
Abstract Homing pigeons and migratory birds are well
known examples for animals that use the geomagnetic field
for their orientation. Yet, neither the underlying receptor
mechanism nor the magnetoreceptor itself is known. Re-
cently, an innervated structure containing clusters of magne-
tite nanocrystals was identified in the upper beak skin of the
homing pigeon. Here we show theoretically that such a clus-
ter has a magnetic-field-dependent shape, even in fields as
weak as the Earth’s magnetic field; by converting magnetic
stimuli into mechanical strain, the clusters can be assumed
as primary units of magnetoperception in homing pigeons.
Since the orientation of the strain ellipsoid indicates the di-
rection of the external magnetic field, a cluster of magnetite
nanocrystals also has the potential to serve as the basis of the
so-called inclination compass of migratory birds. It is quan-
titatively demonstrated that the magnetic-field-induced
shape change of a cluster can be amplified as well as coun-
terbalanced by means of osmotic pressure regulation, which
offers an elegant possibility to determine the magnetic field
strength just by measuring changes in concentration.

Key words Superparamagnetism · Magnetic fluids ·
Ferrovesicle

Introduction

The old idea of a magnetic sensory system in animals that
involves ferro(i)magnetic material was re-suggested by

Lowenstam (1962), who discovered the iron-oxide mag-
netite (Fe3O4) in denticle capping of chitons, a group of
recent mollusks. This idea has been further elaborated af-
ter the magnetic detection of permanent magnetic material
in honeybees (Gould and Kirschvink 1978) and homing pi-
geons (Walcott et al. 1979) – animals for which a magnetic
sense has been shown in numerous behavioral experiments
[see Wiltschko and Wiltschko (1979) for a summary]. An
additional argument for magnetite-based magnetopercep-
tion theories has been the electron microscopic identifica-
tion of magnetite crystals (grain size d ~ 30–50 nm) in
magnetic extracts of animal tissue, for example, of tuna 
(Walker et al. 1984, 1988) or salmon (Mann et al. 1988;
Sakaki and Motomiya 1990). In rainbow trout (Walker et
al. 1997), iron-rich particles (50 nm in size) were recently
detected in cells that were considered candidates of mag-
netoreceptor cells as they were in close association with
magnetically responsive nerves; however, it is not clear if
the iron-rich particles in question are ferro(i)magnetic.

Not only magnetically stable single-domain (SD) grains
have been found in this context: from low-temperature de-
magnetization experiments, Kirschvink and Gould (1981)
inferred the occurrence of superparamagnetic (SP) mag-
netic material in worker honeybee abdomens. Electron 
microscopical investigations on magnetic extracts from
worker bee abdomens indeed revealed superparamagnetic
magnetite: one fraction with grain sizes between 15 nm and
30 nm, the other fraction with particles 3–5 nm in diame-
ter (Kirschvink et al. 1993). SP magnetite within intact an-
imal tissue was first found by Holtkamp-Rötzler et al.
(1997), who investigated the upper beak of homing pi-
geons: The crystals, 2–5 nm in size, are arranged in
densely packed clusters, typically 3 µm in size; the clus-
ters seem to have a physiological meaning as they are con-
nected to nerve fibers.

So far, however, magnetite-based receptors in animals
are unknown. In all cases where magnetite was identified,
its functional relation to magnetic field perception could
not be clarified. The only case for a ferrimagnet-based
magnetic sense of which the operating mechanism is
known can be observed in magnetotactic bacteria (Blake-
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more 1975; Frankel and Blakemore 1980) and some eu-
karyotic algae (Torres de Araujo et al. 1986): intracellu-
larly produced SD particles of magnetite or greigite
(Fe3S4), so-called magnetosomes, are arranged in chains
and thereby constitute minute compass needles which pas-
sively align the microorganism in the ambient field.

Several theoretical possibilities for animals to convert
the magnetic field interaction of ferromagnetic material
into a mechanical cell response have already been proposed
(e.g. Yorke 1979; Presti and Pettigrew 1980; Kirschvink
and Gould 1981; Semm and Beason 1990; Edmonds 1992;
Kirschvink 1992a). Most of them are models of indirect
transduction in that the direct reaction to the stimulus (mag-
netic field) is not an electric potential difference but is ei-
ther a torque or a mechanical deformation of the unit con-
taining the magnetic material; such magnetomechanical
transformers in turn require mechanoreceptive units as ac-
tual transducers.

The simple torque mechanism due to alignment of or-
ganelle-sized bar magnets (SD particles) in the ambient
field (Yorke 1979; Kirschvink and Gould 1981; Edmonds
1992; Kirschvink 1992b) may apply to animals that dis-
tinguish between magnetic north and south, as for exam-
ple the sockeye salmon (Quinn and Brannon 1982). How-
ever, a torque transducer is not likely to be realized in mi-
gratory birds which were shown to employ a so-called “in-
clination compass” (Wiltschko and Wiltschko 1972), i.e.,
this compass seems to indicate the inclination angle of the
field lines with respect to the gravitational force, but does
not provide information about the polarity of the magnetic
field. By means of an inclination compass, it is possible
for the bird to distinguish between polewards and equat-
orwards; however, at the magnetic equator – where the field
lines are horizontal – the polar direction is ambiguous.
Wiltschko and Wiltschko (1972) showed that European
robins, which are able to orient in inclined magnetic fields
if other cues are absent, cannot orient in purely horizontal
magnetic fields.

The superparamagnetic elastic rod transducer (Kirsch-
vink and Gould 1981), in contrast, is a model for a purely
axial transformer, independent of magnetic field polarity
and compatible with the properties of the inclination com-
pass. Kirschvink and Gould (1981) supposed that, under
the influence of a magnetic field, SP particles embedded
in an elastic matrix (e.g. attached to the cytoskeleton) will
compress the matrix parallel to the applied field and
stretch it along the two perpendicular axes. A character-
istic of such a device is that the output signal is expressed
in quite common biophysical cell variables like strain or
additional pressure. These variables are, by definition, in-
dependent of polarity; moreover, strain or pressure recep-
tors occur in almost every type of cell so that a transfor-
mation of the magnetic field response into a physiologi-
cal signal would be straightforward. However, the mech-
anism related to the elastic rod transducer is energetically
unfavourable as the body containing the SP material has
to be magnetized perpendicular to its long axis [see Winkl-
hofer (1998) for a critical analysis of the elastic rod trans-
ducer].

