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Abstract
A novel water soluble ternary copper(ii) complex,—[Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O—(phen: 1,10-phenanthroline, 
3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, ESI-TOF, FTIR and single-
crystal X-ray diffraction techniques. Interaction of the complex with calf thymus DNA (CT-DNA) has been investigated 
by absorption spectral titration, ethidium bromide (EB) and Hoechst 33258 displacement assay. The interactions between 
the complex and bovine serum albumin (BSA) were investigated by electronic absorption and fluorescence spectroscopy 
methods. The experimental results indicate that the fluorescence quenching mechanism between the complex and BSA is a 
static quenching process. The Stern–Volmer constants, binding constants, binding sites and the corresponding thermody-
namic parameters (ΔG, ΔH, ΔS) of BSA + complex systems were determined at different temperatures. The binding distance 
between the complex and BSA was calculated according to Förster non-radiation energy transfer theory (FRET). The effect 
of the complex on the conformation of BSA was also examined using synchronous, two dimensional (2D) and three dimen-
sional (3D) fluorescence spectroscopy. Furthermore, the oxygen radical scavenging activity of the complex was determined 
in terms of  IC50, using the DPPH and  H2O2 method, to show that it particularly enables electron loss from radical species. 
This study highlights the importance of indole and moieties in the development of antioxidant agents.

Graphic abstract
A potent drug candidate novel water soluble ternary copper(II) complex,—[Cu2(phen)2(3-IAA)2(H2O)]  (ClO4)2·H2O—(phen: 
1,10-phenanthroline, 3-IAA: 3-indoleacetic acid), has been synthesized and characterized by elemental CHN analysis, 
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FTIR, ESI–MS and single-crystal X-ray diffraction techniques. The complex has been tested for in vitro biomacromolecular 
interactions by spectroscopic methods. Furthermore, radical scavenging activities of the complex were also investigated.

Keywords Cu(ii) · 1,10-phenanthroline · Auxin (3-indoleacetic acid) · Biomolecular interactions · Radical scavenging 
activity

Introduction

Auxin plays significant roles during the whole life span 
of a plant. The most abundant naturally occurring auxin 
is 3-indoleacetic acid (3-IAA) (Strader and Bartel 2011; Kai 
et al. 2007; Rampey et al. 2004). 3-indoleacetic acid consist 
of an acetic acid side chain linked by an indole ring. The 
indole ring is found in compounds as various as the hormone 
serotonin, the amino acid tryptophan, the psychedelic drug 
LSD and the antimigrane drug rizatriptan (Lal and Snape 
2012; Horton et al. 2003). Indole has important proper-
ties because of the presence of an electron rich NH moiety 
that could interact noncovalently with other molecules by 
formation of hydrogen bonding in the NH moiety by π–π 
stacking (Lal and Snape 2012; Shimazakia et al. 2009). The 
hydrogen bonding donor or acceptor groups of indole are 
not only facilitative in establishing intermolecular contacts 
between small molecules and macromolecule such as DNA, 
protein, enzyme but also bind DNA sequences with some 

specificity (Pandya et al. 2010). Because of these properties, 
indole rings are extensively used to advance novel biologi-
cally active derivatives and biological activities (antiviral, 
antifungal, anticancer, antioxidant, antimicrobial, etc.) are 
assigned to compounds bearing indole moieties (Suzen and 
Buyukbingol 2000; Suzen et al. 2006; Tiwari et al. 2006; 
Ryu et al. 2007; Williams et al. 2005). Compounds con-
taining indole are significant and efficient antioxidants, pro-
tecting both lipids and proteins from peroxidation, and the 
indole structure effects the antioxidant efficacy in biological 
systems (Dannhardt and Kiefer 2001; Brown et al. 1991). 
Another ligand used in this study, 1,10-phenanthroline and 
derivatives are an important class of chelating agents and has 
structural features such as being rigid planar, hydrophobic, 
and an electron-poor heteroaromatic system. Some metal 
complexes containing 1,10-phenanthroline and derivatives 
are known to bind to DNA by an intercalative mode and have 
interesting anticancer properties (Mital et al. 1989; Mansuri-
Torshizi et al. 1991; Skurai et al. 1995). Recently, we have 
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reported the synthesis, characterization, biomolecular inter-
actions and biological activities of some binary and ternary 
copper(ii) complexes (Şenel et al. 2019; Kiraz et al. 2019; 
İnci et al. 2019a, b, 2018a, b, 2017a).

