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Abstract We present analytical equations for the trans-
membrane voltage (A®) induced by a homogeneous field
on oriented cells of spheroidal shape in spherical coor-
dinates. For simplicity, a nonconductive membrane and
a highly polarizable cytoplasm were assumed. Under
these conditions, the cell’s polarizability is determined
by the nonconductive membrane. For symmetry reasons
the surface of the highly polarizable cytoplasm can be
assumed to be at 0 V. Since the cell is of ellipsoidal shape
its effective local field, i.e. the field of its Maxwellian
equivalent body, must be constant. This allows for a
simple description of the potential at the external
membrane side, directly leading to A®. The dependence
of A® on cell size and shape as well as on the location of
the considered membrane site is described for both
possible orientations of the symmetry axis, parallel and
perpendicular to the external field, respectively.

Keywords Membrane polarization - Maxwell’s
equivalent body - Depolarizing factor - Dielectric
breakdown - Electroporation

Introduction

To our knowledge, Fricke (1953) was the first to express
the transmembrane voltage (A®) induced at the poles of
a cell of general ellipsoidal shape for the DC steady-state
case. The frequency and cell parameter dependency of
AD was considered by Schwan (1957) and explicit
equations were given by Bernhardt and Pauly (1973).
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Analytical A® equations are commonly named after
Schwan (see e.g. Marszalek et al. 1990). Several attempts
to improve the equation for cells of nonspherical ge-
ometry exist (Jerry et al. 1996; Gimsa and Wachner
1999). Recently, Kotnik and Miklavcic (2000) presented
analytical equations for the angle dependence of AD of
spheroidal cells. These authors derived an expression for
oblate and prolate spheroidal cells but restricted their
derivation to the parallel orientation of the symmetry
axis and the field. Their extensive derivation started
from the very basis of the problem and considered the
DC steady-state polarization of a cell with negligible
membrane conductivity and a highly polarizable cyto-
plasm.

Physicists have been dealing with the potential in-
duced on the surface of spherical, spheroidal and ellip-
soidal bodies or cavities for a long time (Maxwell 1873;
Stratton 1941; Stille 1944; Osborn 1945; Stoner 1945).
Nowadays, the problem is described in textbooks (see
e.g. Landau and Lifschitz 1985). The so-called depolar-
izing factors were introduced to describe the dependence
of the local field deviation on the shape of the bodies or
cavities. In our A® derivation, we start from this phys-
ical knowledge and use a straightforward approach to
derive an analytical expression for the perpendicular
orientation of the symmetry axis and the field for oblate
and prolate spheroidal cells.

Biological cells are usually negligibly magnetizable
and they are small with respect to the wavelength at
frequencies below a few GHz. Under these conditions,
the potential distribution can be directly obtained by
solving Laplace’s equation. Nevertheless, an explicit
solution requires closed surfaces of the second degree,
i.e. ellipsoids (Maxwell 1873; Stratton 1941). The most
complex but finite surface of the second degree is the
general ellipsoid. A feature of spheroidal and ellipsoidal
models with confocal shells is that homogeneous
equivalent bodies of the same external geometry can be
found for all frequencies. These bodies possess certain
properties and exhibit the same external field distribu-
tion as the shelled model. The effective internal field of
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this Maxwellian equivalent body is constant. Its surface
potential is identical to the potential at the external
membrane side.

In the following paper we will consider the DC
steady-state polarization of an oriented spheroidal cell
with zero membrane conductance and a highly polariz-
able cytoplasm. In this case, the effective polarizability
and, consequently, the external field distribution of the
cell model are determined by the nonconductive mem-
brane. The cytoplasmic field vanishes owing to polar-
ization charges on its surface. As a result, the whole
cytoplasmic surface will be at the same potential that can
(for simplicity) be assumed as 0 V (note that this con-
dition cannot as easily be met at AC; at higher fre-
quencies, when the membrane impedance decreases by
capacitive bridging, “metallic” cytoplasmic properties or
an infinitely high permittivity are required). With every
surface point of the cytoplasm being at 0 V, another
simplification of the problem is possible: A® for a given
membrane point is identical to the potential at the sur-
face of the equivalent body.

