNAs are frequently located in cancer-associated
genomic regions and are often subject to rearrangements,
breakpoints, loss of heterozygosity, and deletions.

It has recently been reported that genomic rearrangements
result in loss of tumor suppressor subsets (Mao et al. 2011). The
realization that the inappropriate production of individual
miRNAs is strongly interconnected to genomic rearrangements
has reinvigorated this particular research field (Jiang et al. 2012).
In this review, we systematically put pieces of published cell-
type-specific studies together to identify whether miRNA dys-
regulation acts as a trigger for genomic rearrangements or
genomic rearrangements, consequently inducing aberrant
miRNA expression, as this area is understudied and incomplete-
ly defined in prostate cancer.

Cell lines from thyroid adenomas with 19q13 rearrange-
ment demonstrated robust expression of miRNAs of the
C19MC cluster and the miR-371-73 cluster. Based on this
appealing information, it might offer an exciting avenue that
activation of miRNA subsets by chromosomal rearrange-
ments might be not restricted to thyroid tumors (Rippe et al.
2010). It is prominent to note that the human locus for
immunoglobulin genes encodes a miRNA. miR-650 gene
existed in the exon 1 of λ light chain (IgLλ) and was found
to be upregulated after an IgL rearrangement (Mraz et al.

2012). On a similar note, fusion gene AML1-ETO produced
by the t(8;21) translocation facilitates heterochromatic si-
lencing of pre-miR 223 in leukemic cells (Fazi et al. 2007).

Transient transfection of miR-138 in cells resulted in a
significantly higher amount of chromosome breaks. Cells
reconstituted for miR-138 displayed downregulated HR and
reduced histone H2AX expression (Wang et al. 2011).

There is considerable experimental evidence that verifies
the fact that a particular miRNA signature shows an under-
expression after treatment in the TMPRSS2:ERG fusion-
positive cases. Interestingly, among these, a subset of
miRNAs contained an ERG-binding site and another subset
lacked an androgen receptor (AR)-binding site. AR-binding
site-deficient miRNAs are regulated through ERG in fusion-
positive prostate cancer cells. Interestingly, miR-106a, miR-
363, and miR-20b belong to the miR-106-363 cluster, which
has been demonstrated to facilitate carcinogenesis. The
ERG-binding sites are investigated to overlap with
ARBSs. It is important to mention that approximately
90 % of AR-regulated genes are also ERG-regulated
(Lehmusvaara et al. 2012). Recently, two separate distal
regions upstream of the miR-221/222 promoter have been
identified which are bound by the NF-kB subunit p65. In
addition, a binding site for c-Jun was also identified that
cooperated with that of p65 to trigger the expression of miR-
221/222 (Galardi et al. 2011). miR-221 is downregulated in
TMPRSS2:ERG-positive prostate cancer cells (Gordanpour
et al. 2011). It is also intriguing to evaluate that overexpres-
sion of miR-221 or miR-222 in LNCaP or androgen-
dependent cell line (LAPC-4) drastically repressed the level
of the dihydrotestosterone (DHT)-induced upregulation of
prostate specific antigen (PSA) expression and promoted
androgen-independent growth of LNCaP cells. Using antago-
mirs against miR-221 and miR-222 recapitulated the respon-
siveness to the DHT induction of PSA transcription and
simultaneously enhanced growth response of the LNCaP-
Abl cells to the androgen treatment (Sun et al. 2009).
Transfection of miR-221 and miR-222 into PC-3 cells caused
a significant repression of ARHI expression. Genistein, a
potential nontoxic chemopreventive agent, represses the ex-
pression of miR-221 and miR-222 (Chen et al. 2011a, b). The
ectopic overexpression of miR-221 resulted in providing
growth advantage to LNCaP-derived tumors in SCID mice
(Mercatelli et al. 2008).

Androgen regulation of miR-32 and miR-148a has recently
been confirmed by androgen stimulation of the LNCaP cells
followed by expression analysis. It was additionally found that
miR-32 and mir-148 expression was high in prostate cancer
(Ferdin et al. 2010; Volinia et al. 2006; Murata et al. 2010;
Jalaya et al. 2012), and it decreased after treatment with
bicalutamide (Lehmusvaara et al. 2012). However, cells trea-
ted with goserelin displayed a higher expression of mir-148
(Lehmusvaara et al. 2012). The AR-binding sites in proximity
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of these miRNAs were identified using the ChIP assay (Jalava
et al. 2012).

miRNA and Notch signaling

The Notch pathway is often regarded as a developmental
pathway, but components of Notch signaling are expressed
and active in prostate carcinogenesis. With the advent of
more sophisticated technologies, evidence has emerged that
suggests tight correlation between miRNA and Notch sig-
naling. Not surprisingly, Notch is a key regulator, but it is
becoming increasingly clear that Notch signaling also has
roles in the regulation of miRNA and interaction with AR.
Understanding the many functions of Notch signaling in
prostate carcinogenesis and its dysregulation is crucial to
the development of new therapeutics that are centered
around this pathway (Fig. 1).

Notch signaling initiates by attachment of Delta or Jagged
ligand to the Notch receptor. After cleavage of the heterodimer
Notch receptor (by ADAM and γ-secretase complex), a solu-
ble fragment NICD is generated that is released into the cyto-
plasm. It shuttles into the nucleus, where it interacts with the
IPT (immunoglobulin-like fold, plexins, and transcription fac-
tors)-domain-containing CBF1-suppressor of hairless-Lag1
(CSL) transcription factor (Fig. 1).

