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Abstract Binding of peptides to major histocompatibility
complex (MHC) molecules is the single most selective step
in the recognition of pathogens by the cellular immune
system. The human MHC genomic region (called HLA) is
extremely polymorphic comprising several thousand
alleles, each encoding a distinct MHC molecule. The
potentially unique specificity of the majority of HLA alleles
that have been identified to date remains uncharacterized.
Likewise, only a limited number of chimpanzee and rhesus
macaque MHC class I molecules have been characterized
experimentally. Here, we present NetMHCpan-2.0, a
method that generates quantitative predictions of the affinity
of any peptide–MHC class I interaction. NetMHCpan-2.0
has been trained on the hitherto largest set of quantitative
MHC binding data available, covering HLA-A and HLA-B,

as well as chimpanzee, rhesus macaque, gorilla, and mouse
MHC class I molecules. We show that the NetMHCpan-2.0
method can accurately predict binding to uncharacterized
HLA molecules, including HLA-C and HLA-G. Moreover,
NetMHCpan-2.0 is demonstrated to accurately predict
peptide binding to chimpanzee and macaque MHC class I
molecules. The power of NetMHCpan-2.0 to guide immu-
nologists in interpreting cellular immune responses in large
out-bred populations is demonstrated. Further, we used
NetMHCpan-2.0 to predict potential binding peptides for
the pig MHC class I molecule SLA-1*0401. Ninety-three
percent of the predicted peptides were demonstrated to
bind stronger than 500 nM. The high performance of
NetMHCpan-2.0 for non-human primates documents the
method’s ability to provide broad allelic coverage also
beyond human MHC molecules. The method is available at
http://www.cbs.dtu.dk/services/NetMHCpan.
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Introduction

In the majority of higher vertebrates, major histocompati-
bility complex (MHC) molecules select and present
antigenic peptides to T cells, thereby controlling the
specificity of cellular immune reactions (Thompson 1995).
Indeed, peptide binding to MHC is the most selective of the
events involved in antigen presentation (Yewdell and
Bennink 1999). Each MHC molecule potentially has a
unique binding specificity presenting a distinct set of
antigenic peptides to the immune system (Falk et al. 1991).

The MHC genomic region (called HLA, in short for
human leukocyte antigen) is the most polymorphic in
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humans. More than three thousand allelic variants have
been discovered so far (Robinson et al. 2001). Most MHC
molecules have uncharacterized binding specificity. Out of
the more than 1,500 known HLA class I molecules, for
example, less than 5% have their binding specificity
characterized experimentally (Rammensee et al. 1999; Sette
et al. 2005a). In particular, the binding specificity of the
classical HLA-C molecules and the non-classical HLA-E,
HLA-F, and HLA-G molecules remains unsolved due to
lack of experimental data.

There is an even greater lack of experimental data for
non-human species. In the case of non-human primates,
which frequently serve as models for the study of the
human immune response to pathogenic infections, less than
15 alleles have been characterized experimentally (Sette
et al. 2005a). This limited knowledge of the epitope-
binding specificity of relevant species such as chimpanzee
(Pan troglodytes, Patr; Sidney et al. 2006) and rhesus
macaque (Macaca mulatta, Mamu) MHC class I molecules
(Sette et al. 2005b) often compromises a detailed under-
standing correlating immunity between humans and non-
human primates. Moreover, additional primate species,
whose MHC class I binding specificities remain uncharac-
terized, are emerging as new model organisms for viral
infections like HIV-1 (Pendley et al. 2008).

In light of the degree of MHC polymorphism, identifying
a subset of peptides mediating cellular immunity, which at
the same time provides broad allelic coverage, is an essential
yet daunting task for vaccine discovery (Moutaftsi et al.
2006; Watkins et al. 2008). Characterizing the binding motif
of a given MHC molecule requires a significant amount of
experimental work. As a result, development of in silico
methods aimed at predicting the binding motif for unchar-
acterized MHC molecules is important. Conventional allele-
specific MHC class I binding prediction methods are limited
to alleles that are characterized by peptide-binding data
(Brusic et al. 1994; Buus et al. 2003; Donnes and Elofsson
2002; Lundegaard et al. 2008; Mamitsuka 1998; Nielsen et
al. 2003; Segal et al. 2001; Tenzer et al. 2005). Recently,
several groups have developed prediction methods designed
to provide broad allelic coverage of the MHC polymorphism
(Jacob and Vert 2008; Jojic et al. 2006; Nielsen et al. 2007;
Zhang et al. 2005). These methods all focus on the human
MHC class I A and B (and to some extent C) loci. No
publicly available method covers the HLA-E and HLA-G
loci or offers binding prediction for a broad set of non-
human class I MHC alleles.

For the analysis and interpretation of immune responses
in out-bred populations, detailed knowledge of the peptide-
binding capacity of each individual is necessary (Frahm
et al. 2007; Perez et al. 2008). To date, such analyses have
been greatly hindered due to limited knowledge of the
specificities of the majority of MHC molecules.