In the following we present a new model for a magne-
toreceptor based on SP magnetite. The basic assumption
in our model is that the SP particles found in the beak skin
of homing pigeons in vivo are not embedded in an elastic
matrix but dispersed in a liquid1. With this assumption, a
cluster of SP particles may physically be described as a
drop of a magnetic fluid (ferrofluid). In order to prevent
such a drop from mixing with other cellular liquids, we as-
sume it to be enclosed by a biological membrane (which
is usually the case for cellular subsystems). Although in 
a completely different context, a similar system, called 
ferrovesicle, was technically synthesized by Bacri et al.
(1996). In order to determine the bending elastic constant
of lipid-bilayer membranes, they filled lipid-bilayer vesi-
cles (i.e. closed membranes) with magnetic fluid and mea-
sured the magnetic-field-induced shape change of such
vesicles.

As the basic mechanism underlying magnetoperception
of homing pigeons, we consider the magnetic-field-in-
duced shape change of an SP cluster. The deformation
could then be transduced into an electric response by ad-
jacent mechanosensitive receptors. Before the new model
is quantitatively formulated, superparamagnetism as the
underlying phenomenon is briefly described.

Superparamagnetism and magnetic fluids

Superparamagnetism (Elmore 1938; Néel 1949; Bean
1955) is the essential feature of the magnetoreceptor pro-
posed here. An SP assemblage is characterised by relax-
ing into thermodynamic equilibrium in a short time (relax-
ation time τ O 1 s) after a magnetic field change. If SP par-
ticles are embedded in a solid matrix, equilibrium is ob-
tained by thermal fluctuation of the magnetic moments of
individual particles; the relaxation time τ for this process,
τN , can be expressed by the Néel-Arrhenius equation

τN ~ f0
–1 exp (Eb /kB T ) (1)

where Eb is the energy barrier separating two local energy
minimum states of a given particle, f0 a frequency factor
(for magnetite on the order of 109 s–1), kB Boltzmann’s con-
stant and T the absolute temperature. For magnetites as
small as 10 nm, Eb /kB T ≈1 and therefore τN is on the or-
der 10–9 s. In contrast to magnetic grains embedded in a
rigid matrix, colloidal suspensions of ferromagnetic parti-
cles in a liquid can attain the state of thermal equilibrium
also by Brownian motion. The corresponding relaxation
time depends mainly on the viscosity η of the carrier liq-
uid and the particle volume v

τB ~ 3η v/kB T (2)

which for 10 nm-sized particles in water as carrier liquid
(η0 ≈ 0.01 P) is on the order of 10–7 s. A magnetic fluid
constitutes a stable phase if neighbouring magnetic parti-

1 The other extreme case, i.e. the particles in an elastic medium, was
treated by Winklhofer (1998)
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cles are prevented from (permanent) agglomeration, since
agglomeration causes separation of the solid phase from
the carrier liquid. The solid phase then is no more liquid,
the liquid no longer magnetic. To avoid agglomeration, the
magnetic crystals in technically produced ferrofluids are
coated by a so-called stabilizer; this substance adsorbed to
the crystal surface increases the distance between two 
adjacent crystals and thereby reduces their mutual mag-
netostatic interaction energy, given by

Wdip = (4π 2/9) MS
2 (r/(1+λ /r))3 (3)

(e.g. Berkovsky et al. 1993), where r denotes the radius of
the magnetic crystal, λ the thickness of the coating layer
and MS the saturation magnetization, which for magnetite
at room temperature is MS = 480 G; for maghemite (γ-
Fe2O3), MS assumes values between 370 and 390 G.
Brownian motion will separate two agglomerating parti-
cles if Wdip does not exceed the order of kBT ; from this
condition the minimum thickness of the coating can be de-
rived. For the small magnetite crystals detected in pigeon
tissue (r < 2.5 nm), no coating layer is required to keep
them dispersed in the carrier fluid.

One could also imagine that a ferrofluid is formed by
“large” single-domain crystals of size dSD ~ 50 nm as they
were extracted for example from salmon tissue. Indeed, the
time scale for rotational diffusion, given by a modified
Stokes law

τ ~ 6η (MS H0)–1 (4)

would be far below 1 s. However, from the stability con-
dition for ferrofluids [Eq. (3)], the necessary coating thick-
ness for steric repulsion is obtained as λmin = 3 dSD , which
makes the existence of a biogenic magnetic fluid consist-
ing of “large” SD particles quite unlikely.

A magnetic fluid in an external magnetic field H0 is
macrophysically characterized by its magnetization M.
The magnetization vector M is defined as Σi ∈dV mi /dV, the
spatial average over the magnetic moment vectors m in a
volume element dV. To a first-order approximation, the net
magnetization M = (M · H0)/H0 of a ferrofluid consisting
of magnetically identical particles is given by

M (H0) = ϕ MS L (x) (5)

(Elmore 1938), where ϕ denotes the packing density of
magnetic material; L (x) represents the Langevin function,
L (x) = coth(x) – x–1, where x = m H0 /kBT with m = MS v be-
ing the magnetic moment of a single particle of volume v.
x for the magnetite nanocrystals found in homing pigeons
(grain size e5 nm) amounts to less than 10–3 at room tem-
perature in a 0.5 Oe magnetic field. L (x) for x O1 can be
approximated by x/3, and the initial susceptibility, defined
by χ0 = (∂M/∂H0)H0 = 0 , is given by χ0 =ϕ vMS

2/3 kBT.
To determine the values of M or χ0 , ϕ has to be esti-

mated. For this purpose, we assume that magnetic field re-
ceptors of animals are highly optimized, i.e. the organism
produces a densely packed ferrofluid so as to maximize χ .
From the transmission electron microscope pictures in
Holtkamp-Rötzler et al. (1997) it can be seen that the par-
ticle density, in fact, is extremely high. If each particle is

in direct contact with its nearest neighbours, the volume
fraction ϕ of colloid particles equals 0.52 in the cubic-
primitive packing (“cp”) and 0.74 for the most dense pack-
ings, respectively. There is experimental evidence (Bacri
et al. 1982) that colloid particles in dense ferrofluids are
arranged in a cp-array, which is the configuration of low-
est energy per dipole. The (microscopic) susceptibility 
of the biological ferrofluid then is obtained as χ0

cp = 0.06.
The effective susceptibility due to interactions, which for
χ0e0.2 can be approximated by

(6)

(see e.g. Blums et al. 1988), in this case amounts to χ = 0.08,
yielding a permeability of µ =1+ 4π χ = 2.

