
Abstract The mathematical expression of the signal to
noise ratio in fluorescence fluctuation experiments is 
derived for arbitrary sample profiles and for any mecha-
nism of translational motion, and experimentally verified.
The signal to noise ratio depends on the mean count rate
per particle per dwell time, the mean number of particles
per sample volume, time characteristics of the correlation
function, sample profile characteristics, and the data col-
lection time. Statistical accuracy of the third order moment
of fluorescence intensity fluctuations is also studied. The
optimum concentration for the third order moment analy-
sis is about one particle per sample volume.

Key words Fluorescence correlation spectroscopy ·
Fluorescence intensity fluctuations · Fluorescence inten-
sity distribution analysis

1 Introduction

Fluorescence intensity fluctuations can be studied in dif-
ferent ways. Usually, the light intensity autocorrelation
function G (τ) = 〈I (t) I (t +τ)〉 (I denoting fluorescence in-
tensity) is calculated, yielding information about concen-
trations, intensities and dynamic properties of fluorescent
particles. The corresponding field of research is called 
fluorescence correlation spectroscopy (FCS, Elson and
Magde 1974). Sometimes, however, only the distribution
of the photon count number is measured and the first two
or three moments of light intensity, 〈I 〉, 〈I 2〉, and 〈I 3〉, are
calculated (Qian and Elson 1990a). The optical scheme of
the experiment is identical in both cases: using a laser, a
microscope, and a sensitive photon detector, movement of

a single molecule into and out of the beam focus can eas-
ily be detected (Rigler et al. 1993).

Fluorescence fluctuation studies is a field of science
where optimization of experimental conditions and im-
provement of the design plays an unusually important role.
One can find a number of published examples where hours
of data collection time was needed in order to extract a use-
ful signal from statistical noise.

In spite of the importance of the subject, there are very
few papers dealing with matters of statistical accuracy in
fluorescence fluctuation experiments. D. E. Koppel’s fun-
damental paper (Koppel 1974) was published immediately
after the first experiments (Magde et al. 1974) in which
thousands of molecules were studied at a time. Correspond-
ingly, Koppel’s calculations assume relatively high con-
centration, m k1 (with m being the mean number of flu-
orescent particles per sample volume). Under this condi-
tion, the signal to noise ratio of FCS experiments does not
depend on particle concentration. Concerning the depen-
dence of noise on count rate, Koppel distinguishes the
“Poisson noise limit,” corresponding to low count rate
where the noise is determined by the quantum nature of
light detection, from the “optimal high-counting-rate
limit,” where the noise is due solely to the stochastic na-
ture of the movement of molecules. (We refer to these as
“photon noise limit” and “molecular noise limit,” respec-
tively.)

H. Qian’s paper (Qian 1990) is an extension of Koppel’s
earlier work. He considered the two-dimensional Gaussian
sample profile instead of the uniform spot of Koppel’s 
theory. Also, Qian’s theory includes low concentration
ranges (m K1), where the signal to noise ratio is propor-
tional to √m.

The goal of the present paper is to derive a quantitative
expression for the signal to noise ratio in terms of measur-
able parameters for arbitrary sample profiles and for any
mechanism of translational motion (e.g. diffusion, or
flow). In particular, as an approximation of the epi-objec-
tive geometry of experiments, a sample profile which is
Gaussian in two dimensions and Lorentzian in the third one
will be studied.
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2 Theory

2.1 Basic assumptions and logic 
of the following calculations

In a number of aspects, the basic logical scheme of our
study follows that of Qian’s.

As usual, we assume that fluorescence is collected from
a relatively small volume situated within a much larger vol-
ume of sample solution. This corresponds to the so-called
open volume experiments.

In making our statistical accuracy calculations we shall
express moments and correlation functions of fluorescence
intensity based on the theoretical case of a single particle
in a large volume inside which the small observation vol-
ume is defined.

We also follow our predecessors by studying an ideal
solution of a single species. This means that all fluorescent
particles are identical and their motion and fluorescence
properties do not depend on the presence of other particles.
Provided we have expressed moments and correlation
functions of fluorescence intensity corresponding to a sin-
gle particle, it is a purely technical exercise in statistics to
express moments of fluorescence intensity and their vari-
ances for the case of a large number (M) of particles in the
large volume.