In this work, we present an updated pan-specific MHC
class I binding prediction method. NetMHCpan-2.0 has
been trained on the hitherto largest set of quantitative MHC
binding data available, covering HLA-A and HLA-B, as
well as chimpanzee, rhesus macaque, gorilla (Gorilla
gorilla), and mouse (Mus musculus) MHC class I mole-
cules. By this, we expand the original NetMHCpan method
(Nielsen et al. 2007) to cover a diverse set of non-human
alleles, including chimpanzee, rhesus macaque, and even
pig (Sus scrofa) MHC class I alleles. Further, we extend the
coverage of the human class I loci and demonstrate that a
pan-specific method trained on quantitative human, non-
human primate, and mouse data can predict the binding
specificities of HLA-C, HLA-E, and HLA-G molecules.
Also, the method allows the user to upload any full-length
MHC class I protein sequence together with a query source
protein sequence and search for putative peptide binders to
the class I molecule in question. The NetMHCpan-2.0
method, together with the benchmark evaluation data, is
available at http://www.cbs.dtu.dk/services/NetMHCpan.

Materials and methods

Source data

Quantitative nonameric peptide–MHC class I binding data
were obtained from the IEDB database (Sette et al. 2005a)
and an in-house database of quantitative peptide–MHC
binding data. In total, the data set consisted of 79,137
unique peptide–MHC class I interactions covering 34 HLA-
A, 32 HLA-B, eight chimpanzee (Patr), seven rhesus
macaque (Mamu), one gorilla (Gogo), and six mouse
MHC class I alleles. See Supplementary Table S1 for a list
of the number of data points per allele. The data are highly
diverse containing a total number of 25,525 unique peptides.
Only a minor fraction of the peptides (1,112 or 4%) share
more than seven amino acid identity to any other peptide in
the data set. The data set contains a large fraction of non-
binding data for each allele (on average 70%). The low data
redundancy and the large amount of non-binding data make
this an ideal data set for machine learning data mining.

Qualitative nonameric MHC ligand data for HLA-A,
HLA-B, HLA-C, and HLA-G were obtained from the
SYFPEITHI database (Rammensee et al. 1999), and MHC
ligand data for HLA-E*0101 were obtained from the IEDB
(Sette et al. 2005a).

Quantitative data for the swine MHC molecule SLA-
1*0401 was obtained as described in the “Materials and
methods”.

The evaluation data for HLA ligands and quantitative non-
human primate peptide binding are available online at http://
www.cbs.dtu.dk/suppl/immunology/NetMHCpan-2.0.php.
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MHC class I pseudo-sequence

The MHC class I molecule was represented by a pseudo-
sequence consisting of amino acid residues in contact with
the peptide. The contact residues are defined as being
within 4.0 Å of the peptide in any of a representative set of
HLA-A and HLA-B structures binding a nonameric
peptide. Of all contact residues, only those that were
polymorphic in any known HLA-A, HLA-B, and HLA-C
protein sequence were included, giving rise to a pseudo-
sequence consisting of 34 amino acid residues (Nielsen et al.
2007). This pseudo-sequence mapping was applied to all
MHC molecules in this study. This could lead us to discard
essential peptide–MHC interactions for non-classical and
non-human MHC molecules. However, no quantitative
peptide-binding data are available for non-classical HLA
molecules, and only very limited data are available for non-
human primates. The pan-specific approach relies on the
ability of the neural networks to capture general features of
the relationship between peptides and HLA pseudo-sequences
and interpret these in terms of binding affinity. Only
interactions that are polymorphic in the training data can aid
the neural network learning. It would hence not be possible for
the NetMHCpanmethod to learn from such extended pseudo-
sequence mappings due to the lack of polymorphism at the
extended MHC positions in the training data.

Neural network training

Artificial neural networks were trained in a fivefold cross-
validation manner as described in Nielsen et al. (2007). For
each data point, both the peptide sequence and MHC class I
pseudo-sequence served as input to the networks. The input
sequences were presented to the neural network in three
distinct manners: (a) conventional sparse encoding (i.e.,
encoded by 19 zeros and a one); (b) Blosum encoding, where
each amino acid was encoded by the BLOSUM50 matrix
score vector (Henikoff and Henikoff 1992); and (c) a mixture
of the two, where the peptide was sparse-encoded, and
the HLA pseudo-sequence was Blosum encoded. The log-
transformed experimentally determined affinity data served as
the output value to train the networks (Nielsen et al. 2003).

Pseudo-distance and nearest neighbor

The pseudo-distance between two alleles is calculated from
the similarity score of the HLA pseudo-sequences using the
relation d ¼ 1� s A;Bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s A;Að Þ�s B;Bð Þ
p , where s(A,B) is the BLO-

SUM50 similarity score vector (Henikoff and Henikoff
1992) between the pseudo-sequences A and B, respectively.

The nearest neighbor of a specific MHC molecule is
defined as being the molecule in the training set with the
smallest pseudo-distance to this molecule.

Peptide affinity assays

The SLA-1*0401 (haplotype 4/NIH d; sequence gi:
158253220), positions 22–297, was generated with a
biotinylated fusion tag and purified as previously described
(Ferre et al. 2003; Leisner et al. 2008). The peptide-binding
affinity was determined largely as previously described
(Sylvester-Hvid et al. 2002) except that the sandwich
ELISA capture step was effected by streptavidin coated
onto Maxisorb microtiter plates (Nunc).

Results

The NetMHCpan-2.0 method was trained on a large set of
quantitative peptide–MHC class I binding data (see
“Materials and methods”). This updated method extends
the original method (Nielsen et al. 2007), in the following
referred to as NetMHCpan-1.0, in two dimensions: First of
all, the training data set for NetMHCpan-2.0 had broader
allelic coverage, including data for a larger set of HLA
molecules as well as non-human MHC binding data for
rhesus macaque (Mamu), chimpanzee (Patr), gorilla
(Gogo), and mouse (H-2) MHC class I molecules. In the
second dimension, the NetMHCpan-2.0 training data
included more binding data for HLA molecules that were
also part of the original method (see “Materials and
methods” for details).