In the nucleus, binding of Notch proteins to CSL results in
displacement of co-repressor proteins including silencing me-
diator of retinoic acid and thyroid hormone receptor (SMRT),
SMRT/HDAC1-associated repressor protein, CBF1-
interacting co-repressor 1, and various histone deacetylases
(HDACs) from CSL. There is consequent recruitment of Ski-
interacting protein, followed by co-activator proteins such as
p300 and Mastermind-like 1, to the Notch–CSL complex,
which promotes transcription of target genes that encode
members of the HES, HEY, and Deltex families (Fig. 2).

Thus, Notch signaling controls key aspects of prostate
cancer cell behavior and gene expression by modulating a
network of miRNAs with cross-regulatory functions. The
next paragraphs highlight the potential for complex interac-
tions between coordinately regulated miRNAs within a net-
work and how miRNA signatures control components of
Notch-mediated signaling machinery.

Cells treated with anti-androgens bicalutamide and
hydroxyflutamide demonstrated that a significant proportion
of the AR was observed to remain in the nucleus in an
inactive form. Receptor inhibition probably involved re-
cruitment of co-repressor proteins (Notch effector Hey1),
which interacted with antagonist-occupied receptor but
inhibited AR-mediated transcription of target genes
(Belandia et al. 2005; Powell et al. 2006). Yet another
member of this family, HEYL, is a more potent repressor
of AR activity (Lavery et al. 2011). miR-199b-5p is an

important regulator of the Notch pathway through its target-
ing of the transcription factor HES1 (Garzia et al. 2009).
Astonishingly, miR-199b-5p promoter region was charac-
terized, which identified a Hes1-binding site. Therefore,
enforced expression of Hes1 repressed the expression of
miR-199b-5p (Andolfo et al. 2012) (Fig. 2). hsa-miR-
199a-5p is downregulated in prostate cancer (Szczyrba et
al. 2010). It has recently been identified that miR-524-5p
acts as a tumor suppressor by negatively regulating Jagged-
1 and Hes-1 (Chen et al. 2012).

Negative regulation of Notch signaling via miRNA

Based on the contemporary studies encompassing miRNA-
mediated control of modulators of notch signaling, we pro-
vide a snapshot of how and at which steps miRNA antago-
nizes notch signaling by negatively regulating Notch,
Jagged, and Maml. The Notch receptor in this pathway is
extraordinary as most of its ligands are also transmembrane
proteins. Therefore, signal transduction is restricted to
neighboring cells. Even though the intracellular transduction
of the Notch signal is surprisingly simple, with no secondary
messengers, this pathway dysfunction is implicated in pros-
tate cancer.

miR-34a and miR-34c target Notch1, Notch2, and Jag1. In
addition, miR-34a targets c-Met mRNA (Bae et al. 2012; Yan
et al. 2012; Du et al. 2007). miR-326 targets both the Notch-1
and Notch-2 3′-UTRs (Kefas et al. 2009). miR-449a and miR-
449b are E2F1-inducible miRNA and target CDK6, Notch1,
and Klf4 (Lize et al. 2010; Capuano et al. 2011) (Fig. 1).
Ectopic expression of miR-34c resulted in inhibition of EMT
other than its well-appraised features of negatively regulating
mediators of Notch signaling (Yu et al. 2012a). miR-34a also
targets Notch ligand delta-like 1 (Dll1) (de Antonellis et al.
2011). c-Myc and Notch-1 are regulated by let-7a and miR-
144-dependent mechanisms, correspondingly (Sureban et al.
2011). miR-144 expression was reported to be decreased after
treatment with bicalutamide (Lehmusvaara et al. 2012).

miR-206 and miR-150 target Notch3 (Song et al. 2009;
Ghisi et al. 2011). miR-206 was found to be high in prostate
cancer (reviewed by Ferdin et al. 2010). It is also interesting to
note that miR-200 members target Notch pathway compo-
nents, such as Jagged 1, Maml2, and Maml3, thereby repres-
sing the expression of target genes (Brabletz et al. 2011). It is
necessary to mention that the miR-200 family encompasses
miR-200a, miR-200b, miR-200c, miR-141, and miR-429 and
is repressed in prostate cancer. The miR-200 family is further
characterized into subcategories: one codes for miR-200b,
miR-200a, and miR-429 on chromosome 1 and the other
codes for miR-200c and miR-141 located on chromosome
12 (Paone et al. 2011). It has recently been reported that
treatment of prostate cancer cells with bicalutamide and
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goserelin resulted in repression of miR-200a and miR-200b
expression (Lehmusvaara et al. 2013). Using cell lines, it has
been shown that hyperactivation of Notch-1 inhibits PTEN,
which in turn results in Akt activation and p53 degradation via
MDM2. Therefore, Notch signaling activation also represses
p53-induced miR-122 expression (Manfe et al. 2012).

Positive regulation of Notch signaling via miRNA

There are pieces of information that provide strong evidence
of miRNA regulation of negative signals within the Notch
pathway and potentiating Notch signaling. In line with this

concept, it has been shown that enforced expression of miR-
34a results in suppression of a protein Numbl that antago-
nizes Notch-mediated signaling (Fineberg et al. 2012).
Nemo-like kinase is a negative regulator of Notch signaling
and is a target of miR-181 (Cichocki et al. 2011).

In NSCLC, it was found that Delta-tocotrienol induced
the expression of mir-34a that restricted cell proliferation (Ji
et al. 2012). Curcumin treatment extensively repressed miR-
21 and miR-34a expression while stimulating the expression
of let-7a miRNA (Subramaniam et al. 2012). miR-34a is
significantly downregulated in human PCa, and transiently
transfecting prostate cancer cells with miR-34a resulted in
suppression of AR, PSA, and Notch-1 (Kashat et al. 2012).