In light of the above attention, our group has focused 
on the synthesis and characterisation (CHN analysis, FTIR, 
ESI–MS and single crystal X-ray diffraction techniques) of 
the complex. The detailed structure of the complex with the 
formulas  [Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O (phen: 
1,10-phenanthroline, 3-IAA: 3-indoleacetic acid) has also 
been determined using single crystal X‐ray analysis (Fig. 1). 
The binding properties between the complex and DNA/BSA 
were studied by electronic absorption and fluorescence spec-
troscopy and the binding mechanism regarding the binding 
parameters were investigated. The effect of radical scaveng-
ing activity of the complex was also evaluated.

Experimental

Materials and measurements

All chemicals were of reagent grade, purchased from dif-
ferent sources, and were used without further purifica-
tion. 1,10-phenanthroline, 3-indoleacetic acid (3-IAA), 
Cu(ClO4)2·6H2O, methanol, ethanol, DMSO,  CH3CN, 
DMF, NaCl, tris-(hydroxymethyl)aminomethane-HCl, 
CT-DNA, BSA, ethidium bromide, Hoescht 33258 
(2-(4-hydroxy-phenyl)-5-[5-(4-methylpipera-zine-1-yl) 
benzimidazo-2-yl]-benzimidazole), hydrogen peroxide, 
6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid 
(Trolox), 1,1-diphenyl-picrylhydrazyl (DPPH), butylated 
hydroxytoluene (BHT), and ascorbic acid were provided 
from Sigma-Aldrich. All solutions were prepared with ana-
lytical grade water (R = 18 MΩ) using grade A glassware. 
CHN elemental analysis were performed using a Costech 
elemental analyzer at the Technical and Scientific Research 
Council of Turkey, TUBITAK Bursa Test, and Analysis 
Laboratory. Infrared spectra were recorded from 4000 to 
400  cm−1 with a Thermo–Nicolet 6700 Fourier Transform 
Infrared Spectrometer using KBr pellets. The spectropho-
tometric studies were performed using a GBC Cintra 303 

UV–Visible spectrophotometer connected with a Peltier 
thermocell. Emission intensity measurements were carried 
out using a Jasco FP-750 spectrofluorometer. Electrospray 
ionization (ESI) mass spectra were recorded using a Bruker 
Daltonics Microtof II‐ESI‐TOF mass spectrometer at the 
TUBITAK‐MAM Test and Analysis Laboratory.

General procedure for the synthesis of the complex

[Cu2(phen)2(3‑IAA)2(H2O)](ClO4)2·H2O

The complex was prepared by following a procedure 
in which a mixture of 1.0  mmol phen and 1.0  mmol 
Cu(ClO4)2·6H2O in 20 mL of  CH3OH was added dropwise 
to 1.0 mmol 3-IAA with stirring for about 2 h. Slow evapo-
ration of the solvent gave crystalline product in 91% yield. 
The resulting solution was left to evaporate slowly at room 
temperature and the dark green crystals were obtained.

Yield was 91%. Anal. calcd. for  C44  H36  Cl2  Cu2  N6  O14 
(1070.77 g  mol–1) (%): C, 49.36; H, 3.39; N, 7.85. Found: 
C, 48.95; H, 3.42; N, 7.81. FTIR (w, weak; m, medium, 
s, strong): ν(C=N)phen 1418s, ν(C=C)phen 1618s, δ(C–H) 
791 and 712, ν(N–H)3-IAA 3373m, νs(COO)3-IAA 1578, 
νas(COO)3-IAA 1432,  (ClO4

−) 1070m. UV–Vis (λnm, nm and 
in 1 ×  10–3 M water): 271.6 (55,735.96  M−1  cm−1). ESI‐MS 
(m/z): 417.05 for [Cu(phen)(3-IAA)]+.