Leave-one-out (LOO) evaluation

The performance of NetMHCpan-2.0 was evaluated by
following a leave-one-out training approach, meaning that
the data for the molecule in question was not included into
the training. The leave-one-out experiment simulated the
situation where the MHC molecule in question had an
uncharacterized binding specificity, thus providing an ideal
benchmark approach for investigating the performance of
the pan-specific binding prediction algorithm for a broad
range of MHC specificities. If not indicated differently, the
performance for the omitted MHC molecule was then
calculated as Pearson’s correlation coefficient (PCC; Press et
al. 1992) between the predicted and known log-transformed
binding-affinity values. One-tailed paired t tests were used to
compare the performances of different methods.

Performance for HLA-A and HLA-B

In the original publication, it was shown that the perfor-
mance of the NetMHCpan method for a given MHC
molecule depended strongly on the coverage of its
neighborhood (Nielsen et al. 2007). As described in the
original NetMHCpan publication, the neighborhood of an
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MHC molecule can be characterized in terms of the
distance to and peptide coverage of the nearest MHC
molecule with an experimentally characterized binding
specificity. Here, the distance is measured in terms of the
amino acid similarity distance between the pseudo-sequences
of the two MHC molecules (see “Materials and methods”).
The NetMHCpan method performs well for MHC molecules,
where the close neighborhood is populated with well-
characterized MHC molecules, and likewise, the method
performs less accurate if the close neighborhood is either
empty or populated with poorly characterized MHC mole-
cules. We compared the performance of NetMHCpan-1.0
and NetMHCpan-2.0 for HLA-A and HLA-B molecules in
terms of Pearson’s correlation coefficient and the area under
the ROC curve (AUC; Swets 1988; see Supplementary Table
S2). Only alleles characterized by ten or more peptide-
binding data points and at least one peptide binder (affinity
stronger than 500 nM) were included in the analysis. Since no
data for the allele in question were included in the training, the
LOO experiment allowed for a direct comparison of the
predictive performance of the two methods even though their
training data sets differ in size. With an average performance
of 0.67,NetMHCpan-2.0 performed significantly better than
NetMHCpan-1.0 (0.62, p=0.0002, n=61). This, however,
was largely due to the improved performance on HLA-B.
While on average the performance for HLA-A molecules
increased only slightly, the average performance for the
HLA-B molecules increased significantly (p=0.0001, n=29)
from 0.5 to 0.6 (see Fig. 1). This improvement is most likely
due to the fact that the number of HLA-B molecules
included in the training was increased from 18 to 32 and
that more training data were available for those HLA-B
molecules that were already part of NetMHCpan-1.0. Thus,

overall, the amount of HLA-B data were increased by
approximately 2.5-fold. For a given molecule, we estimate
its distance to any molecule in the training set in terms of the
pseudo-sequence distance (for details see “Materials and
methods”). Overall, there is a larger decrease in the average
distance of the HLA-B molecules to their nearest neighbor
(0.139 for NetMHCpan-1.0 to 0.115 for NetMHCpan-2.0), as
compared to the HLA-A molecules (0.078 for NetMHCpan-
1.0 to 0.073 for NetMHCpan-2.0). On average, HLA-A
molecules have closer neighbors and, as expected, show a
higher predictive performance than HLA-B molecules (see
Fig. 1).

For some HLA-B molecules, including additional HLA
affinity data into the training helped to populate their close
neighborhood (see Supplementary Table S2). This was the
case for HLA-B*1501, which gained the two close
neighbors B*1502 and B*1503, thereby reducing the
pseudo-distance to the nearest neighbor from 0.19 to 0.09.
To investigate if these two molecules were responsible for
the increase in performance from 0.41 to 0.7, we trained a
network based on the original NetMHCpan-1.0 dataset and
including the data for B*1502 and B*1503. This resulted in
a performance of 0.72, confirming our assumption and
showing that enriching the immediate neighborhood boosts
the performance for an MHC molecule.

In addition to the distance to the closest neighbor, the
peptide-binding data provided by the closest neighbor seem
to be an important factor in determining prediction
performance. In the case of B*2705, for example, adding
data for B*2702 to the training reduced the distance to the
closest neighbor dramatically from 0.31 to 0.08. With only
14 data points, however, B*2702 did not add sufficient data
to the training to dramatically improve the leave-one-out
performance for B*2705 (0.05 versus 0.23 for NetMHCpan-
1.0 and NetMHCpan-2.0, respectively).

The only HLA molecule that gained a non-human
molecule as closest neighbor was HLA-B*0702, for which
adding more data increased the performance from 0.54 to
0.6. We tested if this improvement could be specifically
attributed to adding Patr-B*1301 data to the training by
training the method exclusively on HLA and Patr-B*1301
data. This training increased the performance for HLA-
B*0702 from 0.54 to 0.61 and, thus, confirmed our
assumption.