Fig. 1 Post-transcriptional processing of mediators of Notch signaling by miRNA
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Notch signaling regulates the expression of miRNA

There is also circumstantial evidence that describes that
various miRNA signatures are repressed as a consequence
of Notch signaling. Notch signaling represses the expression
of miR-223, and a simultaneous increase in expression of
IGF1R is observed. However, using Notch signaling inhib-
itors, it was shown that there was an increase in miR-223
levels and a corresponding decline in the IGF1R as it was
targeted by miR-223 (Gusscott et al. 2012). Expression of
miR-223 was high in prostate cancer (reviewed by Ferdin et
al. 2010). Jagged2 triggers repression of miR-200 via en-
hancing the binding of GATA-binding (Gata) factors to the
promoter region of the miR-200b–200a–429 cluster (Yang
et al. 2011). ChIP assays highlight the fact that the miR-
143/145 cluster is a novel transcriptional target of Jagged-
1/Notch signaling as Notch 1 intracellular domain-
containing complexes bind to CBF1 sites in the miR-
143/145 promoter (Boucher et al. 2011) (Fig. 1). miR-

143/145 is downregulated in prostate cancer (Szczyrba et
al. 2010). The emerging information on the subject of biol-
ogy of miRNAs in the regulation of Notch signaling in
prostate cancer is promising and may lead to a role(s) for
these entities as diagnostic/prognostic markers and effective
therapeutic tools for better molecularly targeted treatment of
fusion-positive prostate cancer.

AID and TOP

It is worth describing that AID is expressed at a very low level
in LNCaP cells; however, AR agonists and genotoxic stress
both induced AID expression by ~3-fold and >60-fold, respec-
tively. Likewise, the AID protein was exceedingly induced in
IR-treated cells as early as 4 h (Lin et al. 2009). miR-155, miR-
93, and miR-181b target AID mRNA. miR-93 expression was
high in prostate cancer as reported by Volinia et al. (2006).
miR-181 expression was low in prostate cancer (reviewed by

Fig. 2 Post-transcriptional processing of AID and TOP by miRNA. Expression of a set of miRNAs in oxidative stress
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Ferdin et al. 2010) and miR-155 is documented to reduce
potentially oncogenic translocations generated by AID
(Borchert et al. 2011; de Yébenes et al. 2008; Dorsett et al.
2008) (Fig. 3).

It was tested in LNCaP cells that shRNA-mediated deple-
tion of TOP2B impaired the activation of androgen-responsive
genes. Furthermore, significantly reduced formation of biotin-
labeled strand breaks was observed in TOP2B-depleted pros-
tate cancer cells. Interestingly, pharmacological inhibition or
RNAi-mediated depletion of TOP2B prior to DHT stimulation
of cells resulted in complete reduction of de novo TMPRSS2-
ERG fusion transcript genesis (Haffner et al. 2010). It is also
evident that TOP2B and AR are highly co-expressed in lumi-
nal cells of prostate cancer precursor lesions. Several hints
have appeared that indicate that TOP2A and TOP2B are neg-
atively regulated by miRNA, and if there is an overexpression
of TOP2A/TOP2B, it might be linked to dysregulation of
miRNAs. This avenue has not been pursued in prostate cancer,
but miRNA contributions to TOP2 isozyme regulation would
be very interesting.

MiR-548c-3p negatively regulated TOP2A, and outstand-
ingly, overexpressing miR-548c-3p selectively decreased
DNA damage after treatment with chemotherapeutic agents
(Srikantan et al. 2011). Nuclear factor-YB represses the ex-
pression of Top2α and is itself negatively regulated by miR-
485-3p (Chen et al. 2011a, b, c). miR-143 and hsa-miR-139-5p
also negatively regulate Top2α (Ugras et al. 2011; Miles et al.

2012). miR-139-5p is downregulated in prostate cancer (Fuse
et al. 2012) andmiR-23a negatively regulates TOP2B (Yu et al.
2010) (Fig. 3).

A recent publication further suggests that S-
nitrosoglutathione induced TOP2-dependent DNA se-
quence rearrangements (Yang et al. 2013). Extra pieces
of the puzzle that are needed are the identification of
the responsible miRNA signatures that negatively regu-
late the expression of TOP2A and TOP2B in prostate
cancer cells. Such a possibility can be tested experimen-
tally on prostate cancer cell lines knock-down and/or
knock-in assays. If, in addition, some of these dysregu-
lations are associated with genomic rearrangements or
with resistance to therapy, it opens up the possibility of
patient-specific targeted therapy.

miRNA and oxidative stress

Research has provided verification that chromosome breaks
observed in NHEJ-deficient mouse primary fibroblasts can
be suppressed by growing the cells in reduced oxygen con-
centrations, which highlights the fact that oxidative metab-
olism is a major determinant of endogenous double-strand
breaks in wild-type cells (Karanjawala et al. 2002). In a
similar manner, several compounds have been documented
to cause genomic instability. Superoxide-generating