As a final step, we shall calculate the statistical accu-
racy of the measured second order central moment of light
intensity corresponding to the dwell time T and the data
collection time NT. Since we use equivalent normalization
procedures for moments and autocorrelation functions, the
second order central moment of light intensity is equiva-
lent to the amplitude of the time-dependent part of the au-
tocorrelation function. More importantly, the estimate of
the second order central moment of light intensity (as used
in the moment analysis) is identical to the content of the
‘zeroth channel’ of the correlator (provided that the shot
noise contribution is properly excluded in both cases).
Therefore, the expression we derive for the signal to noise
ratio of the estimate of the second order central moment of
light intensity can also be used in correlation analysis.

2.2 Moments of fluorescence intensity corresponding 
to a single particle: characteristics of sample profile

As a model of experimental geometry, we assume the flu-
orescent particle to be situated randomly at any point in a
relatively large volume V of radius R. We characterize the
small volume from which fluorescence emission is col-
lected by a radius parameter w (or a set of radius parame-
ters corresponding to different dimensions, e.g. wxy and
wz). More precisely than by the radius w, the sample is
characterized by its profile function

S (r) = I (r)/I0 , (1)

where I (r) is the fluorescence intensity (measured as the
expected photon count rate), provided the particle is situ-

ated at the point r, and I0 is the maximum fluorescence in-
tensity, usually corresponding to the centre of the sample
(r = 0).

For the sake of simplicity, we now assume that the flu-
orescence intensity depends on the translational coordinate
r only (we ignore fluctuations corresponding to rotational
motion or triplet trapping which usually occur on a faster
time scale than translational motion through the sample
volume). With this assumption, the k-th moment of the col-
lected fluorescence intensity is expressed as

(2)

(3)

The integrals ∫(V) Sk (r) dr have the dimensions of vol-
ume; we shall denote them by vk . From Eq. (3) we get

(4)

Theoretical values of vk corresponding to a number of al-
ternative sample profile functions are shown in Table 1.

In real experiments, the set of vk is not estimated. In-
stead, the concept of a single (apparent) sample volume v
and the (apparent) count rate per particle q is used. In terms
of the vk’s, v can be expressed as (Qian and Elson 1990b)

(5)

The (apparent) count rate per molecule is not exactly
equal to the true count rate per molecule in the centre of
the beam, I0, but equals

(6)

Note that for the Gaussian-Gaussian-Lorentzian sam-
ple profile, v is four times larger than v1 and, correspond-
ingly, q is four times lower than I0. It is essential that this
fact be accounted for when planning experiments or inter-
preting results.

After the change of variables in accordance with 
Eqs. (5) and (6), Eq. (4) takes on the form

(7)

where we have denoted

(8)

For any beam profile γ1 = γ2 = 1, and for the Gaussian-
Gaussian-Lorentzian beam profile γ3 = 0.5 and γ4 = 0.2. The
values of γ3 and γ4 can be experimentally determined for
each set-up (Qian and Elson 1990b).

It is worth noting that Eq. (7) can be derived even if we
disregard the assumption that fluorescence intensity is a
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function of the translational coordinates of the molecule
only. In this case, however, Eq. (2) has to be modified, and,
consequently, vk’s and γk’s become more complicated to
describe. Their values are influenced by contributions to
fluorescence intensity fluctuations from rotational and
electronic coordinates of the molecule. Note, however, that
the rest of our calculations are not affected by the physi-
cal meaning of the variables in Eq. (7).