Performance on non-human primate MHC
class I molecules

The leave-one-out performance values of NetMHCpan-1.0
and NetMHCpan-2.0 applied to non-human primate alleles
are listed in Table 1. Five out of six rhesus macaque
(Mamu) alleles reached a higher PCC for NetMHCpan-2.0.
The average performance increased by 44% (from 0.39 to

Fig. 1 Average performance ofNetMHCpan-1.0 and NetMHCpan-2.0 on
HLA-A and HLA-B molecules. The performance is given as Pearson’s
correlation coefficient. The significance of the difference in performance
for HLA-B was tested using a paired one-tailed t test (n=29)
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0.56). The performance of six out of eight chimpanzee
(Patr) alleles was improved, and, in total, the average
performance for the Patr alleles increased from 0.42 to 0.57.
Taken together, NetMHCpan-2.0 performed significantly
better than NetMHCpan-1.0 on Patr and Mamu alleles (p=
0.02, n=14). These results confirm that we also for non-
human primates improve the prediction accuracy by adding
data for MHC molecules that form their neighborhood.

The motif logos in Fig. 2 illustrate the predicted and
known binding specificity for several Patr and Mamu
molecules. The logos were generated using the leave-one-
out networks, meaning that NetMHCpan-2.0 succeeded in
establishing the specificity of these Mamu and Patr
molecules without having encountered data for these
molecules during the training process. This illustrates
clearly how NetMHCpan-2.0 is able to infer the specificity
also for unknown non-human MHC molecules.

Potential pitfalls of leave-one-out performances

We were surprised by the significant improvement for Patr-
B*2401 and Mamu-B*01 (performance gains from −0.32 to
0.38 and from −0.30 to 0.47, respectively). In both cases,
adding more data to the training did not strongly change
their close neighborhood, as measured by the pseudo-
distances between the sequences of the molecules (see
Table 1). A closer investigation, however, revealed that

these two molecules, despite of their large mutual pseudo-
distance of 0.453, showed marked binding motif similarities
(see Supplementary Figure S1). It also turned out that the
data sets of these two alleles overlap by 68 peptides, which
was assumed likely to have largely influenced the prediction
outcome for the other allele. These observations gave rise to
the concern that the method might be merely learning the
binding-affinity values of the individual peptides by heart
independent of the context of the MHC molecule. To
investigate if this was indeed the case, we followed a
cross-validation approach, in turn leaving out a third of the
overlapping peptide data from the training and then
evaluating on the left-out peptides. This approach reestab-
lished most of the improved performance values (0.33 for
Mamu-B*01 and 0.34 for Patr-B*2401), thus, demonstrating
that these alleles indeed learned their binding specificity from
the alleles in the training data (most likely from each other)
without merely learning the individual peptide affinity values
by heart.

We investigated the effect of peptide-overlap between
training and evaluation set for a large number of alleles by
performing the cross-validated leave-one-out training,
which avoids any peptide-overlap between training and
evaluation. This analysis showed that the overall performance
decreased only slightly (from 0.65 to 0.63) when compared to
the original leave-one-out experiment. The result, thus,
demonstrates that the training data are of sufficient size and

Table 1 Performance for non-human primate MHC class I molecules

Allele Count NetMHCpan-1.0 NetMHCpan-2.0

PCC AUC Neighbor PCC AUC Neighbor

Distance Allele Count Distance Allele Count

Mamu-A*01 749 0.420 0.756 0.301 A6901 1,958 0.376 0.758 0.275 Mamu-A02 306
Mamu-A*02 306 0.464 0.764 0.342 A2602 415 0.531 0.784 0.275 Mamu-A01 749
Mamu-A*11 488 0.573 0.806 0.230 B4002 323 0.715 0.878 0.230 B4002 323
Mamu-B*01 237 −0.302 0.346 0.313 A2403 592 0.465 0.768 0.313 A2403 592
Mamu-B*03 12 0.704 0.813 0.332 A3002 599 0.776 0.656 0.321 Patr-A0901 173
Mamu-B*17 343 0.453 0.759 0.455 B5801 2,350 0.474 0.783 0.443 B2702 14
Mamu average 0.385 0.707 0.329 0.556 0.771 0.310
Patr-A*0101 203 0.483 0.739 0.125 A1101 3,325 0.511 0.763 0.097 A0302 21
Patr-A*0301 169 0.616 0.846 0.076 A1101 3,325 0.701 0.876 0.076 A1101 3,325
Patr-A*0401 144 0.684 0.847 0.157 A0301 3,622 0.743 0.861 0.081 Patr-A0901 173
Patr-A*0701 286 0.369 0.720 0.407 A0101 2,877 0.321 0.695 0.407 A0101 2,877
Patr-A*0901 173 0.404 0.726 0.169 A3001 1,803 0.487 0.758 0.081 Patr-A0401 144
Patr-B*0101 453 0.353 0.720 0.346 B5101 691 0.629 0.855 0.294 Patr-B2401 193
Patr-B*1301 93 0.777 0.911 0.115 B0702 2,651 0.752 0.913 0.115 B0702 2,651
Patr-B*2401 193 −0.320 0.284 0.315 B4002 323 0.373 0.694 0.294 Patr-B0101 453
Patr average 0.421 0.724 0.214 0.565 0.802 0.181

Leave-one-out performances on rhesus macaque (Mamu) and chimpanzee (Patr) MHC class I molecules, comparing NetMHCpan-1.0 to
NetMHCpan-2.0. For each allele, the table states the number of data points, the performances in terms of Pearson’s correlation coefficient (PCC),
and area under the ROC curve (AUC), as well as the pseudo-distance to the closest neighbor in the training set and the number of data points
included in the training for this neighbor. In each case, the higher performance values are indicated in bold
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diversity so that peptide-overlap between training and
evaluation set only poses a minor problem, and we can
assume the leave-one-out performance values to be proper
estimates of the predictive performance of uncharacterized
MHC molecules.