Fig. 3 Post-transcriptional processing of mediators of TGF, SHH, and Wnt signaling by miRNA
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herbicide paraquat gave rise to considerable chromosomal
aberrations and sister chromatid exchanges in Chinese ham-
ster fibroblasts (Nicotera et al. 1985). α-Pinene induces
genome instability preferentially through mitotic alterations
and DNA damage through reactive oxygen species (ROS)
production (Catanzaro et al. 2012). In addition, loss of Tsa1,
a peroxiredoxin, causes remarkably enhanced rates of muta-
tions, chromosomal rearrangements, and recombination in
Saccharomyces cerevisiae (Huang and Kolodner 2005).
Later, another study indicated that loss of Tsa1 caused
genome instability through constitutive activation of the
DNA damage checkpoint and overproduction of intracellu-
lar dNTPs (Tang et al. 2009). Tsa1 worked synchronously
with DNA repair and checkpoint mechanisms to protect S.
cerevisiae cells against toxic levels of DNA damage (Iraqui et
al. 2009). Cell studies using tsa1Deltatsa2Delta cells as a
model indicated that these cells had increased hydrogen per-
oxide consumption. Additionally, these cells had remarkable
conversion of ethanol to the 1-hydroxyethyl radical by SOD1
that resulted in increased DNA damage (Ogusucu et al. 2009).

There is also an evidence that indicates that anaerobic
growth suppresses the gross chromosomal rearrangement
rates in mutant yeast strains (Ragu 2007). Results suggest
that hydrogen peroxide treatment upregulates the expression
of endogenous L1 transcripts and simultaneous increase in
γ-H2AX foci (Giorgi et al. 2011). It is of note that aged
hematopoietic cells demonstrate enhanced in vitro chromo-
somal instability compared to that of young hematopoietic
cells because of remarkably elevated oxidative stress in aged
cells (Liu et al. 2012a). It has recently been explored that
Rac2 GTPase alters mitochondrial membrane potential and
electron flow through the mitochondrial respiratory chain
complex III (MRC-cIII), thus producing substantial levels
of ROS. MRC-cIII-generated ROS facilitate oxidative DNA
damage to trigger genomic instability that consequently
results in an accumulation of chromosomal aberrations
(Nieborowska-Skorska et al. 2012).

In Prx1-rich LNCaP cells, multitargeted inhibition is
more influential as evidenced by combinatorial inhibition
of Prx1, and finasteride treatment produced a greater inhib-
itory effect on AR activity (Wu et al. 2011). Fascinatingly,
Prx1 increases the binding of AR to DHT and decreases
DHT dissociation rate and stabilizes the functional configu-
ration of AR (Chhipa et al. 2009). Targeted inhibition of
Prx2 reduced the expression of androgen-regulated genes
(Shiota et al. 2011).

Oxidative stress induces an overexpression of Twist1 that
in turn evokes robust expression of AR (Shiota et al. 2010).
Therefore, oxidative stress and overexpressed AR might
contribute to the genesis of genomic rearrangements. AR
uses wide ranging co-activators (JunD) to stimulate the
expression of oxidative stress-related genes (Mehraein-
Ghomi et al. 2010).

There is increasing evidence that glucose deprivation-
induced oxidative stress triggers the expression of miR-
466 h-5p and miR-669c. This oxidative stress results in
accumulation of ROS, compromised HDACs activity, and
remarkably enhanced acetylation in the miR-466 h-5p pro-
moter region (Druz et al. 2012). miR-141 and miR-200a are
also documented to generate oxidative stress response
(Mateescu et al. 2011).

let-7a and let-7b expression is downregulated in cells ex-
posed to radiation (Saleh et al. 2011). Animal model studies
indicated that reconstitution of Let-7c significantly reduced
tumor burden in xenografts of human PCa cells (Nadiminty
et al. 2012; Liu et al. 2012b).

It is worth describing that miR-335 and miR-34a
inhibited expression of SOD2 and Txnrd2 by binding to
the 3′-UTR of each gene, respectively (Bai et al. 2011).
There are several studies which indicate that ROS mediates
the expression of various miRNAs. In line with this ap-
proach, ROS induces miR-200c and other miR-200 family
members (Magenta et al. 2011).

Correspondingly, metal sulfates were found to stimulate the
expression of miRNA-125b and miRNA-146a (Pogue et al.
2011). Cells pretreated with ferric nitrilotriacetate (Fe-NTA)-
induced oxidative stress displayed high miRNA-34a expres-
sion, and abrogation of miRNA-34a resulted in suppression of
uncontrolled cellular proliferation (Dutta et al. 2007). Human
embryo lung fibroblast cells were found to be transformed after
exposure to arsenite and associated miR-21 overexpression
(Ling et al. 2012). miR-128a increases ROS levels in medul-
loblastoma cells (Venkataraman et al. 2010). ROS stimulated
the expression of miR-376b-5p in H9c2 (myoblast cell line)
(Pan et al. 2012).

The above discussion and existing knowledge although
indicate that cellular stresses are important triggers that induce
genomic rearrangements. However, how these stresses espe-
cially oxidative stress modulate the expression of oncomirs
and tumor suppressor miRNAs in prostate cancer remains
largely unknown.

Androgen receptor crosstalk with different signaling
pathways

It is now clear after a detailed investigation of the AR axis
that AR is accompanied by modulators of the Wnt signaling
pathway and has revealed new nodes for regulation, present-
ing the challenge of developing these strategies for optimal
clinical gain and therein “outsmarting” the elusive adaptable
AR.

In the absence of Wnt, Dishevelled protein remains cyto-
solic. In addition, destruction complex is active that degrades
β-catenin. Wnt stimulation redirects Dvl recruitment to the
plasma membrane by Frizzled receptors, which work
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synchronously with LRP5–LRP6 co-receptors. Dvl polymers
at the membrane act as a scaffold for Axin recruitment and
subsequent inactivation. Wnt stimulation also results in phos-
phorylat ion of LRP5–LRP6 by CKI and GSK3.
Phosphorylated LRP5–LRP6 couples with Axin, potentially
providing an alternate mechanistic approach to recruit and
inactivate Axin at the membrane (Fig. 4).