Field-induced deformation of a ferrovesicle

Under the influence of a magnetic field, a ferrovesicle of
spherical initial shape deforms to a prolate body with the
long axis parallel to the magnetic field direction (Bacri et
al. 1996) (Fig. 1). The reason for the mechanical deforma-
tion of a ferrofluid being magnetized is the additional pres-
sure the ferrofluid produces in the direction of its magnet-
ization to minimize the total energy by reducing the de-
magnetizing field. The response of the ferrovesicle to an
external magnetic field is therefore completely different
from that of the elastic rod transducer (Kirschvink and
Gould 1981).

To estimate as to whether a ferrovesicle is suitable as a
magnetic field receptor for animals, the physical theory of
the ferrovesicle, first formulated by Bacri et al. (1996), has
to be extended in a way that the effect of thermal fluctua-
tions, which practically limit the receptor sensitivity, can
be investigated. This requires an analytical expression for
the total energy of a ferrovesicle.

χ χ π χ= +0 0
24

3

Fig. 1 Sketched deformation of a ferrovesicle according to the ex-
periments by Bacri et al. (1996). In our model, a droplet of ferrofluid
(grey) is enclosed by a biological membrane. In zero magnetic field
the droplet has no net magnetization, and its initial shape is spheri-
cal (left). Under the influence of an external magnetic field H0 , the
ferrofluid is magnetized parallel to H0 and produces additional pres-
sure in this direction, thereby deforming the sphere into an ellipsoid
of revolution. The long axis of the ellipsoid indicates the axial di-
rection of the external magnetic field but not its polarity; this mod-
el therefore is in accordance with the axial biological compass as de-
duced from behavioural experiments on migratory birds by Wiltsch-
ko and Wiltschko (1972)
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Based on the experimental observation (Bacri et al.
1996) that an initially spherical ferrovesicle of radius R0
in a weak external magnetic field H0 deforms into a slightly
elongated prolate ellipsoid of revolution (a > b = c, k = b/a,
ε = CD1–Dk2F), its eccentricity corresponding to mechanical
and thermal equilibrium, εeq and ε–, respectively, can be de-
termined by accounting for the following energy terms:

1. Magnetostatic energy

Wm = – ––1
2

(χ|| cosθ 2 + χ⊥ sinθ 2) H0
2 V (7)

where V is the volume of the ferrovesicle, θ the angle
of H0 with respect to the long vesicle axis, and χ|| , 
χ⊥ are the apparent susceptibilities parallel and per-
pendicular to the applied field, which are related to χ,
the intrinsic susceptibility of the ferrofluid, via
1/χ|| =1/χ + N| | and 1/χ⊥ =1/χ + N⊥ ; for a prolate spher-
oid, the demagnetizing factor parallel to the long axis
is 

N| | = 2π k2 ε–3 (log (1+ε) – log (1–ε) – 2ε) (8)

(e.g. Landau and Lifshitz 1984); N⊥ , the demagnetiz-
ing factor perpendicular to the long axis, is related to
N| | by N| | + 2N⊥ = 4π. The jump in magnetic normal trac-
tion across the surface of a magnetized body is obtained
as pm = 2π Mn

2, Mn = M · n, where n is the outward unit
vector normal to the surface and M the magnetization
of the ferrofluid (Rosensweig 1985); at the poles of a
uniformly magnetized sphere

(9)

2. Bending energy

Wb = π Kc (14/3 – 4 a c0 + (4/3 + a2 c0
2) k2 (10)

+ (2 + a2 c0
2 k2) arcsin (ε)/ε k – 4 a c0 k2 atanh(ε)/ε)

(see Appendix A), where Kc is the bending rigidity of
the vesicle membrane [for lipid bilayers, Kc ∼ 10 kBT
(Sackmann 1994)] and c0 its spontaneous curvature,
which allows for possible structural differences
between the inner and outer side of a membrane; for a
symmetrical membrane (i.e. both sides are identical),
c0 = 0. A spontaneous curvature can be generated, e.g.
by the adsorption of proteins or by changing the surface
charge density (Sackmann 1994). Equation (A1) in Ap-
pendix A shows that the bending energy can be de-
creased by increasing c0 .

3. Energy required to change the vesicle volume

Wv = ∆ p (V – V0) = (4π /3) (a3 k2 – R0
3) ∆ p (11)

where ∆ p is the thermodynamic pressure difference
between the outer and the inner medium,
∆ p = p (ρ, T )ext – p (ρ, T )int , and V0 the volume in the
absence of an external field. Since ∆ p is due to con-
centration differences across the cell membrane, we

M Hn = −
+

3
4

1
2 0π

µ
µ

set ∆ p = ∆π, where ∆π is the osmotic pressure differ-
ence.

4. Stretching elastic energy

Ws = κs (∆A)2/A0 (12)

where ∆A = A – A0 is the change in surface area and κs
is the elastic area stretching modulus. For egg lecithin
bilayers, κs was measured as 140 dyn/cm (Kwok and
Evans 1981). For weak deformations one can assume
the lateral tension in the membrane, γ = κs ∆A /A0 , as
nearly constant, and the stretching elastic energy for the
prolate ellipsoid of revolution then simplifies to

Ws′ = γ0 A0 = 2π a2 k (k + ε–1 arcsinε) γ0 (13)

Typical values of γ0 are on the order of 10–4 dyn/cm 
(Evans and Rawicz 1990).

Mechanical equilibrium shape

In the following, two shape changes of the sphere are con-
sidered, where we assume that the energy contributions due
to shearing can be neglected:

1. The volume is constant during deformation. This is the
case when the membrane is completely impermeable.
Since the sphere is a minimum surface, work needs to
be done to enlarge its surface area. Minimizing the to-
tal energy with respect to ε leads to the equilibrium ec-
centricity for small deformations (ε O 1) and weak mag-
netic fields (i.e. H 2 R0 /γ O (280π (µ + 2)3)/((µ – 1)2

(16 + 29µ))):

(14)

The numerator  in Eq. (14) represents the magnetic pres-
sure jump across the droplet surface according to Eq.
(9), the denominator is the sum of elastic stresses in the
membrane, which counteract magnetic pressure. Ex-
pression (14) is equivalent to the deformation law de-
rived by Bacri et al. (1996), which was based on the bal-
ance of normal forces along the vesicle membrane.

2. The surface area is constant during deformation. 
As the vesicle becomes more elongated, its volume 
can decrease without a change in surface area
(∆V/V g –ε4/15); shrinking is accompanied by the dif-
fusion of water through the membrane. This is the more
realistic scenario than that depicted under 1, for the fol-
lowing reasons. First, the membrane can be regarded as
unstretchable compared to its high flexibility with re-
spect to bending. Second, even if devoid of specific
channels for water, cellular membranes are highly
permeable to water owing to the smallness of the water
molecule. In addition to that, there is a tension limit
causing lysis [3–4 dyn/cm according to Kwok and
Evans (1981)], which is equivalent to a relative increase
in area of 2–3%. Thus, for the deformation of a sphere
into a prolate ellipsoid under the constraint ∆V = 0, a

ε π
γeq

c

2
0

2

0 0 0
3

0 0

2
2 6 2∆V

nM
c R K R R= − +

g
( ) / /
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value for ∆A/A0 of 3% corresponds to an axial ratio a/b
of about 1.5, which suggests that large deformations
under this constraint rather destroy the vesicle.

