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Abstract The availability of reptile genomes for the use of
the scientific community is an exceptional opportunity to
study the evolution of immunoglobulin genes. The genome
of Chrysemys picta bellii and Pelodiscus sinensis is the first
one that has been reported for turtles. The scanning for
immunoglobulin genes resulted in the presence of a com-
plex locus for the immunoglobulin heavy chain (IGH). This
IGH locus in both turtles contains genes for 13 isotypes in
C. picta bellii and 17 in P. sinensis. These correspond with
one immunoglobulin M, one immunoglobulin D, several
immunoglobulins Y (six in C. picta bellii and eight in P.
sinensis), and several immunoglobulins that are similar to
immunoglobulin D2 (five in C. picta belli and seven in P.
sinensis) that was previously described in Eublepharis mac-
ularius. It is worthy to note that IGHD2 are placed in an

inverted transcriptional orientation and present sequences for
two immunoglobulin domains that are similar to bird IgA
domains. Furthermore, its phylogenetic analysis allows us
to consider about the presence of IGHA gene in a prim-
itive reptile, so we would be dealing with the memory of
the gene that originated from the bird IGHA. In summary,
we provide a clear picture of the immunoglobulins present
in a turtle, whose analysis supports the idea that turtles
emerged from the evolutionary line from the differentiation
of birds and the presence of the IGHA gene present in a
common ancestor.
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Introduction

Reptiles represent the evolutionary lineage of vertebrates that
have adapted to live on land. There are four living orders
currently identified in reptiles: Crocodilia that includes croc-
odiles, gavials, caimans, and alligators; Sphenodontia that
only includes the tuatara fromNew Zealand; Squamata, where
we find lizards, snakes, and worm lizards; and the Testudines
which includes turtles, terrapins, and tortoises (Janes et al.
2010; Shedlock et al. 2007; Modesto and Anderson 2004).

Immunoglobulins are proteins that are important for
defending the body against infections. Many studies have
elucidated the immunoglobulin structure and genomic orga-
nization in mammals, amphibians, and fish (Paul 2008), yet
little is known in reptiles. All reptiles studied, until now, have
at least three classes of immunoglobulins: immunoglobulin M
(IgM), also found in all vertebrates; immunoglobulin D (IgD)
with 11 domains in the constant region (IgD in mammals only
have two or three domains); and immunoglobulin Y (IgY) that
is already present in amphibians and birds, from which
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immunoglobulin G and immunoglobulin E in mammals are
derived (Wei et al. 2009; Gambón Deza et al. 2009, 2012).

Recent studies performed in reptilian species of the
Squamata order indicate that the lizard Anolis carolinensis
only possesses three Ig isotypes (Wei et al. 2009; Gambón
Deza et al. 2009). Nevertheless, other immunoglobulin
types in the gecko Eublepharis macularius were described
that may have been produced by recombination processes of
the IGHM, IGHD, and/or IGHY genes. One of these immu-
noglobulins is similar to immunoglobulin A (named IgA-
like) and was generated during evolution by a recombina-
tion between IgM and IgY (Deza et al. 2007). The other,
denominated IgD2, is a variant of IgD and seems to have
been generated by an exon shuffling between IgD and the
IgA-like immunoglobulin (Gambón-Deza and Espinel
2008). This IgD2 antibody is highly expressed and may
have an evolutionary significance since there is a pseudo-
gene with a similar structure in the genome of the mono-
treme Ornithorhynchus anatinus (Gambón-Deza et al.
2009). Finally, in snakes, which represent a highly evolved
group of reptiles, IgM, IgD, and new forms of IgY, called
IgYb and IgYc, have been described—the latter with only
three domains in its immunoglobulin constant region
(Gambón-Deza et al. 2012).

Reptiles are nonmammalian, nonavian amniotes. Birds
have evolved from these species (Erickson et al. 2009;
Steiger et al. 2009), and their immunoglobulin genes have
been studied in ducks and chickens. IgM and IgY (the first
animals to be described) were found in both cases.
Surprisingly, while no IgD was found, an immunoglobulin
gene with opposite orientation and sequence homology to
that of IgA of mammals was encountered (Magor et al.
1994; Lundqvist et al. 2001; Zhao et al. 2000).