It has recently been described that TMPRSS2-ERG-
positive prostate cancer cells displayed upregulated expres-
sion of Frizzled receptor 4 (FZD4) (Gupta et al. 2010). It
had lately been found that ERG triggered the expression of
WNT signaling genes: WNT11, WNT2, WNT9A, CCND1,
and FZD7 (Mochmann et al. 2011). Literature provides us
with ample information that Frizzled receptors are tightly
regulated by miRNA clusters. FZD7 is negatively regulated
by miR-23b (Zhang et al. 2011). miR-23b is downregulated
in prostate cancer (Tong et al. 2009). However, its expres-
sion is enhanced after bicalutamide treatment (Lehmusvaara
et al. 2012) (Fig. 4).

FZD4 is post-transcriptionally controlled by miR-493
(Ueno et al. 2012). FZD6 is a target of miR-194 (Krutzfeldt
et al. 2012). miR-194 is upregulated in prostate cancer (Tong et
al. 2009) and miR-31 negatively regulated the expression of
FZD3 (Valastyan et al. 2009). It has recently been published
that fusion-positive prostate cancer cells have downregulated
frizzled receptors (FZD3,4,8) (Chow et al. 2012). However,
the molecular detail that could teach us about the underlying
mechanism of downregulation of Frizzled receptors is still
unclear. Could it be because of enhanced degradation of
frizzled receptors or miRNA-mediated post-transcriptional
repression of frizzled receptors? Additionally, regarding
whether or not frizzled receptors are acting as tumor suppres-
sors, transient transfection assays could provide us with better
and reasonable answers. It appears that miRNA-mediated
regulation of Wnt signaling is a complicated mystery and it
is vital to focus on various subsets of miRNAs which are
aberrantly expressed and how Wnt signaling promotes ge-
nomic rearrangements.

Fig. 4 Positive and negative regulation of target genes of Notch signaling
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Contradictory roles of Wnt5a

There are paradoxical findings on the topic of the role
of Wnt5a in suppressing or promoting prostate cancer.
It is worth mentioning that recombinant Wnt5a
represses the invasive potential of 22Rv1 and DU145
cells, and inhibition of Wnt5a results in restoration of
the invasive potential of 22Rv1 and LNCaP cells (Syed
Khaja et al. 2012). Another study elaborated that
Wnt5a repressed AR, and expression of Wnt5a and
sFRP1 together did not lead to further inhibition of
AR, signifying that sFRP1 and Wnt5a activate similar
signaling pathway(s) to repress AR (Kawano et al.
2009).

Using high-throughput technologies and animal models
for identification of the role of signalings in prostate carci-
nogenesis, several hints have emerged. In line with this
approach, the impact of the T877A AR mutation on prostate
tumor growth was tested in a known experimental prostate
cancer model (TRAMP). Researchers provided confirma-
tion that activity of the AR mutant in tumor growth was
potentiated by cross-talk with modulators of signaling path-
ways. Wnt-5a, is a noncanonical Wnt ligand, is an activator
for prostate tumors harboring the mutant AR. It was ob-
served that Wnt-5a acted as an activator of AR-mediated
prostate cancer growth. Targeted inhibition of Wnt-5a
resulted in a considerable suppression of transactivation
function of liganded AR (Takahashi et al. 2011).

Next, we discuss recent insights into post-transcriptional
regulations of the Wnt signaling pathway and molecular
interaction networks in the functions of AR and Wnt

signaling pathway. These layers of regulation reveal how a
simple signaling system can be co-opted to exert tactfully
regulated, multipart responses.

Regulation of AR-mediated transcriptional network
by the Wnt pathway

Using in vitro protein-binding assays, it was observed that
inhibitor of β-catenin and T-cell factor (ICAT) retained the
interaction between β-catenin and AR proteins. This com-
plex triggered the expression of AR-specific target genes
(Zhuo et al. 2011). However, it is also proved that sFRP1
reduces expression of the endogenous AR target genes PSA
and Kallikrein 2, and astonishingly, repression of AR by
sFRP1 does not involve Wnt/β-catenin signaling (Kawano
et al. 2009). Inactivation of sFRP1 leads to uncontrolled AR
activation that is a decisive step in prostate carcinogenesis.

It is a well-acclaimed fact that activation of Wnt/β-cat-
enin signal transduction cascade in the mouse prostate
results in an initial early increase in AR activity that syn-
chronized with the early development of hyperplasia.
However, it is significant to mention that with the develop-
ment of PIN and HGPIN in this model, epithelial cell AR
levels are gradually repressed. Initially, there is an increase
in androgen-regulated target genes as observed in early
stage prostatic hyperplasia and progressive suppression in
HGPIN. In LPB-Tag/D.A. β-catenin mice, there is a
context-dependent decline in the androgen receptor levels
and in the androgen-regulated probasin promoter as seen by
suppressed Tag levels. In discordance to the decreasing T-