In the final NetMHCpan-2.0 version, we have taken care
of peptide overlaps between MHC molecules by assigning
affinity data for the same peptide to the same subset in the
fivefold cross-validation. In this way, a peptide is prevented
from occurring in training and evaluation set at the same
time.

Estimation of the prediction accuracy

NetMHCpan-2.0 is intended to find its application in
predicting the binding specificity of uncharacterized MHC
class I molecules for which there is no binding data
available. The obvious downside of this is that we are not
able to make any statements on the performance for a
particular MHC molecule unless affinity data for this allele
exists. While NetMHCpan-2.0 achieves a high performance
for some alleles, it shows a low performance for others. Our
aim is to estimate the prediction performance for any given
MHC molecule based on its protein sequence.

We have earlier shown that filling the immediate
neighborhood of an uncharacterized MHC class I molecule
with binding data contributes largely to the prediction
performance (Nielsen et al. 2007). In general, a training set
of at least 50 data points is needed to train a network with
acceptable performance (Lundegaard et al. 2008; Nielsen et
al. 2003; Yu et al. 2002). We therefore selected those alleles
from our training set for which we had more than 50 data
points and, among these, at least ten binding peptides,
reducing the set of possible neighbor MHC molecules to
69. From this set, we identified the closest neighbor for
each of the 82 alleles in the LOO experiment. The strong
correlation between the distance to the closest nearest
neighbor and the predictive accuracy is apparent from the
plot shown in the insert of Fig. 3. Next, we transformed the
nearest neighbor distance into a direct interpretation in
terms of prediction accuracy. Following a fivefold cross-

Fig. 2 Binding motifs of Mamu-A*02, Mamu-A*11, Patr-A*0101,
and Patr-B*1301 generated from reported and predicted binders. The
predicted binders were generated as the top scoring 1% best binders of
100,000 randomly selected natural 9mer peptides. Position specific
scoring matrices (PSSM) were calculated from the set of binding
peptides using sequence weighting and correction for low counts
(Altschul et al. 1997; Nielsen et al. 2004). The binding motifs were
visualized using the logo-plot method by Schneider and Stephens
(1990). In a sequence logo, the height of a column of letters is equal to
the information content at that position, and the height of each letter
within a column is proportional to the frequency of the corresponding
amino acid at that position

R
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validation approach, we calculated the best linear fit
between the performance of an allele and the distance to
its closest neighbor and used this linear relationship to
predict the performance. This resulted in a Pearson’s
correlation of 0.67 (R2=0.45) between the expected
performance and the actual performance (see Fig. 3). The
performance estimation is offered as part of the output of
the NetMHCpan-2.0 server.

The NetMHCpan method

The final NetMHCpan-2.0 method was trained in a fivefold
cross-validation manner as described by Nielsen et al.
(2007). In short, the complete pool of unique peptides was
randomly split into five groups with all MHC binding data
for a given peptide placed in the same group (in this way,
no peptide can belong to more than one group). Artificial
neural networks were next trained as described in the
“Materials and methods”. The cross-validation performances
for all alleles in the training set are listed in Supplementary
Table S3. The average performance per species is given in
Fig. 4.

Scatter plots showing the relation between the predicted
and experimentally measured binding affinities for an MHC
molecule can provide an informative illustration of the
predictive performance of the NetMHCpan method. Such
plots can demonstrate to what extent a prediction method is
indeed capable of reproducing the measured binding-
affinity values. Figure 5 and Supplementary figure S2 give
examples of such scatter plots for three HLA alleles. Figure 5
gives one particular example illustrating the power of the
NetMHCpan method to successfully leverage information
from neighboring MHC molecules to boost performance in

cases where the training data for that particular allele are
scarce. In the figure, the relation between the predicted and
measured IC50 values is shown for the HLA-A*0302 allele
for the pan-specific NetMHCpan-2.0 and single-allele
NetMHC (Lundegaard et al. 2008) methods, respectively.
The HLA-A*0302 allele is characterized with limited
number of binding data but has a close neighborhood
populated with a MHC molecule (HLA*0301) for which
many binding data are available. For this allele, the
predictive performance of the NetMHCpan method in terms
of the Pearson’s CC is 0.77, and the slope of the best linear
fit is 0.71. For the NetMHC method, on the other hand, the
corresponding numbers are 0.29 (Pearson’s CC) and 4.04
(slope of best linear fit), respectively. Similar plots are shown
in Supplementary figure S2 for two other alleles. The first

Fig. 4 Fivefold cross-validation performances of NetMHCpan-2.0.
The histogram shows the average Pearson’s correlation coefficient for
HLA-A, HLA-B, rhesus macaque (Mamu), chimpanzee (Patr), and
mouse MHC class I molecules

Fig. 3 Estimation of the
NetMHCpan-2.0 prediction
performance. The graph shows
the result of a fivefold cross-
validation (n=82). The
Pearson’s correlation coefficient
(PCC) between observed and
predicted performance is 0.67
(R2=0.45)
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case is an allele (HLA-A*0301) for which a large number of
peptide-binding data are available, and the second, an allele
(HLA-B*7301) where the close neighborhood is empty, i.e.,
no similar MHC molecule exists for which binding data are
available. The relative poor performance of the NetMHCpan
method for the “lonely” HLA-B*7301 manifests the essential
need of a well-characterized neighborhood in order for the
pan-specific prediction approach to succeed.