Theory and results

DC steady-state polarization of an oriented
spheroidal cell

Let us assume a spheroidal single-shell model oriented in
the field direction with one of its principal axes. In this
case, also the constant, effective local field of its
Maxwellian equivalent body is oriented in parallel to the
external field (Fig. 1). The symmetry plane of the model,
oriented perpendicularly to the fields, will be at 0 V.
Thus, the potential of any surface point can be calcu-
lated from the constant local field of the equivalent body
and its distance to the symmetry plane. Since all surface
points of the cytoplasm are at 0 V, the derivation of A®
can be split into two problems that can be solved sepa-
rately: first, to determine the constant local field; and
second, to determine the distance of every surface point
to the symmetry plane.

symmetry plane

cytoplasmic
surface

Fig. 1 Oriented, prolate single-shell spheroid in an external field.
The symmetry plane is assumed to be at 0 V

For a nonconductive membrane at DC, the effective
polarizability of the cell is very low in comparison with
the aqueous suspension medium. Consequently, the lo-
cal field is amplified with respect to the external field (see
Landau and Lifschitz 1985). Along a given principal axis
oriented in the field direction, the field amplification
factor is related to the spheroid’s axis ratio and can be
expressed by the depolarizing factors (Eq. 3 below; for
details on field amplification, see Gimsa and Wachner
1999). Analytical equations for the depolarizing factors
were first derived by Stratton (1941) for spheroids and
later in more detail by Stille (1944). The depolarizing
factors were extended to the general ellipsoidal shape
independently by Stoner (1945) and Osborn (1945).

The depolarizing factor n; of an oblate spheroid
(R < R,) along the symmetry axis is:

2
n =14 (e —arctan e) with e =/ (ﬁ—f) —1 (1)
and in the prolate case (R; > R»):
) 2
m=L (e - 2e) with e= /1 (%) (2)

In Egs. 1 and 2, “¢” stands for the eccentricity of the
spheroid. For spheres (R; = R,), n; = 1/3. For the general
ellipsoid the sum of the depolarizing factors along the
three principal axes is always unity (n, +n, +n3=1). For
spheroids, it follows that if #; is the depolarizing factor
along the symmetry axis, the depolarizing factors along
the other two principal axes will be n, =n3;=(1-n;)/2.

Along the semiaxis R;, the maximum field amplifi-
cation factor f is given by the depolarizing factor, ny,
along this axis as:
f=1/0—-m) (3)
(for details, see Gimsa and Wachner 1999). Under the
above assumptions, the maximum field amplification
applies and the potential at the spheroid’s pole pointing
in the field direction, @, (e.g. along semiaxis Rj,
Fig. 1), can be calculated directly from the external field
amplitude, E, as ®,o=/XEXR;. Owing to the co-
orientation of one principal axis of the spheroid and the
external field, the constant local field of the equivalent
body, Ej.c, i1s also parallel to the external field. Its am-
plitude is Ejoc=®Ppoe/R1. To obtain the potential at a
given surface point, Ej,. must be multiplied by the dis-
tance of that point from the symmetry plane. In the
following, the two possible orientations of the spheroi-
dal cell, with the symmetry axis in parallel and perpen-
dicular to the field, respectively, will be considered.