2.3 Correlation functions of fluorescence intensity
corresponding to a single particle

So far, we have expressed moments of fluorescence inten-
sity, 〈Ik〉, corresponding to a single particle and denoted
them by ϕk . Below (when we calculate the variance of the
experimental estimate of the second order moment of flu-
orescence intensity corresponding to many particles) we
shall also need data regarding the autocorrelation functions
of fluorescence intensity corresponding to a single parti-
cle, 〈Im (0) In (τ)〉, for m, n ≤ 2. We denote them by ϕmn (τ).
No assumption is made concerning the mechanism of trans-
lational motion, however, we just note again that at τ = 0
the correlation function equals the corresponding moment
of light intensity. For τ ≠ 0, the correlation function usu-
ally decays monotonically in τ, with the time constant be-
ing characteristics for the translational process. For large
values of τ it approaches zero because we let V → ∞. Ex-
pressing ϕmn (τ) as a product of an amplitude ϕm+n and a
shape function gmn (τ), we get

ϕmn (τ) = ϕm+n gmn (τ) , (9)

where

gmn (0) = 1 (10)

gmn (∞) = 0 . (11)

2.4 Moments of fluorescence intensity corresponding 
to M fluorescent particles

Now we assume that we have M independent and identi-
cal particles in the same large volume V where we previ-
ously had only one particle. Fluorescence intensity col-
lected from the sample is simply a sum of contributions
from each particle:

I = I1 + I2 + … + IM (12)

where I1, I2, …, IM are contributions to fluorescence in-
tensity from the first, the second, …, and the M-th parti-
cle, respectively.

We can now proceed, making use of the assumption that
particles are independent and identical. The first moment
of I is expressed as

(13)

To express higher moments of I, we also make use of
Eq. (12) and need only count the number of similar terms.
We get

(14)
In our approach, M is a very large number and we can

omit lower order terms of M, replacing M (M −1) by M2.
We get

(15)

In a similar manner we get

(16)
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Table 1 Characteristics of seven alternative sample profiles

Sample profile Profile v1 vk /v1
name function

k = 2 3 4 5 6

One-dimensional 1, if x ≤ w 2 w 1 1 1 1 1
rectangular 0, if x > w

One-dimensional
Gaussian

One-dimensional
Lorentzian

Two-dimensional 1, if r ≤ w π w2 1 1 1 1 1
disk 0, if r > w

Two-dimensional
Gaussian

Three-dimensional
Gaussian

Gaussian-Gaussian-
Lorentzian
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2.5 Moments of photon count numbers corresponding 
to M fluorescent particles

In experiments, the light intensity is measured N times,
counting the number of detected photons (we denote them
by Z) in each of the N consecutive time intervals of dura-
tion T. Counting the number of photoelectron pulses is not
a precise measurement of the classical light intensity I
(which in our model is only a function of coordinates of
the M molecules), but carries with it a random error due to
the quantum nature of light and its detection. Therefore,
the moments of photon count numbers Z are not correct es-
timates of the moments of I. Instead, factorial moments of
Z serve that purpose (Saleh 1974). It is convenient to de-
fine a unit of fluorescence intensity as corresponding to
one count per dwell time, then Saleh’s statement is ex-
pressed as

(18)

(19)

(20)

(21)

which is equivalent to

(22)

(23)

(24)

(25)

Now we replace variables on the right side of Eqs. (22)–
(25) by the corresponding expressions of Eqs. (15)–(17),
and get

(26)

(27)

(28)

(29)

2.6 Correlation functions of photon count numbers
corresponding to M fluorescent particles

To express correlation functions of photon count numbers
for non-zero delay times, we employ the same procedure
as used to derive Eqs. (26)–(29). This is a straightforward,
relatively simple mathematical exercise to do so; hence we
present the results only:
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2.7 Estimates of the second order central moment
of fluorescence intensity

It is possible to estimate the second order autocorrelation
function of fluorescence intensity fluctuations in a num-
ber of different ways. Koppel studied three alternative es-
timates. The best among them (corresponding to the small-
est statistical error) is the following:

(33)

Subscript at Z is the number of the counting interval. The
second term of Eq. (33) stands for subtracting the constant
level of the first term. At the zero delay k = 0, Eq. (33) needs
slight modification; we must account for only cross-corre-
lations between different photon pulses, subtracting the
shot noise contribution:

(34)

Equation (34) is a mathematical expression of the esti-
mate of the second central moment of light intensity, which
is the equivalent of the amplitude of the correlation func-
tion of light intensity fluctuations. The assumption of 
Eqs. (33) and (34) is that the width of the dwell time is 
selected to be much shorter than the correlation time of 
fluorescence intensity fluctuations.

We shall calculate the expected value of Ĝ0
(2) now.