Studies of immunoglobulins in turtles, or even in the
reptilia Testudines order, are scarce. Only a messenger
RNA has been described for IgM in red-eared slide turtle
(Trachemys scripta elegans) (Turchin and Hsu 1996), and
sequences of messenger RNA for IgM, IgD, and IgY in the
Chinese softshell turtle (Pelodiscus sinensis) have recently
been published (Xu et al. 2009). Recently, however, the
International Painted Turtle Genome Sequencing Consortium
has published and made available the genome of painted turtle
(Chrysemys picta bellii), and the RIKEN institute in Japan has
made available the Chinese softshell turtle (P. sinensis) ge-
nome. This is a great opportunity to provide a clear picture
of the immunoglobulins in turtles and to understand their
preservation or modification during the reptilian evolution-
ary history, which is paralleled to that of mammalians. In
addition, present phylogenetic studies are not yet clear
about Testudines (turtles, terrapins, and tortoises) evolution-
ary location (Lukoschek et al. 2012). The painted turtle
immunoglobulin sequences have placed the turtles in the
same evolutionary lineage that gave rise to crocodiles and

birds. Therefore, their study can provide answers to the
origin of immunoglobulins that are currently found in birds
and mammals.

Materials and methods

Identification of the immunoglobulin heavy chain loci

The complete genome of C. picta bellii build 3.0.1
(AHGY00000000.1) and P. s inens is PelSin_1.0
(AGCU00000000.1) deposited in NCBI (www.ncbi.nlm.nih.
gov) was examined to locate antibody genes. Published im-
munoglobulin sequences of A. carolinensis and E. macularius
were used to search for painted turtle immunoglobulin
sequences. We studied A. carolinensis and E. macularius
sequences and C. picta bellii and P. sinensis genomes from
FASTA files using the Galaxy website (http://main.
g2.bx.psu.edu/) (Giardine et al. 2005; Blankenberg et al.
2010; Goecks et al. 2010). Different scaffolds and contigs that
contain immunoglobulin genes were identified: scaffold
group 175 (JH584564.1) and scaffold 2278 (JH586043.1)
for immunoglobulin heavy chain (IGH) genes inC. picta bellii
and scaffolds JH210939 and JH205552 in P. sinensis. All
sequences were retrieved and analyzed in detail using Vector
NTI (Invitrogen).

Identification of the exons coding for the constant heavy
(CH) domains was performed using the software FGENESH
(www.softberry.com) (Solovyev et al. 2006; Yao et al. 2005)
and Augustus (http://augustus.gobics.de/submission)
(Stanke et al. 2004). Protein products, predicted from pre-
vious searches, were compared with reptile sequences and
found to be evolutionarily close because there are no RNA
studies to date for these genes.

Phylogenetic studies

Comparative phylogenetic studies were carried out using
MEGA5 (Tamura et al. 2011) and sequence alignments
using SeaView (Gouy et al. 2010) with the ClustalW and
MUSCLE algorithms. Subsequently, the neighbor-joining
and maximum likelihood methods were used to produce
phylogenetic trees (pairwise deletion, and JTT or WGA
matrix). The veracity of our results was tested with 500
replicate bootstrapping execution runs.

GenBank sequences used

The following IgM accession numbers were used:
AAO37747 O. anatinus, EU287910 and EU287911 E. mac-
ularius, FJ605150 Pelodiscus sinensis, CAA30613.1
Heterodontus francisci, AAB03838 Trachemys scripta ele-
gans, ABV66128 A. carolinensis, PO1875 Gallus gallus,
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CAC43061 Anas platyrhynchos, MGC69066 X. laevis,
AAH89670 Xenopus tropicalis, A46532 Axolotl mexica-
num , CAE02685 Pleurodeles wal t l , AAC48834
Monodelphis domestica, CAB37838 Homo sapiens.

The following IgD accession numbers were used:
EU312156, EU327165, and EU327166 E. macularius and
ABV66130 A. carolinensis. The following IgY accession
numbers were used: EF690361 A. carolinensis, EU827594
and EU827595 E. macularius, CAA46322 A. platyrhynchos,
S00390 G. gallus, and AJ575800 P. waltl.

The kappa light chain accession numbers that were used
are XP 003222451.1 A. carolinensis, AAA49880.1 X. laevis,
AAI58339.1 X. tropicalis, ABV02006.1 Macropus eugenii,
AAO84652.1 Tachyglossus aculeatus, CAA53284.1 Equus
caballus, and P01834.1 H. sapiens.