Fig. 5 In the figure, it has been
shown that binding of SHH
inhibits PTCH function and so
releases smoothened (SMO) to
protect GLI from cleavage. The
Gli proteins are phosphorylated
by protein kinase A (PKA),
leading to their cleavage by the
proteasome and the formation of
carboxyl-terminus-truncated re-
pressor (GliR); however, inhibi-
tion of PKA facilitates formation
of Gli activator (GliA). In the
nucleus, GliA and GliR promote
and antagonize AR-mediated
expression of target genes,
respectively
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antigen expression, Foxa2 is now expressed in LPB-
Tag/D.A. β-catenin mouse prostate. Foxa2 is a target gene
of Wnt signaling, and expression of Foxa2 indicates that
Wnt/β-catenin signaling is active in these cells. It is intrigu-
ing to note a mutually exclusive expression pattern of large
T-antigen and Foxa2, as detected by immunohistochemistry,
that Tag (directed by AR signaling) is reduced in the cells that
have activated Wnt/β-catenin signal transduction cascade.
Intriguingly, there is a decline in AR protein content; however,
ARmRNA increases in LPB-Tag/D.A. β-catenin prostate (Yu
et al. 2011). It will be important to explore howWnt signaling
temporally regulates AR expression. Which proteins are uti-
lized by the Wnt pathway to degrade AR? Whether the Wnt
pathway co-opts the transforming growth factor (TGF) path-
way and associated ubiquitin ligases to degrade AR protein or
downstream effectors of Wnt pathway repress AR by recruit-
ing co-repressor machinery at promoter region or use miRNA
subsets to target AR is still a mystery that needs to be solved.

There is evidence that ectopic expression of Wnt-11
in LNCaP cells reduces the level of AR (Uysal-Onganer
et al. 2010). There is substantial experimental verifica-
tion that the WNT/β-catenin pathway triggers AR ex-
pression in prostate cancer cell lines by establishing an
interaction with T-cell factor (TCF)/LEF-binding sites
present in the promoter region of the AR. It is promi-
nent to note that in discordance to the highly aggressive
castration-resistant 22Rv1 cells which are able to drive
a WNT-typical TCF-dependent reporter gene activity,
LNCaP cells do not display activated β-catenin-
dependent reporter gene expression. Therefore, it is un-
derstandable that targeted inhibition of the canonical
WNT pathway using NO-releasing compound JS-K
results in a concurrent decrease in AR and AR-V
mRNA in 22Rv1 cells but not or to a lesser extent in
LNCaP (Laschak et al. 2012). Likewise, some other
findings are in concordance with the concept that high
β-catenin nuclear localization and low or no AR ex-
pression is associated with a subpopulation of men with
bone metastatic prostate cancer (Wan et al. 2012).

A recent finding indicates that HIF-1α and β-catenin
coordinately enhance AR transactivation by stabilizing N–
C interaction. Additionally, AR, HIF-1α, and β-catenin
form a ternary complex on AREs (Mitani et al. 2012).
There is emerging evidence that indicates that AR and β-
catenin can be recruited to the promoter and enhancer
regions of AR target gene PSA upon Wnt signaling
(Schweizer et al. 2008).

miRNA and Wnt signaling

miR-26a targets GSK-3β that results in activation of β-
catenin and induction of several downstream genes

(Zhang et al. 2012a, b). miR-26 expression is high in
prostate cancer (reviewed by Ferdin et al. 2010). miR-
106b downregulates APC (Shen et al. 2013). miR-155
targets casein kinase-1α and enhances β-catenin signal-
ing (Zhang et al. 2012c). Let-7f was upregulated in
TIMP-1-depleted hMSCs and targeted axin 2, an antag-
onist of β-catenin stability (Egea et al. 2012). miR-1826
targets β-catenin and MEK1 (Hirata et al. 2012a, b). It
is also interesting to note that overexpressing miR-221
and/or miR-222 resulted in elevated nuclear β-catenin
levels (Rao et al. 2011). microRNA-181 expression is
triggered upon activation of Wnt/β-catenin signaling. It
is worth elaborating that seven putative β-catenin/Tcf4-
binding sites are identified in the promoter region of the
microRNA-181a-2 and microRNA-181b-2 transcripts (Ji
et al. 2011) (Fig. 4). It is noteworthy that cells over-
expressing miR-21 demonstrate high levels of β-catenin,
TCF/LEF activity (Yu et al. 2012b). Overexpression of
miR-516a-3p in highly metastatic derivatives (44As3
cells) resulted in suppression of nuclear β-catenin accu-
mulation (Takei et al. 2012). miR-320a negatively reg-
ulates β-catenin and is downregulated in prostate cancer
(Sun et al. 2012a; Szczyrba et al. 2010) (Fig. 4).
However, discordantly, it was reported by another re-
search group to be high in prostate cancer (reviewed by
Ferdin et al. 2010). Overexpressing miR-122 in hepato-
ma cells remarkably downregulates the protein levels of
Wnt1 and β-catenin (Xu et al. 2012). β-Catenin is
negatively regulated by miR-214 and miR-548c-5p
(Xia et al. 2012; Fang et al. 2012).

It is also investigated that by enhancing the degradation of
β-catenin, prostate cancer can be repressed (Gwak et al. 2012).
Silibinin inhibits the expression of LRP6 in prostate cancer
cells, thus showing the inhibitory effect on Wnt/LRP6 signal-
ing (Lu et al. 2012).

TGF and androgen receptor

Circumstantial evidence has improved remarkably our under-
standing related to the current patterns and paradigms in TGF
signaling. It is now perceptible that TGF signals through
TGFBR2 and ALK5 (also acknowledged as TGFBR1). Bone
morphogenetic proteins (BMPs) signal via the BMP type II
receptor (BMPR2) and ALK1, ALK2, ALK3, and ALK6.