The parallel orientation of the symmetry axis
and the field

For completeness, we will first apply our approach to the
case considered by Kotnik and Miklavcic (2000). The
cell has semiaxes R;, R», and R, and is oriented with R,
in the field direction. In this case, surface points of the



same potential form rings that are described by the same
angle, @, in between the symmetry axis and lines
through the spheroid’s center. This feature allows for a
further simplification, reducing the calculation of the
distance in between a surface point and the symmetry
plane to the two-dimensional case of an ellipse with
semiaxes R; and R,. The distance d is given by:

B R{R; cos ¢
\/R% sin® ¢ + R3 cos? ¢

d (4)

According to the above considerations, A® at a point
of distance d to the symmetry plane is given by:

E

AD = Ejped =
1-— ny

d (5)

Introducing Eq. 1 into Eq. 5 yields the potential
distribution for the oblate shape:

R} -R: d

AD = L (6)

For the prolate shape, Eq. 2 must be introduced,
leading to:

R} — R} d

—FE
R} Ri+/R2-R: Ry
Ry — log
R2_R2 Ry
\/ 1™

AD =

(7)

For spheres (R;=R;), n; in Eq. 5 is 1/3, directly
leading to the well-known expression for a spherical cell.
Equations 6 and 7 are identical to those recently pub-
lished by Kotnik and Miklavcic (2000), proving the
feasability of the approach.

The perpendicular orientation of the symmetry
axis and the field

Obviously, the perpendicular orientation of the sym-
metry axis to the field is a more complex problem.
Nevertheless, also for this orientation an analytical
expression can immediately be derived. In spherical
coordinates, the distance of each surface point to the
symmetry plane of the spheroid must now be de-
scribed by two angles: «, the angle relative to the
symmetry plane that is oriented perpendicular to the
symmetry axis, and f5, the angle within this plane.
With respect to these angles the field will be oriented
at 0° and 0° along axis R,. The distance d of a surface
point to the symmetry plane of zero potential is now
given by:

R{R;cos o cos f

\/R% sin® o + R} cos® o

d= 8)

465

The induced A® is the product of the field ampli-
fication factor along axis R, [ f=1/(1-n,); Eq. 3], the
field amplitude E, and d:

AD = Elocd =

1-— ny d (9)
For the new orientation the relation of the depolar-
izing factors must be used to obtain the depolarizing
factor ny,=(1-n,)/2 along axis R,. For spheres (R;=R5),
the depolarizing factor again is 1/3 and the angle de-
pendence (Eq. 8) can be described by a single angle, ¢.
Nevertheless, for the oblate shape, 1, can be introduced
into Eq. 9. We obtain:

2 2
AD = 2R3~ Ri) 4 (10)
WR BB apecot (2 ) K2
With n, for the prolate shape we obtain:
2 2
AD = 2(Ri — ) 4 (11)
R-2R’ L _RiRy IOgR1+,/Rf—R§ Ry
R VRE SR
Discussion

For the simplified cell properties assumed, it is possible
to derive closed, analytical A® expressions in a very
straightforward manner. In principle, such expressions
have already existed for a long time. From a physical
point of view, the equations describe the potential dis-
tribution on the surface of a spheroidal cavity in a
dielectric. Consequently, they lack physiological cell
properties. Nevertheless, assuming a zero membrane
conductance and a highly polarizable cytoplasm is not a
very serious limitation at DC (Schwan 1957, 1983;
Grosse and Schwan 1992). Of course, for a non-negli-
gible membrane conductance, e.g. after electrically
induced pore formation, A® will decrease. In this light,
the above equations must be considered to describe the
maximum A® that can be induced for a given cell shape
at a given membrane site. In an AC field the membrane
impedance decreases with increasing frequency. The
characteristic frequency of membrane polarization de-
termines the —3dB criterion, a decrease of the induced
voltage by a factor of 2% In the case of a spheroidal
cell this frequency depends on shape and orientation (for
explicit expressions for the characteristic frequency of
spheroidal cells, see Gimsa and Wachner 1999).
Experimentally, the time-dependent charging and
discharging of the membrane as well as time-dependent
changes of the cell’s properties are of importance, e.g.
in modeling the dielectric membrane breakdown
(Marszalek et al. 1990; Sukhorukov et al. 1998; DeBruin
and Krassowska 1999). To model these relations, a
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complete expansion of Schwan’s equation is required. It
should not only describe the angle dependence of AD,
but also its dependence on field, cell and medium
properties. The complete equation must describe the A®
dependence on (1) cell size and shape, (2) field frequency,
(3) the membrane capacitance, (4) the conductivities of
cytoplasm, membrane and external medium, and (5) the
site at the membrane, e.g. given by the angle dependence.
The expression derived by Kotnik and Miklavcic (2000)
(Egs. 6 and 7) only meets points (1) and (5) of the above
criteria and is restricted to spheroidal cells with a parallel
orientation of symmetry axis and field. In this letter, we
derived equations also for the perpendicular orientation.