In the following, we consider deformations with con-
strained surface area. For small eccentricities and weak
magnetic fields we arrive at

(15)

In comparison with Eq. (14), the membrane tension 2γ0 /R0
is now replaced by the (negative) osmotic pressure differ-
ence ∆π, in accordance with the Laplace formula for
spheres.

Thermal equilibrium shape

Each of the values of εeq obtained from Eq. (15) represents
a minimum of the total energy of a vesicle described by a
specific set of parameters ν = (H, µ, Kc , R0 , c0 , ∆π). Ow-
ing to thermal fluctuations, however, values of ε related to
higher vesicle energies are possible, too. Therefore, the
thermodynamic equilibrium value of ε has to be deter-
mined. According to the ergodic theorem, the time aver-
age of εn (here of interest: n = 1, 2) for a given set ν can
be obtained by averaging over all possible configurations
(ε, θ ) for this vesicle with the Boltzmann distribution as
probability density:

(16)

with β = kBT, the partition sum over θ

(17)

and Zε,θ , the partition sum over both ε and θ, defined by

(18)

Wel represents the two sums Wb +Wv (constraint: S = const)
and Wb +Ws (constraint: V = const), respectively. The ther-
mally induced variance of the vesicle shape is given by
σε

2 = 〈ε2〉 – 〈ε〉2. After having thus determined the thermal
equilibrium value of vesicle eccentricity, 〈ε〉 := ε–, the ther-
mally induced deviations of the long vesicle axis from the
axis of H0 can be obtained from

(19)

With Eq. (7) rewritten dimensionless as – (∆m cos2θ + m⊥)
where ∆m = β (χ|| – χ⊥) H0

2 V/2 ≥ 0, the integration of Eq.
(19) leads to

(20)〈 〉 = −






cos

/ exp( )

( )
( )2 2

1 2θ
π∆ ∆

∆
∆

m m

ı m
m

Erfc

〈 〉 = −∫cos cos exp( ( , )) cos–

–

2 1

1

1
2θ θ β ε θ θθZ Wm d

Z Z Wε θ θ ε β ε ε, ( ) exp( ( ))= −∫
0

1

el d

Z Wθ

π
ε β ε θ θ θ( ) exp( ( , )) sin= −∫

0
m d

〈 〉 = −∫ε ε ε β ε εε θ θ
n nZ Z W,

– ( ) exp( ( ))1
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ε π
πeq

c
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2
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nM
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where Erfcı (x) is the imaginary error function. Because of
〈cosθ〉 = 0, one gets σ 2

cosθ = 〈cos2θ〉. If the long vesicle axis
is completely aligned with H0 then σ 2

cosθ = 1, while random
orientation in three dimensions is characterized by
σ 2

cosθ = 1/3.
Figure 2 shows the thermal equilibrium shape for a fer-

rovesicle as a function of the vesicle radius. The magnetic
fluid is assumed to have a permeability of 2. Since mag-
netic energy is proportional to volume whereas bending
energy depends on the surface area, the magnetic field does
not come into effect until a vesicle has a certain size. In
the example presented by Fig. 2, we see that vesicles with
radii below 6 µm undergo frequent fluctuations in shape
and orientation, while those with radii above 6 µm are no-
ticeably influenced by the external field: vesicle elonga-
tions increase and at the same time the long axis is more
and more aligned with the external field.

Figure 3a demonstrates that a large enough ferrovesi-
cle can be used to measure magnetic field intensity. The
thermal equilibrium value of its axial ratio shows a distinct
increase with field strength H0 even for intensities as low
as the geomagnetic field. However, fluctuations of the ax-
ial direction are relatively large. In the next paragraphs, it
is shown how the strain of a single ferrovesicle can be en-
larged and thereby fluctuations in the axial direction can
be reduced.

Role of osmotic pressure

According to Eq. (15), an increase in the osmotic pressure
outside the ferrovesicle yields higher vesicle elongations.
In Figure 3b and c this is shown for the ferrovesicle from
Figure 3a. Now it can be seen that not only the magnetic-

Fig. 2 Thermal equilibrium value and fluctuations of ferrovesicle
eccentricity as a function of vesicle radius R0 . The inner solid line
represents 〈ε〉 according to Eq. (16) (the right y-axis shows the 
corresponding axial ratio 〈a/b〉 on a nonlinear scale). The grey 
area above/below this line indicates the ±1σε range, defined by
Wtot (ε

– ±σε) – Wtot (ε
–) = 1 kBT. A pair of arrows symbolizes the ther-

mally induced deviations of the long vesicle axis from the external
field direction, i.e. Wm (ε–, ±σθ) – Wm (ε–, 0) = 1 kBT; the angle between
the two arrows amounts to 2 arccos (σcosθ). One can see that the 
long vesicle axis is randomly oriented for weakly elongated vesicles
(σ 2

cosθ ≈ 1/3 for R0 < 6 µm), whereas is more and more aligned with
the field direction for increasing vesicle sizes. Parameter values:
H0 = 0.5 Oe, µ = 2, Kc = 10 kBT, c0 = 0, ∆π = 0
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field-dependent strain is enlarged, but also the axial direc-
tion better defined.

From Eq. (15) another method to measure changes in
magnetic field intensity can be deduced: counterbalance a
magnetic-field-induced shape change by a corresponding
change in osmotic pressure such that the shape before the
field change is restored. This working principle, a constant-
strain mode, has the advantage that possible geometric con-
straints can be overcome, for example, if there is no room
for a vesicle to become elongated in a certain direction.

A further possibility to determine magnetic field
strength by means of osmotic pressure regulation ensures
from a phenomenon called vesicle instability. To depict this
possibility, we first consider a normal vesicle containing a
non-magnetic solution. The spherical vesicle shape is
stable if the osmotic pressure inside is larger than outside,
and the pressure difference ∆π is balanced by a tensile

membrane stress γ. As long as the external pressure ex-
ceeds the inner pressure by not more than a certain thresh-
old value ∆πcrit, the sphere is still an equilibrium shape. It
will deform into an elongated body, however, when the ex-
ternal excess pressure ∆π exceeds

∆πcrit = (2Kc /R0
3) (6 – c0 R0) (21)

(Helfrich 1973) (for non-negative values of c0) 2.
For vesicles filled with a magnetic fluid, the transition

from weakly to the highly elongated also depends on mag-
netic field strength H0 and therefore can be used as a meas-
ure of H0 . Further, the long axis of a ferrovesicle subject
to shape instability coincides statistically with the axis of
the external magnetic field, which is a necessary demand
we make on our model to explain the birds’ inclination
compass.