Results

With the recent publication of the C. picta bellii and P.
sinensis genomes, made available by the International
Painted Turtle Genome Sequencing Consortium and
RIKEN Institute, we searched the immunoglobulin sequen-
ces of A. carolinensis and E. macularius that we had iden-
tified previously (Deza et al. 2007; Gambón-Deza and
Espinel 2008; Gambón Deza et al. 2009). The turtle genes
for the immunoglobulin heavy chain constant regions were
found as described in “Materials and methods.” With these
data, we were able to perform a detailed study of the immu-
noglobulins in the evolutionary line that emerged from the
first reptiles.

In the IGHC locus, there are 13 sequences coding for
different immunoglobulin isotypes in C. picta belli and 17 in
P. sinensis (Fig. 1). The IGHM and IGHD loci are first placed
and correspond to the IgM and the reptilian IgD (with 11
exons for CH domains), respectively. Downstream of IgD,
there is a region, which includes an IGHD2 gene and an IGHY
gene, and that is repeated five times inC. picta bellii and seven
times in P. sinensis. While IGHYs are in the same direction to
the IGHM-IGHD, IGHD2 are in the opposite directions.
Finally, another sequence coding for IgY was located in each
genome without the IGHD2 mate.

Immunoglobulin M

The locus IGHM contains four exons for CH domains plus
TM1 and TM2 exons for transmembrane and cytoplasmic
regions, respectively (Fig. 2). Two IgMs have been previ-
ously described in turtles, namely, the IgM of T. scripta
elegans (Turchin and Hsu 1996) and the IgM of P. sinensis
(Xu et al. 2009). The deduced amino acid sequence in C.
picta bellii is similar (Fig. 3 and Additional File 1 of
Electronic Supplementary Material (ESM)). Unlike those

described for the anole, gecko, and snakes (Wei et al.
2009; Gambón-Deza et al. 2009, 2012), turtles possess a
cysteine at the beginning of the CH1 domain, which is
required in order to join the light chain. In the CH2 domain,
there are two noncanonical cysteines, where one is present
in turtles studied (position 118) while the other (position
153) is also present in snakes but absent in the lizard A.
carolinensis and gecko E. macularius. At the beginning of
the CH3 domain (position 239), there is a cysteine that is
specific for reptiles and is found in lizards, snakes, and
turtles. Moreover, the cysteine at position 319 is maintained
in most vertebrates. Finally, a cysteine is also present in the
secretor tail (position 486), suggesting the possibility of a J-
chain bonding to form IgM multimers.

A phylogenetic tree was created with IgM sequences
from turtles and other vertebrates (Fig. 3) that supports the
claim that turtles shared a common ancestor with birds.

Immunoglobulin D

The 11 exons for the IgD immunoglobulin domains are
located behind the IGHM (Fig. 1). This confirms the gener-
ation of a three-immunoglobulin core (Cμ-Cδ-Cυ) in the
ancestor of all reptiles and its preservation up until the
present. The turtle IgD has features that are similar to those
described in other reptiles and the platypus IgD. Most non-
canonical cysteines and the high glycosylation rate in
domains CH7 and CH10 are maintained (Fig. 4 and
Additional File 2 of ESM). In P. sinensis, the exon that
codes for the CH10 domain may not be viable due to the
absence in the sequence of the second canonical cysteine
and presence of stop codon. The existence of several types
of differential splicing in IgD indicates that messenger RNA
which is created without the exon could synthesize a func-
tional protein.

The phylogenetic tree supports the domain-to-domain
orthology with lizard, gecko, snakes, and platypus. Each
group of orthologous domains comes from a corresponding
exon. The exonic numbering of this tree will be maintained
in subsequent studies in the article (Fig. 4).

Immunoglobulin Y

We found six IgY gene isotypes in C. picta belli and eight in
P. sinensis (Fig. 1). In C. picta belli, five isotypes were
found in the contig group 175, while the gene for IgY6
was located in contig 2278. All these genes have four Cυ
exons, except in IGHY-5 that has the Cυ2 duplicated, gen-
erating an IgY with five domains (Fig. 2). The second CH2
domain has a sequence that is identical to the CH2 domain
of IgY1 (data not shown).