In the presence of a ligand, receptor-based SMADs (R-
SMADs) are activated by phosphorylation and heterodimerize
with SMAD4. Active SMAD complexes enter the nucleus and
accumulate there and trigger the expression of target genes.
Cross-talk between AR and the TGF-β transduction pathway
is well appraised. BMPs antagonize AR activity through
Smad1, which functions as a co-repressor in prostate cancer
cells (Qiu et al. 2007). In a similar manner, various other
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Smads have documented interactions with AR. Smad3 inter-
acts with AR, although there are contradictory findings on
whether this enhances or represses AR activity (the following
section describes in detail). However, it is understandable that
downstream consequences of these hallmark interactions are
highly context dependent, which might explain why androgen-
regulated gene expression is stimulated by activin but inhibited
by TGF-β1 (Fujii et al. 2004; Gerdes et al. 1998).

ERG is believed to suppress androgen signaling. As
androgen deprivation potentiates TGF-β signaling in pros-
tate cells, it is appealing to unravel how and at which steps
ERG-mediated suppression of androgen signaling leads to
an increase of TGF-β pathway utilization (Brase et al.
2011). Another study presented similar findings of ERG-
induced TGF-β RII promoter activity (Im et al. 2000). It
would be interesting to test if AR and TGF signaling antag-
onize each other using exclusive miRNA clusters. It would
additionally be valuable to note whether or not subsets of
miRNA are triggered characteristically by either AR or TGF
and lose their expression if respective signaling is
nonfunctional.

Diametrically opposed interactions of SMAD3 with AR

It is a well-established fact that LNCaP cells treated with
DHT displayed an increase in PSA mRNA expression;
however, astonishingly, addition of Smad3 further enhanced
DHT-induced PSA expression. Co-expression of Smad3 and
Smad4 reversed the Smad3-enhanced PSA mRNA expres-
sion (Kang et al. 2002). Similarly, activin A triggered AR
gene transcription through Smads through binding to AR
promoter as targeted inhibition of Smad3 by siRNA de-
creased activin A-promoted AR expression (Kang et al.
2009). Contrarily, using transient transfection systems, it
was convincingly revealed that Smad3 specifically re-
pressed transcriptional activation mediated by AR on two
natural androgen-responsive promoters (Hayes et al. 2001).
Smad3 is a target of miR-23b and miR-29b, and astonish-
ingly (Fig. 4), miR-23b/-27b is downregulated in prostate
cancer (Leone et al. 2012; Sun et al. 2012b).

miRNA-mediated regulation of TGF receptors

As discussed previously, upon ligand binding, TGFβ-RII
phosphorylates and activates TGFβ-RI, which initiates the
downstream signaling by phosphorylating the R-Smads. On
a similar note, it is worth highlighting that considerably
increased AR expression is detectable in TRAMP mice with
inactivated DNTGFβRII, compared with TRAMP mice
with wild-type TGFβ-RII (Pu et al. 2009). Reporter assays
confirmed 3′-UTR of TGFβ-RII as target of miR-370, and

enforced expression of miR-370 resulted in a decrease in
TGFβ-RII expression and reduced Smad3 phosphorylation
(Lo et al. 2012). miR-370 is upregulated in prostate cancer
(Wu et al. 2012). However, another research group reported
a low expression of miR-370 in prostate cancer
(Lehmusvaara et al. 2012). Likewise, in MDA-MB-231
cells, miR-520/373 downregulated the expression of TGFβ-
RII (Keklikoglou et al. 2011). miR-520/373 are downregu-
lated in prostate cancer (Yang et al. 2009) (Fig. 4).
However, its relationship with TGFβ-RII needs to be investi-
gated in prostate cancer cells. TGFβR2 is a direct target of
miR-21 and miR-590-5p (Yu et al. 2012b; Jiang et al. 2012;
Kim et al. 2009). miR-21 expression is high in prostate cancer
(reviewed by Ferdin et al. 2010).

AR-mediated regulation of regulators of TGF signaling

Mounting evidence verified the fact that ligand-bound AR
inhibited TGF-beta transcriptional responses through repres-
sing the binding of Smad3 to Smad-binding element
(Chipuk et al. 2002). ChIP assays underscored the fact that
there was androgen-dependent recruitment of AR to the
ARE-containing regions of the TGF-beta1 gene. In addition
to the positive regulation of TGF, a negative ARE was
detected in the TGF-beta1 promoter that signified the fact
that both positive and negative AREs existed in the
androgen-regulated transcription of the TGF-beta1 promoter
(Qi et al. 2008). It has recently been investigated that het-
erozygosity of the Hexim-1 gene in the prostate cancer mice
model and the TRAMP-C2 cell line results in Cdk9-
mediated serine phosphorylation on proteins such as the
AR and the TGF-β-dependent downstream signaling medi-
ators (Mascareno et al. 2012).

Apparently, there are contradictory findings regarding the
relationship of SMAD3 with AR in stimulating or repres-
sing the transcriptional network. It remains to be seen how
SMAD3 contributes to the genesis of genomic rearrange-
ments in prostate cancer. Another possibility is that AR and
SMAD3 work synchronously to trigger genomic rearrange-
ments and later “rearranged cells” opt different mechanistic
approaches to repress AR signaling via repressing AR at
the transcriptional and post-transcriptional levels. It is
also previously added that fusion-positive prostate cancer
cells have inactive AR signaling that is counterbalanced
by TGF signaling. Future research must be focused on
the miRNA signatures that regulate SMAD activity to
evoke or antagonize context-dependent transcriptional
programs in a prostate cancer cell. An equally important
challenge is a better understanding of the functional role
of signal strength and duration in prostate cancer cells
that work with AR to trigger the expression of target
genes and genomic rearrangements.
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miRNA SHH

The absence of Hh leads to repression of Smo by the
transmembrane receptor Ptch; concurrently, Gli1/2 are
phosphorylated and are degraded by proteosome. On
the contrary, binding of Hh to Ptch results in activation
of Smo. Resultantly, Gli1/2 are released from the Smo
protein complex and move into the nucleus and trigger
expression of Hh-associated genes. There is emerging
evidence that highlights the regulation of mediators of
hedgehog signaling by miRNA and expression of
miRNA by Hh signaling.