The NetMHCpan-2.0 method was made available as a
web server, which provides affinity predictions for any
peptide and MHC class I molecule. The MHC molecule can
either be chosen from a list of more than 1,600 different alleles
or the user can provide the full-length protein sequence of any
MHC class I molecule. This makes the method especially
attractive because it can provide suggestions on how the
binding motif might look, even if there is no prior information
on the specificity available. NetMHCpan-2.0 is available at
http://www.cbs.dtu.dk/services/NetMHCpan.

We used NetMHCpan-2.0 to predict the binding specif-
icities of HLA, macaque, chimpanzee, and mouse alleles and
made the sequence logos of these motifs available online.
The motif logos can be viewed at http://www.cbs.dtu.dk/
biotools/MHCMotifViewer/Home.html (Rapin et al. 2008).

Identifying endogenously presented peptides

The NetMHCpan method was validated using a large set of
data from the SYFPEITHI database (Rammensee et al.
1999), which were not included in the training data of the

method. This set consists of 596 HLA ligands restricted to
34 different HLA-A and HLA-B alleles. For each of the
reported ligands, we identified its source protein in the
UniProt database (UniProt 2008) and predicted the affinity
of all overlapping nonamers contained in the source protein
sequence for the HLA allele in question. In each case, all
peptides, with the exception of the reported HLA ligand,
were assumed to be non-binders. Performing this experiment,
we found an average rank of the HLA ligands of 2% and an
average rank per HLA allele of 3.3%. This means that on
average for a protein with 200 amino acids, a number of
peptides less than five are needed to be tested in order to
identify the ligand. In particular, for ligands restricted to HLA
alleles not included in the training of theNetMHCpan method,
we found that the average rank was 2.3%, whereas the
average rank was 3.4% for ligands restricted to HLA alleles
included in the training. This result clearly demonstrates
the power of the NetMHCpan method to do accurate
extrapolations to specificity-wise unknown MHC molecules.
The details of this analysis are shown in Supplementary
Table S4.

Performance for HLA-C

Quantitative binding data for HLA-C molecules are sparse.
There are, however, qualitative data available from the
SYFPEITHI database (Rammensee et al. 1999). In total, we
obtained 77 ligands covering eight HLA-C alleles (see
Supplementary Table S5). For each of the reported ligands,

Fig. 5 Scatter plots of the predicted versus experimental IC50 values
for the HLA-A*0302 alleles. NetMHCpan refers to the method
developed in this paper, and NetMHC refers to the single-allele
neural-network-based method developed by Lundegaard et al. (2008).
The lines in the plots are least square fits for NetMHCpan (solid line)

and NetMHC (dashed line), respectively. The HLA-A*0302 is
characterized with 21 peptide data points. The Pearson’s correlation
between the prediction and experimental log(IC50) values is 0.77 and
0.29 for the NetMHCpan and NetMHC methods, respectively, and the
slope of the best linear fit is 0.71 and 4.04
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we identified its source protein and predicted the affinity of
all nonamers contained in the source protein like we did for
the HLA-A and HLA-B ligands earlier. In doing this, we
were able to calculate the relative rank of each ligand and
the average relative rank per HLA-C allele (see Supple-
mentary Tables S5 and S6). With an average relative rank
of 3.6% and 1.9%, respectively, the best performance was
achieved for HLA-Cw*0102 and HLA-Cw*0304. Figure 6
shows sequence logos of the predicted specificities of these
two molecules as well as the sequences of the reported
ligands. The anchor positions of both molecules are
assumed to be P2 and P9 (Rammensee et al. 1999) with a
preference for alanine (A) at P2 and leucine (L) at P9. This
conforms very well with our predicted motifs.

These results suggest that NetMHCpan-2.0 may be
useful for predicting binders for HLA-C alleles. Based on
their pseudo-sequence, HLA-C alleles are closest to HLA-B
alleles. The predicted performances in terms of Pearson’s
correlation coefficient, estimated from the pseudo-distance
to the closest neighbor, range from 0.34 to 0.68. We expect
that adding quantitative HLA-C binding data to the training
of NetMHCpan-2.0 would largely improve the performance
for HLA-C binding prediction.

Performance for the non-classical HLA molecules HLA-E
and HLA-G

In contrast to the other HLA class I alleles, the HLA-E
locus is not very polymorphic. The IMGT/HLA database
reports only two full-length HLA-E molecules (Robinson
et al. 2001). The closest neighbor of HLA-E*0101 is the
mouse allele H-2-Kk with a distance of 0.42. The closest
among the HLA alleles is B*4001 with a distance of 0.56.
This indicates that HLA-E*0101 is extremely isolated, and
based on the large distance to the closest neighbor, we
estimate a relative low prediction performance of 0.21. We
obtained qualitative binding data for HLA-E*0101 from the

IEDB (Sette et al. 2005a), which consisted of seven ligands
stemming from the same source protein and performed an
analysis similar to the one described above for HLA-A and
HLA-B. The details of this analysis are shown in
Supplementary Table S7. On average, the known binders
rank among the top 4% of all peptides.