The gene classes for the immunoglobulin Y in P. sinensis
have a more complex structure. The genes IGHY1, IGHY4,
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IGHY7, and IGHY8 have the four upsilon exons for the four
immunoglobulin domains. Both the IGHY2 and IGHY3
genes have upsilon exons duplicated. In the case of
IGHY2, the Cυ3 is duplicated since the two exons are
nonviable (due to the presence of a stop codon) and also
lack an Cυ2 exon, suggesting that the gene is a pseudogene.
The IGHY3 gene also lacks the Cυ2 exon and has duplica-
tions of the Cυ3 and Cυ4 exons, thereby generating an
immunoglobulin with five domains in the constant region.
Of great interest is the structure of the IGHY6 gene, which
has three upsilon domains with a structure very similar to
the mammalian IGHG (with a missing Cυ2 exon).

The amino acid sequence alignments of the turtle IgYs
with those found in other vertebrates indicate that turtle
IgYs do not contain the cysteine that would establish the
second intrachain bridge between CH1 and CH2. The non-
canonical cysteines for interchain bridging are located in the
CH2 domain (Fig. 5 and Additional File 3 of ESM).

All the IgY isotypes are very similar to each other, indicat-
ing a recent duplication processes in their genesis (Fig. 5 and
Additional File 3 of ESM). As described in the case of the IgM
sequences analysis, the phylogenetic tree constructed with
IgY indicates that turtles shared a common ancestor with birds
(Fig. 5). The high sequence identity between the IgYs within
each species and the tree phylogeny can be explained by the
diversification of the IgY isotypes that took place in the
evolutionary lineage of turtles, or perhaps through a process
of concerted gene evolution.

Immunoglobulin D2

In a previous study, we described the immunoglobulin IgD2
in E. macularius (Gambón-Deza and Espinel 2008). This
immunoglobulin is a variant of IgD, with the first four CH
domains similar to IgD and the last two CH domains similar

to the CH3 and CH4 domains of IgA-like immunoglobulin
(Fig. 6). One year later, an immunoglobulin with the same
characteristics was described in the turtle P. sinensis (Xu et
al. 2009). As shown in Fig. 6, this immunoglobulin corre-
sponds structurally to the IgD2 of E. macularius, having the
same number and order of CH domains.

Several genes encoding for this kind of immunoglobulin
are found in the genome of both turtles. As shown in Fig. 1,
we found five inC. picta bellii and seven in P. sinensis that are
oriented in an opposite direction to IGHM-IGHD and IGHY
genes. All of these genes contain Cδ and Cα exons. The
assignment of domain type that codes for each exon was made
from the phylogenetic tree that emerges from the alignment of
all domains (Fig. 6 and Additional File 4 of ESM).

The analysis of their sequences indicates that in C. picta
bellii, only three of the five genes can be functional and two
may be pseudogenes (IGHD2-3 has an altered sequence in
the Cδ2 and Cδ3 domains, and IGHD2-5 contains a stop
codon in the Cα3 domain). IGHD2-1 has eight exons (Cδ1-
Cδ2-Cδ3-Cδ2-Cδ3-Cδ4-Cα3-Cα4), and the transmem-
brane exons have not been detected, so it should only be
expressed as a secreted form. The other functional immu-
noglobulin genes, IGHD2-2 and IGHD2-4, have four (Cδ3-
Cδ4-Cα3-Cα4) and five (Cδ1-Cδ2-Cδ4-Cα3-Cα4) immu-
noglobulin heavy chain exons and can be expressed as
transmembrane forms due to the presence of transmembrane
exons (TM1 and TM2) (Figs. 2 and 6).

Of the seven sequences in P. sinensis, two could be
pseudogenes, only two exons are detected in gene IGHD2-
5, and, in the gene IGHD2-2, a stop codon in the Cδ2 exon
is found. The remaining five IGHD2 genes have viable
structures. Four of them have the same number of exons
with the structure Cδ1-Cδ2-Cδ3-Cδ4-Cα3-Cα4 while
IGHD2-7 has the structure Cδ1-Cδ2-Cδ3-Cδ4-Cδ1-Cδ2-
Cδ3-Cα3-Cα4.
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Fig. 1 Genomic organization of the IGH locus in turtles. The organi-
zation of the immunoglobulin genes identified in C. picta bellii and P.
sinensis genomes is shown. The transcriptional orientation of genes is

indicated by the direction of the arrows. In both turtles, the genes were
found in two scaffolds whose lengths in base pairs are annotated