Let the threshold pressure be defined as the osmotic
pressure difference ∆π* at which dεeq /d∆π assumes a
maximum value. Then the field dependence of the thresh-
old can be approximated by

(22)

From Eq. (22) one can see further that a small vesicle yields
higher absolute values for the threshold shift, whereas for
a large vesicle the relative shift is larger, e.g., the relative
change (∆π*(H0 +δH) – ∆π*(H0))/∆π* (H0) for a vesicle
of size R0 = 3 µm amounts to 1% at H0 = 0.5 Oe and
δH = 0.05 Oe but to about 4% for a vesicle of double di-
ameter. Supposing that ∆π can be adjusted to a high pre-
cision, it is possible to use osmotic pressure regulation also
as a means to detect the intensity of the magnetic field.

Figure 4 shows the axial ratio of a vesicle as a function
of the osmotic pressure difference across the ferrovesicle
membrane. At ∆π < ∆π*, a vesicle of radius 3 µm is obvi-
ously too small to exhibit a distinguishable orientation 
in the geomagnetic field (see also Fig. 2). By increasing
∆π above ∆π*, the vesicle is subject to shape instability
and deforms into a highly elongated body, the long axis 
of which is now far better aligned with the magnetic 
field; in this example, ∆π* is shifted by an amount of
0.017 dyn/cm2 below ∆πcrit.

It is clear that active participation by the organism is re-
quired to control the process of field axis determination.
There are several advantages of such a device. First, the
reception unit does not need to be active all the time, but
can be activated when required; also the precision in 
measuring the field axis can be specifically enlarged by
controlling ∆π – this can be regarded in correspondence
with the well-known experience of focusing one’s sensory
perception on a specific object. Second, an external quan-

∆ ∆ ∆π π π µ
π µ

π* crit crit≈ − −
+







6 2
3 1

4 2
3 2

3

0( )
( )
( )

/ H

Fig. 3 a – c Field dependence of the vesicle shape. A ferrovesicle’s
axial ratio 〈a/b〉 ± 1σa /b is plotted as a function of the external field
H0 for different values of ∆π, the osmotic pressure difference (out-
side minus inside). a ∆π = 0; b ∆π = 0.02 dyn/cm2; c ∆π = 0.025 dyn/
cm2. Parameter values: µ = 2, Kc = 10 kBT, R0 = 6 µm, c0 = 0

2 From Eq. (21), the so-called condition for vesicle instability, one
can also see that it is possible to force a prolate shape at constant ∆π
just by increasing the value of c0 above c0

crit = 6/R0 . The prolate shape
for c0 > c0

crit is favoured since the curvature can assume its large val-
ue of spontaneous curvature over most of the bilayer area (Helfrich
1973)

a

b

c



386

tity can be measured in quite a simple way just by regulat-
ing an internal parameter which the cell can handle easily.
Here, the internal control parameters are the osmotic pres-
sure difference and the corresponding concentration dif-
ference ∆n, which, according to van’t Hoff ’s law, are re-
lated by

∆π = ∆n RT (23)

with R = kB LA , where LA is Avogadro’s number. For the
example shown in Fig. 4, a change in molar concentration
of about 10 nM is related to 0.2 dyn/cm2. Since this con-
centration change is relatively small, the proposed recep-
tion unit can work quite fast.

Amplification of Mn
2 by an SD core

Numerous behavioural studies on homing pigeons and
honeybees indicate that these animals might be influenced
by fluctuations of magnetic field intensity on the order of
one part in 103 or even less (see Wiltschko and Wiltschko
1995). Provided that the intensity fluctuations indeed were
the cause for the observed behaviour, sophisticated neuro-
nal signal processing methods could be an explanation of
such a highly sensitive magnetic field detection, for other
senses like seeing or hearing owe their remarkable capa-
bilities especially to complex neuronal processing steps in
the central nervous system. Of course, this also raises the
question of how the sensitivity of the single receptor cell
can be enhanced. Here we propose a slight structural mod-
ification of the ferrovesicle which is not more than a sin-
gle magnetically stable SD particle in the centre of a fer-
rovesicle. The idea is:

1. This particle, which can be considered as a compass
needle, will be aligned with the external magnetic field
H0 .

2. The dipole field of that particle is superimposed on H0 ,
thereby amplifying the the magnetic pressure exerted
on the vesicle membrane, which can be used to increase
the sensitivity of the ferrovesicle to magnetic field
changes.

The first statement is easy to justify. According to Eq.
(4), the Brownian diffusion time of an SD particle is less
than 10–3 s in a medium of viscosity not too different from
that of water, while since the Néel relaxation time of SP
grains of 10 nm in diameter is on the order of 10–8 s, the
SD grain can be considered as a permanent magnet situ-
ated in the ferrofluid. Such a modified ferrovesicle can
be regarded as an extension of the torque detector model
as suggested by Yorke (1979) or Kirschvink and Gould
(1981), which is based on mechanical rotation of SD par-
ticles in a viscous environment. However, replacing the
non-magnetic viscous medium by a ferrofluid essentially
changes the properties of the whole configuration. Ow-
ing to the phenomenon of magnetic levitation (see, e.g.
Rosensweig 1985), the SD particle would be repelled
from the inner vesicle boundary, and we will show that,
in case the size of the SD particle is not less than one tenth
of the vesicle size, it is bound to the central part of the
ferrofluid droplet.