For HLA-G, we obtained the sequences of 11 HLA-G
ligands from the SYFPEITHI database (Rammensee et al.
1999). The closest neighbor of HLA-G*0101 is HLA-
A*2403 with a pseudo-distance of 0.35. Based on this, we
would predict a performance of 0.32. Predicting the binding
affinity for the ligands and all the peptides in their
respective source protein resulted in an average rank of
3.4% of the ligands (see Supplementary Table S8). Figure 7
shows the predicted motif logo for HLA-G*0101 and the
list of known ligands. HLA-G was reported to have P2, P3,
and P9 as anchor positions, with a preference for hydrophic
residues at P2 and P9 and a preference for proline at P3
(Diehl et al. 1996). In addition, a preference for basic
residues at the N-terminus of the peptides has been
reported, which is also reflected by the predicted motif
(Clements et al. 2007). Moreover, HLA-G was suggested to
share binding specificities with HLA-A2, which is in
agreement with the predicted preference for hydrophobic
residues at P9. The predicted motif shows a slight
preference for proline at P3 (12.3% of the predicted binders
have a proline at P3) but does not put forth P3 as an anchor
position. It should be noted that for both HLA-E and HLA-
G, the number of experimentally verified HLA ligands is
very limited, making a detailed comparison of the predicted
and experimental sequence logos difficult. For instance,
does the predicted sequence motif for HLA-G show a
preference for Y and F at position P2 that is not present in
the limited set of known ligands. Further experimental

Fig. 6 Predicted binding motifs of HLA-Cw*0102 and Cw*0304 and
the reported ligands (Rammensee et al. 1999). The motif sequence
logos were generated as described in Fig. 3

Fig. 7 Predicted binding motif of HLA-G*0101 and reported ligands
(Rammensee et al. 1999). The motif sequence logos were generated as
described in Fig. 3
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validation is needed to clarify if the HLA-G motif indeed
does support binding of peptides with Y and F at P2.

In spite of not being able to predict binding for HLA-
E*0101 and G*0101 as accurately as for HLA-A and HLA-
B molecules, NetMHCpan-2.0 appears to be a useful tool to
gain insight into the binding motifs also for non-classical
HLA molecules.

Performance for a pig MHC class I molecule

We used NetMHCpan-2.0 to predict potential binding
peptides for the pig MHC class I molecule SLA-1*0401.
We then experimentally tested the affinity of 14 high
scoring peptides. Thirteen of these 14 peptides turned out to
be binders, five of them being strong binders with an IC50
value of less than 50 nM. Figure 8 shows the predicted
binding specificity of SLA-1*0401 and the motif that was
generated from the 13 verified binders.

Interpretation of cellular immune responses

Interpretation of cellular immune responses in large out-
bred populations has often been greatly hindered by the
limited knowledge of the peptide-binding specificities of
the majority of the populations’ MHC molecules. In a large
HIV cohort study, where 184 peptides were tested for
recognition in 31 HIV-1-infected patients, NetMHCpan has
earlier proven powerful in identifying the HLA allele most
likely responsible for the observed CTL responses. Eighty-five
percent of the 225 CTL responses could be explained based on
the HLA phenotype of the patients (Perez et al. 2008).

A similar study, in which 242 well-defined viral HIV and
EBV epitopes were tested for CTL responses in 100
patients, came to the conclusion that HLA class I epitopes
are surprisingly promiscuous (Frahm et al. 2007). Frahm

et al. reported that half of the responses in their study were
seen in the absence of the originally reported restricting
HLA class I allele, indicating that the epitopes must be
restricted also by other HLA alleles. Based on two different
statistical approaches, they suggested alternative restricting
HLA alleles for 303 epitope–HLA pairs, 33 of them
significant using both approaches. Interestingly, these
alternative HLA alleles were picked solely based on
statistics, disregarding any knowledge of the HLA binding
specificity of possible alternative alleles. Since a large set of
probable associations between original and alternative
restrictions occurred between alleles that fell into different
supertypes and in some cases even different loci, the
authors suggested that in some cases, features other than
readily apparent MHC binding similarities may contribute
to epitope promiscuity.

Given this data, we were interested in whether we could
explain these results based on predicted HLA class I
binding. For 283 of the 303 epitopes, we were able to
identify the source proteins. For each of these epitopes, we
then applied NetMHCpan-2.0 to all peptides contained in
its source protein, predicting the binding affinity for both
the original restricting HLA molecule and the suggested
alternative HLA molecule. Since most restrictions were
only specified with two digits, we applied NetMHCpan-2.0
for all known four-digit alleles that fit the denoted two-digit
specification. AUC values were calculated assuming that
the reported epitope is the only binder and all other peptides
contained in the source protein are non-binders. Epitopes
with an AUC value of at least 0.9 were interpreted as
predicted binders. With this approach, we were able to
explain 97.3% of the original restrictions and 90.9% of the
alternative restrictions in the set of 33 most significant
epitope associations. If applied to the complete list of 283
HLA-associations, we were able to explain 96.9% of the
original restrictions and 75% of the alternative restrictions,
of which 28.8% could only be explained by peptides
embedded in the reported epitopes. We repeated this
analysis limiting the set of HLA alleles to the ones that
have been reported to exist in North America (Middleton
et al. 2003; since the study subjects stemmed from the
Boston area). Still, we were able to explain 78.8% of the 33
significant alternative restrictions, 34.1% of these as
embedded peptides. Our results support the suggested
alternative restrictions reported by Frahm et al. and indicate
that the epitope promiscuity is defined by the binding
specificity to the HLA molecules.