230 Immunogenetics (2013) 65:227–237



Aphylogenetic tree was created with the amino acid sequen-
ces obtained from the C. picta bellii functional IGHD2
domains, the IgD2 immunoglobulin sequences from P. sinen-
sis, and IgD sequences from C. picta bellii (Fig. 6). The results
suggest that the IGHD2-1 gene was created before the rest of
the IGHD2 genes. In C. picta bellii, the evolutionary distance

between IgD domains from the IGHD2-1 is higher than the
distance obtained when we compared the same domains from
IGHD2-2 and IGHD2-4 (Additional File 5 of ESM). However,
the evolutionary distance between the IgA domains deduced
from the IGHD2-1, IGHD2-2, and IGHD2-4 genes is very low.
These results suggest that these two latter immunoglobulin

IGHM

IGHD

IGHY1

IGHY2

IGHY3

IGHY4

IGHY5

IGHY6

IGHD2-1

IGHD2-2

IGHD2-3

IGHD2-4
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IGHY1

IGHY2

IGHY3

IGHY4

IGHY5

IGHY6

IGHD2-1

IGHD2-2

IGHD2-3

IGHD2-4

IGHY7

IGHY8

IGHD2-7

IGHD2-6

Immunoglobulin genes from Crysemis picta bellii

Immunoglobulin genes from Pelodiscus sinensis

Fig. 2 Schematic representation and distribution of exons in each of
the immunoglobulin heavy chain genes of turtles. The lines show the
direction in the genome sequence. The boxes indicate exons. The exon

type was assigned as indicated in the results. Those exons with an
altered reading frame or with the appearance of stop codons are marked
with the psi symbol
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domains arose by a recombination between IGHD and IGHD2-
1. The IGHD provided the Cδ exons, and the IGHD2-1, the Cα
exons.

Relationship of the IgD2 with bird IgA

It is worth noting that the IGHD2 location (between the
IGHM-IGHD and IGHY genes) and the direction (laying in
the opposite direction to the IGHM-IGHD and the IGHY
genes) are very similar to that found in avian IGHA, sug-
gesting an evolutionary relationship. To determine whether
the IGHA found in birds and IGHD2 evolved from a com-
mon ancestor, we aligned the domain amino acid sequences
obtained from A. platyrhynchos and G. gallus IgA, P. sinen-
sis IgD2 domains, and C. picta bellii IgD2-1 and IgD
domains. As shown in Fig. 7, the resulting phylogenetic
tree constructed from these sequences suggests a clear
evolutionary relationship between the last two domains
of IgD2 and the CH3 and CH4 domains from the bird
IgA. This analysis also indicates that CH1 and CH2 of
the IgD2 arise from the duplication of Cδ exons. This
duplication happened after the bird Cα1 and Cα2 di-
vergence, suggesting that these IgA domains do not
derive from the IGHD2 gene.

Therefore, we can conclude that the two terminal
domains of the turtle IgD2 and the two terminal domains
of the bird IgA are orthologues; however, any orthologue
exon to the bird Cα1 and Cα2 has been detected in the
turtles’ IGH locus.

Discussion

Reptile evolution may be divided into two lineages: one line
gave rise to lizards and snakes (Squamata) while the other to
turtles, crocodiles, and birds. With respect to immunoglo-
bulins, there are significant studies in birds (Lundqvist et al.
2006; 2001; Higgins and Warr 1993), and recently, these
genes have also been described in several Squamata (Wei et
al. 2009; Gambón-Deza et al. 2012; 2009; Gambón-Deza
and Espinel 2008). From this information, we can affirm
that the common ancestor of Squamata and birds must have
had IGHM and IGHY genes. In this work, we describe the
immunoglobulin genes in turtles, providing new insights
into the origin of the IGHD2 and IGHA genes.