SHH is contributory to prostate carcinogenesis
(Sanchez et al. 2004). More interestingly, it was ob-
served that SHH expression was found to be downregu-
lated by DHT in all AR-positive cells. Proof of the
concept was further provided treating cells with bicalu-
tamide that resulted in an enhanced expression of SHH.
Hh pathway inhibitor, cyclopamine-inhibited AR activity
and prostate cancer cells co-treated with bicalutamide
and cyclopamine displayed restoration of expression of
GLI and PTCH (Sirab et al. 2012). However, there is a
direct piece of evidence that indicates that SHH signal-
ing antagonizes AR-mediated transactivation via Gli1
that acts as a co-repressor and associates with AR
(Chen et al. 2011c) (Fig. 5). Contrary to the previously
discussed role of Gli proteins, there is a finding that
suggests that overexpression of Gli1 or Gli2 in LNCaP
cells enhances AR-specific gene expression in the ab-
sence of androgen. Furthermore, the AR protein was co-
immunoprecipitated with Gli2 protein from transfected
293 T cell lysates (Chen et al. 2010). There is a clue
that indicates that miR-324-5p targets and functionally
suppresses Gli1; however, its expression and correlation
with Gli proteins needs to be tested in prostate cancer
(Ferretti et al. 2008). Although there is a finding that
indicates that miR-324-5p is downregulated in prostate
cancer (Fuse et al. 2012), it needs to be further explored
in fusion-positive prostate cancer cells.

Concerted microRNA control of Hedgehog signaling
in prostate cancer cells

Shh signaling represses the expression of miR-206
(Radzikinas et al. 2011). miRNA-206 overexpression is
documented to inhibit ERα expression (Chen et al.
2012). Stable miR-302-367 cluster expression targets
CXCR4 pathway and inhibition of CXCR4 leads to
the impairment of the SHH-GLI-NANOG network
(Fareh et al. 2012). The miR-17/92 cluster expression
is triggered by Shh via signaling mediator N-myc
(Northcott et al. 2009).

Conclusion

The last decade has witnessed extraordinary developments in
the genetic and epigenetic analyses of solid tumors.
Transcriptional and DNA copy-number studies have outstand-
ingly enhanced our knowledge and characterization of solid
tumors and highlighted the pattern of genomic aberrations
associated with outcome. AR signaling involves translocation
of AR into the nucleus to stimulate the expression of its target
genes. AR is accompanied by wide ranging end step modu-
lators of various signaling cascades that act as co-activators
and concomitantly trigger the expression of AR-associated
gene network. Certain hints have appeared that suggest that
AR signaling is potentiated by transduction pathways and
these pathways contribute to the genesis of genomic rear-
rangements. Furthermore, there is a complicated web that
connects signaling pathways and miRNA clusters.
Miscellaneous cellular stresses induce multiple transduction
cascades. The identification of altered transcriptional and
translational silencing by microRNAs shows a layer of addi-
tional intricacy to the regulation of gene expression in prostate
cancer. The advent of massive parallel sequencing has allowed
whole cancer genomes to be sequenced with extraordinary
speed and accuracy providing insight into the bewildering
complexity of gene mutations present in prostate cancer.

This is also worth indicating that there are knowledge
gaps despite partitioned research and unconfirmed data, and
in some cases, even conflicting results witness the need for a
deeper insight into the multifaceted mechanisms that under-
pin miRNA dysregulation in fusion-positive prostate cancer
cells. It is noteworthy that miR-29a and miR-1256 are
downregulated in prostate cancer and treatment of cells with
isoflavone demethylates the methylation sites in the promot-
er sequence of miR-29a and miR-1256, resulting in an
upregulation of miR-29a and miR-1256 expression (Li et
al. 2012). A recent report identified 47 long-range epigenet-
ic silencing regions in prostate cancer, spanning about 2 Mb
and harboring about 12 genes, with frequently occurring
tumor suppressor and miRNA genes (Coolen et al. 2010).
Furthermore, a current finding provides information that
miR-205, miR-21, and miR-196b are epigenetically re-
pressed, and miR-615 epigenetically activated in prostate
cancer cells (Hulf et al. 2011). However, it needs to be
determined in fusion-positive prostate cancer cells. It is also
important to mention that epigenetics of fusion-positive and
fusion-negative prostate cancer cells might differ.

Identification of an increased complicated web of onco-
genic and tumor suppressor miRNA and epigenetics needs
to be investigated in a context-dependent manner. Although
there are advancements in the identification of DNA hyper-
and hypomethylated miRNAs, these are not unveiling the
relationship of the regulation of signaling cascades that
synergizes with AR. A recent study gives a clue that SNPs
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within miRNA influence the expression of mature miRNA
in a cell-type-specific manner (Kim et al. 2012). It addition-
ally needs to be tested in fusion-positive prostate cancer
cells.

Therefore, while there is considerable knowledge
concerning the genes that are mutated in prostate cancer,
however, the number of pathways through which they func-
tion in fusion-positive prostate cancer cells is relatively
small. Future studies must provide a compelling focus for
pathway-directed, rather than traditional tumor-type-specific
interventions.
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