Discussion

Binding of peptides to the MHC molecule is the single
most selective step in distinguishing immunogens from

Fig. 8 Sequence motifs generated from the 13 verified binders and
predicted binders for the swine MHC class I molecule SLA-1*0401.
The predicted binders and motif sequence logos were generated as
described in Fig. 3
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non-immunogens of the cellular immune system in most
animals (Yewdell and Bennink 1999). The MHC genomic
region is highly polymorphic, and each MHC molecule has
a unique binding motif presenting a distinct set of peptides
to the immune system (Falk et al. 1991). Characterizing
which peptides will bind a given MHC molecule is hence
of pivotal importance for the understanding of cellular
immune responses. Only a very limited set of the currently
known MHC molecules in humans and animals has been
characterized experimentally (Rammensee et al. 1999; Sette
et al. 2005a). This lack of specificity characterization has
made it difficult to correlate immunity to antigenic
presentation due to the fact that little is known about the
peptide-binding specificity in the host (Sidney et al. 2006).

An essential step in peptide vaccine research is the
testing of potential immunogenic peptides in animal
models. To date, there are no tools available that offer
peptide-binding prediction for a wide array of non-human
primate MHC class I molecules. Likewise, binding prediction
with broad allelic coverage for HLA loci other than HLA-A
and HLA-B has not been publicly available thus far.

With NetMHCpan-2.0, we have taken MHC class I
binding prediction beyond HLA-A and HLA-B. We
demonstrated that adding peptide-binding information for
non-human MHC class I molecules to the training extends
the method’s applicability to HLA-C and the non-classical
HLA loci HLA-E and HLA-G. Furthermore, we showed
that NetMHCpan-2.0 is able to accurately predict the
binding specificity of chimpanzee and Indian rhesus
macaque alleles. This shows the potential of the method
to assist in the characterization of MHC class I molecules of
upcoming model organisms like rhesus macaques of
Chinese origin and cynomolgus macaques whose MHC
specificities are still largely unknown (Karl et al. 2008;
Pendley et al. 2008). We have earlier demonstrated how
such pan-specific MHC binding predictions can provide
novel insights to the co-evolution of the host immune
system and infectious pathogens in, for instance, HIV-
infected humans and chimpanzees (Hoof et al. 2008). It is
thus likely that NetMHCpan-2.0 may assist in vaccine
research by providing insights into the binding repertoire of
the model organism and thereby enabling a direct correlation
between the immune responses in animal models and the
human natural host.

NetMHCpan-2.0 was able to predict the binding motif of
the pig MHC class I molecule SLA-1*0401 with high
accuracy. This result shows the potential of the method to
predict binding beyond HLA and non-human primate alleles. It
remains to be seen how far NetMHCpan will be able to reach
in predicting peptide binding for animal MHC molecules.

In the process of reaching further into the world of
animal MHC molecules, NetMHCpan-2.0 can be of great
value to limit the number of peptides to be tested in affinity

experiments because potential binders are likely to rank
among the top-scoring peptides. This allows for a more
efficient characterization of the binding motif of unknown
MHC class I alleles because a smaller set of peptides has to
be tested to establish the binding specificity.

The unique ability of the method to characterize binding
specificities for any MHC class I molecule can rationalize
the selection of peptides for vaccine studies and guide
interpretation of immune responses in large out-bred
populations where a detailed characterization of each
individual is essential (Frahm et al. 2007). In their work,
Frahm et al. observed epitope promiscuity between HLA
supertypes and HLA loci and suggested that in some cases,
features other than binding motif similarities may contribute to
epitope promiscuity. The data presented here indicates,
however, that the majority of the observed epitope promiscuity
can be explained by peptide-binding specificities alone.

The pan-specific approach relies on the ability of the
algorithm to capture general features of the relationship
between peptides and MHC sequences, and it is therefore
apparent that the method should perform better when the
query MHC molecule is represented by closely related
MHC molecules with characterized binding specificity
(Nielsen et al. 2007). We illustrated this importance of a
well-defined neighborhood for the prediction performance
both in a large-scale leave-one out experiment and for a set
of alleles not included in the training of the NetMHCpan-
2.0 method. We demonstrated how the correlation between
the performance for a molecule and its distance (as measured
in terms of amino acid similarity) to a well-defined neighbor
enabled us to estimate the prediction performance of
NetMHCpan-2.0 for uncharacterized MHC molecules.

The comparison of the NetMHCpan-1.0 and the
NetMHCpan-2.0 performances for HLA and non-human
alleles illustrates that adding quantitative data for additional
alleles to the training improves the performance for alleles
in their immediate pseudo-sequence neighborhood. We aim
to complete the MHC specificity space by identifying
informative alleles that would bring the largest gain in
performance by filling the holes in the specificity space. An
approach to this has already been suggested for the MHC
class II specificity space, which would involve the
identification of informative alleles, the development of
immunoassays for these alleles, and the retraining of the
method on the extended data set (Nielsen et al. 2008). This
approach will further extend the prediction capacity of
NetMHCpan-2.0 into the animal world and will improve
the prediction performance for the today sparsely covered
HLA loci C, E, and G.
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