The scanning of the painted turtle genomic sequences
revealed the presence of IGHM, IGHD, and IGHY genes,
which are similar to those previously found in Squamata
(lizards and snakes). So, we may deduce that these immuno-
globulins were present in early reptiles 300 million years ago.
These three immunoglobulins were already present in
amphibians and, although the structure of IgM and IgY has
remained similar to those found today, the amphibian IgD has
been modified through evolution. The IGHD sequence itself
described in the frog X. tropicalis (Qin et al. 2008; Zhao et al.
2006), coding for an IgD with eight CH domains, proves the
presence of duplications. On the other hand, the IGHD gene
described in reptiles gives rise to an immunoglobulin with 11
CH domains that has survived for at least 300 million years
without modifying its basic structure. It suggests essential
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indicated. The maximum likelihood, WGA matrix, was used for
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immune functions that remain to be discovered. The obtained
immunoglobulin sequences support the conclusions provided
by others about the origin of turtles as a sister group to birds
and crocodilians, contradicting the long-held view that they
were basal amniotes (Chiari et al. 2012).

The IGHY genes found in turtle indicate the presence of a
process of duplication of these genes in the evolutionary
line. Probably, once they have made the duplications, a
process of concerted evolution can explain the phylogenetic
tree that emerges from the study (Fig. 5). The turtle ancestor
must have already had several IGHY and nonhomologous
recombination processes between different genes should
have given the homogenization of the sequences and the
presence of genes with duplicate upsilon domains.
Considering that turtles diverged from other reptiles in a
recent time to the divergence of mammals, this process of
duplication and concerted evolution may be a remnant of the
process that must have occurred to generate the IGHE and
IGHG genes of mammals. The presence of the IGHY-6 gene
with three domains is similar to the IGHG mammalian gene.

We recently described a new isotype in E. macularius
(Gambón-Deza and Espinel 2008), the IgD2, which is

defined as an immunoglobulin that has arisen by duplication
of the IgD and the IgA domains. In turtles, immunoglobulins
with these characteristics also exist, as well as in different
evolutionary lines as compared with Squamata. Different
IgD2 with a variable number of domains exist in turtles;
however, all have their first domains from the IgD and two
terminal domains that are similar to the CH3 and CH4 of
IgA. Between E. macularius and the turtles’ (P. sinensis and
C. picta bellii) IgD2, there is no full-domain orthology. All
have the same structural characteristics yet do not share a
common ancestor, since the evolutionary relationship be-
tween the IgD and the IgD2 from the same species demon-
strates that these IgD2 were created independently in their
own evolutionary line.

The results obtained regarding the IgD2 in turtles indicate
that the original gene was IGHD2-1. The other IGHD2 genes
have recently been generated by combination between IGHD
gene (providing the Cδ exons) and IGHD2-1 (providing the
Cα exons). This may explain why some of these new IGHD2
are pseudogenes. Similar to the IGHY genes, a concerted
evolution process must have occurred in order to explain the
identity between the sequences.
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The presence of IgA domains in the turtle IGH locus and
the current avian IgA indicate that the first reptiles must
have had other immunoglobulin apart from IgM, IgD, and
IgY. Our results suggest that it could be the IgA that prob-
ably arose from the evolution of the amphibian immuno-
globulin X (Zhao et al. 2006). This IgAwas most likely lost
after recombining (in an inverted transcriptional direction)
the IGHA and the IGHD genes to generate the turtle IGHD2-
1 gene. Within the evolutionary line from which birds
originated, other changes took place that also prompted the
loss of IGHD. Further genomic studies in other reptiles,
belonging to the bird evolutionary line, are needed to verify
this explanation of the data. As a result, we can firmly
establish that the remnant IgA in reptiles corresponds to
the IgA found in birds. The analysis of the American alli-
gator (Alligator mississippiensis) and saltwater crocodile
(Crocodylus porosus) genomes, recently published by the
International Crocodilian Genomes Working Group
(www.crocgenomes.org), shows the presence of IGHA
(summit to publication) and supports this hypothesis.

All these results, maintenance of a common reptile core
(Cμ-Cδ-Cυ) and emergence of new immunoglobulin iso-
types (different IgY and IgD2) or loss (IgA), suggest that
immunoglobulin loci are shaped by a complex model of
birth-and-death evolution (Nei and Rooney 2005). In this
process, new genes are created by duplication, some of them
are maintained, and others are deleted or diversified by
accumulation of mutations or recombination process. All
these processes seem to have acted to create the current
turtle immunoglobulin heavy chains loci, and probably, they
must have been the cause of the emergence of the mamma-
lian isotypes.

In conclusion, the increasing availability of animal genome
information is very useful for understanding the genetic basis
of immunoglobulin diversity and the evolutionary divergence
of the immunoglobulin loci in vertebrates.
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