The details of the calculations to support statement 2
are given in Appendix B; the result is presented in Fig. 5,
showing the magnetic pressure produced by the ferrofluid
with an “SD core” (solid circles) compared to the case of
a homogeneous ferrofluid (open circles). One can see that
the SD core does amplify the magnetic fluid pressure in
the direction of the external field. At the interface between
ferrofluid and vesicle membrane, the magnetization nor-
mal component of a spherical ferrovesicle with an SD par-
ticle in its centre is given by

(24)M
M H q q

q
n = + + + −

+ + − −
χ π µ

µ µ µ
24 3 2 2 1

2 1 2 2 1
0

3 3

3 2
S ( ( ))

( ) ( ) ( )

Fig. 4 The way the axial osmotic magnetometer works in the 
“shape-instability mode”. A ferrovesicle’s axial ratio 〈a/b〉 ± 1σa /b is
plotted as a function of the osmotic pressure difference ∆π across
the vesicle membrane in units of ∆π crit = 12 Kc /R0

3 [see Eq. (21)].
Here, the vesicle radius R0 is only 3 µm, which (judging from Fig. 2
with ∆π = 0) is too small to yield a distinct alignment in magnetic
field direction. However, a much better defined orientation can be
achieved by increasing the osmotic pressure difference above ∆π crit,
where shape instability sets in. Parameter values: H0 = 0.5 Oe, µ = 3,
Kc = 10 kBT, R0 = 3 µm, c0 = 0; ∆π crit = 0.184 dyn/cm2

Fig. 5 Magnetic pressure αm = 2π Mn
2 [dyn/cm2] produced by in-

itially spherical ferrovesicles of varying radii R0 in an external mag-
netic field H0 = 0.5 Oe. Open circles: vesicle containing a homoge-
neous ferrofluid of permeability µ = 2 [Mn calculated according to
Eq. (9)]; filled circles: vesicle containing a ferrofluid (µ = 2) with a
large SD particle of size d = 100 nm in its centre [Mn calculated ac-
cording to Eq. (24)]
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(see Appendix B), where q is the ratio of the vesicle radius
to the radius of the SD particle. There is a size limit for this
kind of receptor, which depends on the threshold grain size
d SD–PSD, above which the single-domain state is no longer
stable and collapses into a magnetic vortex configuration.
For roughly equivalent particles of magnetite,
d SD–PSDe100 nm (Fabian et al. 1996), which limits the fa-
vourable size of an SD-cored ferrovesicle to about 1–2 µm.

One cannot a priori assume that the SD particle occu-
pies the central region of the ferrofluid droplet; there are
two forces able to drive it out of the centre: gravitation and
thermofluctuations. For small vesicles (R0 < 10 µm), the
gravitational energy can be neglected because of its little
effect compared to that of Brownian motion; this can be
seen from the inequality R0 qm g vO kT, where qm is the
density of magnetite (~5 g/cm3), g is the gravitational ac-
celeration and v is volume of the SD particle. On the other
hand, when Brownian motion drives the SD particle from
its central position in the ferrofluid droplet towards the sur-
face, the SD particle will be repelled from the surface. This
remarkable phenomenon, called magnetic levitation, is due
to the interaction of the permanent magnetic poles with the
induced poles on the boundaries of a ferrofluid. Usually,
magnetic levitation is observed for a macrobody immersed
in a fluid (see e.g. Rosensweig 1985). For minute vesicles
(about 1 µm in size), however, even an SD particle (the
size of which is only one order of magnitude less than that
of the vesicle) can be subject to repulsion forces and thus
has a tendency to occupy the central region. This can be
demonstrated by making use the approximation described,
for example, by Bastovoj et al. (1988): we replace the ac-
tual magnetic field H by H0 , the magnetic field due to a
magnet in vacuum, and have the ferrofluid magnetization
as M =χ H0 . According to Bastovoj et al. (1988), the ex-
pression for the repulsion force then simplifies to

(25)

where S denotes the surface of the particle. This formula
was numerially evaluated for a small spherical SD parti-
cle immersed in a spherical ferrofluid droplet to obtain re-
pulsion force as a function of h, the displacement of the
particle from the centre; the corresponding potential U (h)
is shown in Fig. 6 (the details of the calculations are given
in Appendix C). According to the Boltzmann distribution,
the probability of finding a grain at a distance h from the
centre is proportional to exp(–U (h)/kT ) and, conse-
quently, the particle is bound to the central region of the
droplet.

Having in mind that in some magnetic extracts of ani-
mal tissues relatively large SD particles (50 nm in size)
were found (e.g. Walker et al. 1984; Sakaki and Motomiya
1990) and provided that each such grain previously had
been the central part of a ferrovesicle, it is possible that SP
grains were not observed, either because of their smallness
or as a result of the magnetic extraction techniques applied
in these studies, which could have been designed especially
for the extraction of highly permanent particles but not for
(super-)paramagnetic material.

F n= − −∫( ) ( )–8 11
0
2π µ

S

H Sd

High-density magnetic fluids

A remarkable possibility to measure a certain field value
using magnetic fluids arises from the investigations by Ba-
cri and Salin (1982). They determined the threshold field
strength H crit above which the shape of a ferrofluid drop-
let of high magnetic permeability (µ R14) jumps from
slightly to highly elongated. The special thing about this
observed instability is that values of H crit are on the order
of only 1 Oe, which makes this mechanism interesting for
animals. Let us suppose that the organism has N individ-
ual field sensors at its disposal, each of which jumps at a
different threshold Hj

crit and let the individual Hj
crit be dis-

tributed roughly evenly over the relevant field range
H
–= 0.3–0.6 Oe; the resulting sensitivity to detect a cer-
tain Earth magnetic field strength may then be written
H0 /δH ~ N/0.3. This means a considerable enhancement 

Fig. 6 Potential energy of an SD particle (ri = 50 nm) within a fer-
rofluid droplet (µ = 3, R0 = 0.5 µm) as a function of its radial displace-
ment h/ri from the centre of the droplet

Fig. 7 Magnetic field dependence of the axial ratio 〈a/b〉 ± 1σa /b
of a vesicle containing a high-density (µ = 25) ferrofluid. Over the
relevant intensity range of the geomagnetic field, the ferrovesicle 
agglomerate reacts with marked shape changes. However, in com-
parison with the ferrofluid droplets investigated by Bacri and Salin
(1982), which respond to a field threshold by a pronounced shape
instability (e.g., a/b jumps from a value ≈1 to a value greater than
5), the transition here proceeds comparatively inconspicuously. The
reason for the non-appearance of shape instability here is the pres-
ence of a membrane, since the bending energy acts in strong oppo-
sition to magnetic pressure and thus smoothes such strong effects.
Parameter values: R0 = 5 µm, Kc = 10 kBT, c0 = ∆π = 0
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of sensitivity compared to processing methods based on
signal stacking, which yield an increase in signal-to-noise
ratio only proportional to EFN. 

Although it is not clear if animals can produce ferro-
fluids of high permeability, it is interesting to consider the
theoretical deformation law for a ferrovesicle filled with a
high-permeability ferrofluid.