We believe that the derivation of a complete AD
equation, taking into account all points (1) through (5)
for oriented cells, will not only be possible for the
spheroidal but also for the general ellipsoidal shape. An
expression for the poles of spheroidal cell, meeting
points (1) through (4) but not point (5), has already been
published (Gimsa and Wachner 1999). A complete
equation for ellipsoidal cells has, to our knowledge, not
yet been published. A respective paper, starting from our
equation for the poles of spheroidal cells, is in prepa-
ration. Still open is the problem of A® for an arbitrarily
oriented cell of the general ellipsoidal shape. We believe
that this problem can also be solved.

Acknowledgements We are grateful to Ms. Ch. Mrosek for her
assistance and to Dr. U. Gimsa and Mr. R. Sleigh for help with the
manuscript. Prof. H.P. Schwan is acknowledged for a fruitful
e-mail discussion.

References

Bernhardt J, Pauly H (1973) On the generation of potential dif-
ferences across the membranes of ellipsoidal cells in an alter-
nating electrical field. Biophysik 10:89-98

DeBruin KA, Krassowska W (1999) Modeling electroporation in
a single cell. II. Effects of ionic concentrations. Biophys
J 77:1225-1233

Fricke H (1953) The electric permittivity of a dilute suspension of
membrane-covered ellipsoids. J Appl Phys 24:644-646

Gimsa J, Wachner D (1999) A polarization model overcoming the
geometric restrictions of Laplace’s solution for spheroidal cells:
obtaining new equations for field induced forces and trans-
membrane potential. Biophys J 77:1316-1326

Grosse C, Schwan HP (1992) Cellular membrane potentials in-
duced by alternating fields. Biophys J 63:1632—-1642

Jerry RA, Popel AS, Brownell WE (1996) Potential distribution for
a spheroidal cell having a conductive membrane in an electric
field. IEEE Trans Biomed Eng 43:970-972

Kotnik T, Miklavcic D (2000) Analytical description of trans-
membrane voltage induced by electric fields on spheroidal cells.
Biophys J 79:670-679

Landau LD, Lifschitz EM (1985) Elektrodynamik der Kontinua,
vol 8. Akademie-Verlag, Berlin (in German)

Marszalek P, Liu D-S, Tsong TY (1990) Schwan equation and
transmembrane potential induced by alternating electric field.
Biophys J 58:1053-1058

Maxwell JC (1873) Treatise on electricity and magnetism. Oxford
University Press, London

Osborn JA (1945) Demagnetizing factors of the general ellipsoid.
Phys Rev 67:351-357

Schwan HP (1957) Electrical properties of tissue and cell suspen-
sions. Adv Biol Med Phys 5:147-209

Schwan HP (1983) Biophysics of the interaction of electromagnetic
energy with cells and membranes. In: Grandolfo M, Michaelson
SM, Rindi A (eds) Biological effects and dosimetry of nonion-
izing radiation. Plenum Press, New York, pp 213-231

Stille U (1944) Der Entmagnetisierungsfaktor und Entele-
ktrisierungsfaktor fiir Rotationsellipsoide. Arch Elektrotechnik
38:91-101 (in German)

Stoner EC (1945) The demagnetizing factors for ellipsoids. Phil
Mag 36:308-321

Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New
York

Sukhorukov VL, Mussauer H, Zimmermann U (1998) The effect of
electrical deformation forces on the electropermeabilization of
erythrocyte membranes in low- and high-conductivity media.
J Membr Biol 163:235-245