(35)
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The second central moment is actually equivalent to the
expression 〈Z2〉 − 〈Z〉 − 〈Z〉2. The right side of Eq. (36) is
smaller than this, which means that our estimate is biased.
The relative bias is small if N is sufficiently large. In fact,
we can forget the bias, but the terms proportional to N –1

play a very important role when we calculate the variance
of Ĝ0

(2).
As a starting point in calculations of the variance, we

take

(37)

We use expression (34) to replace Ĝ0
(2) on the right side of

Eq. (37). We implement the same mathematical technique
again as when deriving Eq. (36). Unfortunately, the calcu-
lation is very tedious and we have to omit most of its de-
tails here. An important point (which can be used as a check
against calculation errors) is that the terms independent of
N compensate each other and cancel to zero. What remains
non-zero are terms proportional to N –1:

(38)

Now we can apply Eqs. (26)–(32). The result is as fol-
lows:
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terms proportional to N –1. We get

(40)

Now we make use of Eq. (4), applying it to both 
Eqs. (39) and (40). We let M → ∞ and V → ∞ but keep
M v/V ≡ m constant, which is the mean number of particles
per sample volume. From Eq. (40) we get

(41)

and from Eq. (39)
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To a crude approximation, the values of K1 and K2 can be
calculated as integrals,
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We shall use Eqs. (41) and (42) to express the signal to
noise ratio. For applications, it is convient to have ex-
pressed it through count rate per particle (Q) rather than
through count number per particle and dwell time (q). Also,
we prefer to use data collection time (U) rather than total
number of time intervals (N). After the change of variables,
the signal to noise ratio is expressed as
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(51)

(52)

2.8 Interpretation of Eq. (42)

Above we have omitted lengthly details of the mathemat-
ics involved. Technically, the derivation of Eq. (42) is
rather complicated. In fact, before solving the problem in
its most complicated form, we studied a number of sim-
pler models.

The simplest model studied includes the following ad-
ditional assumptions: (1) the classical fluorescence inten-
sity is measured exactly (without the photon noise); and
(2) fluorescence intensities measured at different consec-
utive time steps are uncorrelated. Under these two assump-
tions the solution of the problem (corresponding to 
Eq. (39)) takes on a rather simple form:

(53)

A slightly more complicated model which uses assump-
tion (2) but accounts for photon noise leads to

(54)

However, if photon noise is not accounted for but time
correlations are, then we arrive at

(55)

The most general model leads to Eq. (39) in which all
terms appearing either in Eq. (53), (54), or (55) are present.
This kind of dependence on the model gives us a good foun-
dation for distinguishing between molecular and photon
noise: all terms in Eq. (55) describe molecular noise, while
the four terms in Eq. (54) which are absent in Eq. (55) de-
scribe photon noise. It is not surprising that at a high count
rate q k1, Eq. (39) yields Eq. (55), i.e. the terms corre-
sponding to photon noise can be neglected.

2.9 Statistical accuracy of the estimate of the third order
central moment of fluorescence intensity

The same two simple models which yield Eqs. (53) and (54)
were used to study the statistical accuracy of the estimate
of the third central moment of fluorescence intensity. The
simpler model of the two correspondence to the estimate
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while the model which also accounts for photon noise, but
still assumes independent measurements, leads to

(58)

The most important character of Ĝ0
(3) (compared to Ĝ0

(2))
is the existence of an optimum concentration for measure-
ments. Indeed, while at high concentration values (m k1),
the signal to noise of Ĝ0

(2) is independent of concentration,
Ĝ0

(3) can best be measured at an intermediate concentration
range of about one particle per sample volume. At higher
concentrations, the dominating term of the expression of
var (Ĝ0

(3)) is proportional to m3 while the value of Ĝ0
(3) it-

self is only proportional to m.

3 Experimental test of Eq. (47)

3.1 Experimental procedures

We tested Eq. (47) by determining the experimental signal
to noise ratio of Ĝ0

(2) in studying rhodamine 6G solutions
on a ConfoCor device (EVOTEC BioSystems and Carl
Zeiss, Germany). The dye concentration was in the range
of about 2 × 10–11 to 2 × 10–7 M (corresponding to about
0.04 to 400 dye molecules per sample volume) and the la-
ser beam power was varied between 4 and 800 µW (yield-
ing about 1,400 to 160,000 counts per second and mole-
cule). In order to determine the experimental variance of
Ĝ0

(2), we collected 20 distributions of the number of pho-
ton counts in 20 consecutive experiments of 2 s duration
at a dwell time of T = 50 µs. This procedure was repeated
at each combination of values for m and Q.