Figure 7 shows the response of a vesicle containing a
high-permeability ferrofluid (µ = 25, R0 = 3.5 µm) to a
magnetic field change. Although this ferrovesicle becomes
highly elongated, the deformation curve does not exhibit
a distinct jump as would be the case without an enclosing
membrane; instead, the transition from weakly to highly
elongated is smeared over a field range. Yet, a high-den-
sity fluid would provide a very compact device to meas-
ure the geomagnetic field.

Possible set of droplets to measure field direction

Electrophysiological responses stimulated by changes in
the external magnetic field have been recorded from spe-
cific cells connected to the optic nerve system of pigeons
(Semm et al. 1984; Semm and Demaine 1986). Those stud-
ies demonstrated a striking selectivity of individual cells
for their response to different stimuli, i.e. the cells are spec-
ified in a sense that each one shows a distinct peak in its
response if the inclination of the applied field lies in a par-
ticular range, which varies between the cells. Such a fea-
ture can easily be explained by means of elongated ferro-
fluid droplets. We assume that there is a set of N droplets
engineered to measure the inclination in a way that sensi-
tive fibres around the droplets create planes whose incli-
nations, in the coordinate frame linked with Earth’s grav-
itation, gradually changes to cover the interval (0, π). Let
these fibres excite when the elongated part of the droplet
gets in touch with them. As far as the long axes of the el-
lipsoid always follows the external field direction, it would
send the required information, for example to the visual
system. Therefore, a set of 2 N receptor cells can provide
the required two-dimensional base for compass orienta-
tion.

Summary and conclusions

1. The work was stimulated by the detection of an inner-
vated structure containing clusters of magnetite nano-
crystals in the beak skin of the homing pigeon (Holt-
kamp-Rötzler et al. 1997). Here we demonstrate by
theoretical modelling that the clusters can serve as the
basis of magnetic field perception, since the cluster
shape is magnetic field dependent, even in a magnetic
field as weak as the Earth’s magnetic field.

2. To describe a cluster theoretically, we use the ferroves-
icle (Bacri et al. 1996) as a physical model. We may ap-
ply the concept of the ferrovesicle to a magnetite clus-

ter if we assume that (1) the magnetites in the cluster in
situ are dispersed in a liquid, thereby constituting a mag-
netic fluid, and (2) a cluster is enclosed by a biological
membrane.

3. The mathematical model of the ferrovesicle, first given
by Bacri et al. (1996), is developped further. Now the
equilibrium shape of the ferrovesicle can be derived by
using a more general formula based on the concept of
total energy. The expanded model allows us to consider
the effect of thermal energy fluctuations on vesicle
shape and orientation.

4. It is shown that a ferrovesicle is deformed in the
Earth’s magnetic field H0 such that the long axis of 
the deformed ellipsoid is aligned with H0 (on time 
average). Since the orientation of the ferrovesicle in-
dicates only the axial direction of H0 but not its 
polarity, a ferrovesicle also has the potential to serve
as the basis of the so-called inclination compass of mi-
gratory birds.

5. It is demonstrated that osmotic pressure plays an im-
portant role in a possible magnetoreception mechanism
based on a ferrovesicle. The active regulation of osmotic
pressure makes it possible to measure magnetic field
changes indirectly by counterbalancing magnetically
induced shape changes. On the other hand, by increas-
ing the osmotic pressure outside the ferrovesicle above
a certain threshold value, the organism could determine
the axial direction of H0 more precisely.

6. A further way to enhance the sensitivity of a single fer-
rovesicle is presented and quantitatively described. The
ferrovesicle now is assumed to contain a magnetically
stable single-domain particle (of size 50 nm or so) in its
centre. Such a particle behaves like a compass needle,
i.e. will be aligned with H0 . Since the magnetic field 
of the inner particle is amplified by the magnetic fluid
“shell” surrounding the particle, the magnetic pressure
acting on the ferrovesicle membrane is also increased,
thereby yielding larger deformations. It is shown that
such a system is mechanically stable, i.e. the single-do-
main magnet is not driven out of the centre of the fer-
rovesicle.

Appendix A: Curvature elastic energy of a prolate vesicle

According to Helfrich (1973), the total bending energy of
a vesicle membrane S can be written as

(A1)

where c1, c2 are the two principal curvatures of the mem-
brane, c0 is its spontaneous curvature, Kc the bending ri-
gidity, KG the gaussian curvature modulus, and dA the area
element on S. The integral over the second term in Eq. (A1),
the gaussian curvature, is constant for deformations which
do not change the topology of a surface and therefore is
omitted in the following. By analogy to Zhong-can and

W K c c c K c c A
S

b c G d= + − +{ }∫ / ( )2 1 2 0
2

1 2
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Helfrich (1989), we introduce the following quantities
from differential geometry:

(A2)

with (i, j) =1, 2 and ∂1 = ∂/∂θ, ∂2 = ∂/∂φ. The gi j are the
components of the covariant metric tensor, n denotes the
outward unit normal vector and H the mean curvature. 
The surface of an ellipsoid of revolution (axial ratio k = b/a)
can be described by the vector

Y (θ, φ) = a (k sinθ cosφ, k sinθ sinφ, cosθ) (A3)

with 0 ≤θ ≤π and 0 ≤φ ≤ 2π. Inserting Eq. (A3) into Eq.
(A2) yields

with λ2 = (1±ε2
± cos2θ ), where the minus sign applies to the

prolate ellipsoid (k ≤1) with ε–
2 =1– k2, and the plus sign

correspondingly to the oblate shape (k ≥1) with ε+
2 = k2 –1.

Making use of rotational symmetry, the bending energy of
Eq. (A1) becomes

(A4)

After substitution of cosθ and subsequent integration, we
arrive for the prolate ellipsoid3 at

(A5)

For small deformations of the sphere (ε O1), we can ap-
proximate Eq. (A5) by

(A6)

where the constraint of constant surface area was included.

Appendix B: Magnetization of a ferrofluid in a spherical
shell around a spherical SD particle

The static magnetic field H can be represented as the gra-
dient of a potential Φ
H = –∇Φ (A7)
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and is related to magnetic flux density B by

B = µH = (1 + 4π χ) H = H + 4π M (A8)

where µ and χ are magnetic permeability and susceptibil-
ity, respectively, and M denotes the macroscopic magnet-
ization vector. Putting divB = 0 in Eq. (A7) leads to

∆Φ = 4π divM (A9)

if µ is constant4. The magnetic field distribution of equilib-
rium can thus be determined by means of potential theory.