For each measured distribution of the number of pho-
ton counts, Ĝ0

(2) was calculated. At count rates exceeding
200 kHz we found it necessary to correct data for the dead
time of the photon detector (30 ns). For dead time correc-
tions we simply multiplied the calculated second factorial
moment of the number of photon counts by a correction
factor. The correction factor was kept constant for a given
series of 20 measurements; its value was empirically se-
lected to be consistent with correct values of m and Q
(which could be determined at low count rates when dead
time corrections are neglectable, or independently by
FCS). Although the maximal shift of the value of the sec-
ond factorial moment was only 0.28 percent, values of Ĝ0

(2)

were shifted by a factor of about two (which occurred at
the highest concentration studied). In order to avoid sig-
nificant errors due to dead time distortions, we did not use
higher count rates than 2 MHz.
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3.2 The results

Figure 1 presents data of the experimentally determined
statistical accuracy (circles). In the upper graph, the signal
to noise ratio (S/N) is plotted against concentration m. Data
measured at two intensities of excitation (corresponding to
55 and 3.2 kHz per molecule) are presented. In the lower
graph, the signal to noise ratio is plotted against the count
rate per molecule. Data measured for two samples (corre-
sponding to m = 0.15 and m = 10.0) are presented in this
graph.

The theoretical curves of S/N corresponding to Eq. (47)
are represented by smooth curves. Values of both m and Q
were determined from the measured data and checked by
FCS. The value of K2 was calculated from the fit curve of
the measured second order correlation function using 
Eq. (44) to be K2 = 3.14 ± 0.04. (The characteristic time
constant of the second order correlation function was
220 µs.) The value of K1 was calculated using Eq. (43) as-
suming that g22 (τ) is of the same shape as g11(τ) except
having two times faster decay, which yielded K1 = 7.7. We
have experimentally determined γ3 = 0.53 and γ4 = 0.23 for
our set-up.

4 Discussion

There were no free parameters when the theoretical curves
of Fig. 1 were calculated. Therefore, the good quantitative
agreement between the theory and experimental results is
direct proof that Eq. (47) predicts accuracy of fluorescence
fluctuation experiments.

In spite of its “awful” outlook, Eq. (47) (in complex
with Eqs. (48), (43) and (44)) is a valuable formula for
practical applications. Its strength is its universality: it can
be applied at arbitrary sample profiles and at arbitrary
shape of the correlation function. We can use it in ordinary
FCS or in the scanning-FCS experiments, as well as in mo-
ment analysis of fluorescence intensity distribution. The
formula is useful when optimizing conditions or designing
new schemes of experiments.

It must be stressed that Eq. (47) expresses the signal to
noise ratio of a particular estimate of the second order cen-
tral moment of light intensity. It is not necessarily correct
if a different definition of the signal was used. Also, our
formula corresponds to statistical noise only: other pos-
sible sources of errors have not been accounted for. Most
important, our definition of the signal to noise ratio meas-
ures the reproducibility of data, i.e. deviations from mea-
surement to measurement, and not, for example, deviations
of the measured correlation function from its fit curve.

As is illustrated by Fig. 1, both parameters m and Q
should be kept sufficiently high in experiments whenever
possible. What is meant by “sufficiently high” has to be
specified in each particular case. The curves shown in
Fig. 1 serve as an example where the mean count number
q = 1 (corresponding to Q = 20 kHz/molecule) is suffi-
ciently high, while we still profit considerably from going

up with the mean number of particles from its unit value
m = 1.
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Fig. 1 Experimental test of Eq. (45): signal to noise ratio corre-
sponding to the time window of 50 µs and the measurement time 
of 2 s, on rhodamine 6G diffusion in water. Upper graph: measure-
ments on different samples at two excitation intensities. Lower graph:
measurements on two samples at different excitation intensities