Consider now an SD particle (magnetization MS),
spherical in shape (radius ri), placed in the center of a
spherical shell (radius R0) filled with a ferrofluid of perme-
ability µ (Fig. 8). The appropriate coordinates of this prob-
lem are spherical polar coordinates (r, θ, φ). The θ = 0 axis
is chosen as parallel to the magnetization of the inner SD
particle. With this, the solution of Eq. (A9) for the three
different regions is given by

(A10)

(A11)

(A12)

where the coefficients α, γ, H1, and H2 are to be determined
by the boundary conditions; H0 is the externally applied
field, so that for r o R0 , we have H = H0 .

Across any boundary, the potential and the normal com-
ponent of B are continuous, which leads to
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3 The corresponding expression for the oblate shape, Wb, + , is ob-
tained from Wb, – by replacing arcsin (ε–)/ε– through asinh(ε+)/ε+ and
atanh(ε–)/ε– through arctan(ε+)/ε+

4 Strictly speaking, one cannot assume that the magnetic permeabil-
ity of the ferrofluid is constant in the presence of a strong field gra-
dient like that due to the inner permanent magnet

Fig. 8 A permanent magnet embedded in a spherical ferrofluid
droplet
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with 4π σ = Mn = M
r

· n
r

= MS cosθ being the magnetic sur-
face charge, which leads to a jump in the normal magnetic
field component across the surface of the SD particle.

With q = R0 /ri , we obtain the coefficients as

where

D = q3 (2µ + 1) (µ + 2) – 2 (µ – 1)2

At the surface of the ferrofluid droplet, the magnetization
is given as

(A13)

For large values of q, the influence of the inner permanent
magnetet reduces more and more, and we obtain the ex-
pression for the magnetization of a pure ferrofluid

(A14)

Appendix C: Levitation of an SD particle 
in the ferrovesicle

A general formula for the force acting on a body is

(A15)

(e.g. Landau and Lifshitz 1984), where the integration is
performed over its surface S, n is the outward unit vector
normal to the surface and T is a stress tensor.

According to the third Newtonian law, calculations of
the force acting on a magnet by a surrounding magnetic
medium may be replaced by calculating the force of the
magnet exerted on the medium taken with negative sign
(Rosensweig 1985; Berkovsky et al. 1993). For an isotropic
homogeneous ferrofluid with an induced magnetization M,
Eq. (A15) can be rewritten as

(A16)

where the integration has to be performed over the inter-
face S between magnet and ferrofluid. For a linear mag-
netic response, we have ∫0

M M dH′ = (µ –1) H 2/2. The de-
composition of H into its normal Hn and tangential Ht com-
ponents together with Eq. (A16) leads to
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If ri O h O R0 then, in a first approximation, one may
consider a magnet as a point dipole immersed in a ferro-
fluid occupying a half-space. For the sake of simplicity,
we consider the case that the dipole moment m is directed
to the surface. An advantage of such a model is that the
rigorous solution can be found using the method of im-
ages (e.g. Landau and Lifshitz 1984). Let a dipole be
placed at a distance z = h from the plane z = 0, which sep-
arates the ferrofluid of permeability µ2 = µ from a non-
magnetic substance with µ2 = 1 (Fig. 9). If m is normal to
the surface, the dipole field in the infinite media is deter-
mined by the potential ϕdip = m · r/(µ r3), where r is ra-
dius-vector of the dipole. For the half-space one may seek
the potential as the sum of the potentials of two point di-
poles, m and a ficitious one m′ directed antiparallel to m
and disposed symmetrically to the plane outside the fluid
(Fig. 9):

(A18)

where are the dis-
tances from m and m′, respectively, and z, ρ are cylindri-
cal coordinates. The field in the non-magnetic media may
be expressed as

(A19)

Here m″ is another ficitious dipole displaced in the same
location as m. The validity of this solution can be readily
checked by applying the boundary conditions to the plane
z = 0, i.e.

which leads to m′ = m (µ –1)/(µ +1).
For the magnetic field H = (Hn , Ht) we have

(A20)
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Fig. 9 Sketch of the method of mirrored charges
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Owing to the symmetry of the potential ϕ1, the only non-
zero force component acting on the body is –Fz . Making
use of the equality

(A22)

together with Eqs. (A17), (A20) and (A21) we obtain the
force acting on m (the “image force”) as

(A23)

Obviously, this is just the repulsion force between the two
dipoles, m and m′, separated by their mutual distance 2h.
This expression can be directly obtained from the usual
formula F = (m∇) H, which due to Eq. (A18) is equivalent
to Eq. (A23). The corresponding potential is

(A24)

In the same manner it can be shown that for the case
where m is parallel to the plane, the corresponding forces
are as much as twice lower than for m perpendicular to the
surface, which means that the latter orientation is more pre-
ferred in zero external field. The solution for a dipole sit-
uated within a sphere cannot be found analytically. There-
fore, this task must be treated either by approximated meth-
ods or numerically. The simplest approximation may be
done using the approach suggested by Bastovoj et al.
(1988), which is valid for the case of relatively low sus-
ceptibility χ. One may put H = H0 where H0 is the mag-
netic field from a magnet in vacuum such that M =χ H0 ;
then, leaving only the term of first order in χ in Eq. (A16),
we get

(A25)

which can be readily solved. For the case stated above we
have

(A26)

where Eq. (A22) was accounted for. In the limit of low χ ,
Eq. (A26) approaches Eq. (A23). Now we consider the
more realistic situation where a small spherical SD parti-
cle is immersed in a spherical ferrofluid droplet. The force
FSD (rd), were rd is its displacement from the centre, and
the corresponding potential USD were numerically calcu-
lated using the approximative formula of Eq. (A17) for the
case that the grain’s moment m is directed along the dis-
placement. The function USD /kT is shown for R0 = 10 ri ,
and ri = 50 nm in Fig. 10 for χ = 0.1 and χ =1. It can be seen
that for the case of low χ, the agreement between the two
different curves is really good, whereas for a more concen-
trated ferrofluid with µ = 2 the difference is substantial. For
our purpose, however, it is enough to demonstrate that in
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both cases a particle of size ri = 50 nm avoids to be too close
to the surface of the ferrofluid droplet. This can be shown
with the Boltzmann distribution giving the probability for
a grain to stay at a distance h from the surface as propor-
tional to

(A27)

with m = vMS and v= (4π /3) ri
3. Hence, the particle is

bound to the centre of the droplet inside region rd < (3–6) ri
depending on particular value of µ.
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Fig. 10a, b Potential energy of an SD particle (radius ri = 50 nm)
in a ferrofluid drop (radius R0 = 10 ri) as a function of its displace-
ment h/ri from the centre of the drop. a µ = 1.1; b µ = 2. Solid lines
demonstrate U/kT as calculated from the exact solution for a point
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to be too close to the surface in region h < 6 ri
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