Crystal structure determination

Data for the complex were obtained with Bruker APEX II 
QUAZAR three-circle diffractometer. Indexing was per-
formed using Bruker (2014a). Data integration and reduction 
were carried out with Bruker (2013). Absorption correction 
was performed by multi-scan method implemented in Bruker 
(2014b). The structure was solved using SHELXT (Shel-
drick 2015a) and then refined by full-matrix least-squares 
refinements on F2 using the SHELXL (Sheldrick 2015b) 
in Olex2 Software Package (Dolomanov et al. 2009). Crys-
tallographic data and refinement details of the data collec-
tion for the complex are given in Table 1. Crystal structure 
validations and geometrical calculations were performed 
using Platon software (Spek 2009) and Mercury software 
(Macrae et al. 2006) was used for visualization of the cif 
files. Additional crystallographic data with CCDC reference 
number 1996812 for the complex has been deposited within 
the Cambridge Crystallographic Data Center via www. ccdc. 
cam. ac. uk/ depos it.

DNA interaction studies

The stock solution of CT-DNA was prepared by dissolv-
ing DNA in Tris–HCl buffer (5 mM Tris–HCl/50 mM NaCl 
buffer at pH 7.2). The stock solutions of the CT-DNA in 

A B
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Fig. 1  The structures of the ligands used in this study. a 1,10-phenan-
throline. b Auxin (3-indoleacetic acid, 3-IAA)

http://www.ccdc.cam.ac.uk/deposit
http://www.ccdc.cam.ac.uk/deposit
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Tris–HCl buffer gave the ratio of UV absorbance at 260 and 
280 nm, A260/A280, of ca. 1.9, indicating that the DNA was 
sufficiently free of protein. The concentration of CT-DNA 
(in nucleotide) stock solution was determined by electronic 
absorption spectroscopy, in a series diluted samples, using 
the molar absorption coefficient 6600  M−1  cm−1 of a single 
nucleotide at 260 nm (Reichmann et al. 1954). Concentrated 
stock solution of the complex was dissolved with water to 
required concentrations. Electronic absorption spectral 
titration experiments were performed by keeping the con-
centration of the complex constant (15 µM) while varying 
CT-DNA concentration (0–450 µM). After each addition of 
CT-DNA to the complex, the resulting solution was allowed 
to equilibrate at 298.2 K for 2 min followed by recording of 
absorption patterns. The fluorescence spectral method using 
EB as a reference was used to determine the relative DNA 
binding properties of the complex to CT-DNA. For fluores-
cence experiments, CT-DNA (5 μM) was pretreated with EB 
(5 μM). The emission spectra of the complex (0–500 μM) 

were recorded in the 520–700 nm range upon excitation at 
295 nm in EB displacement assay. Hoechst 33258 displace-
ment assay was also performed under similar conditions 
to EB assay. CT-DNA (5 μM) was pretreated with Hoe-
chst 33258 (5 μM). The emission spectra of the complex 
(0–500 μM) were recorded in the 350–700 nm range upon 
excitation at 341 nm in Hoechst 33258 displacement assay.

BSA interaction studies

All experiments containing BSA were performed in 
Tris–HCl buffer solution (5 mM Tris–HCl/50 mM NaCl 
buffer at pH 7.2). Final solutions of BSA and the complex 
were prepared by dissolving them in the water to required 
concentrations. The electronic absorption spectra of the BSA 
and the solution of the complex at 15 μM concentrations 
were measured in the range of 200–400 nm. In the trypto-
phan fluorescence quenching experiment, quenching of the 
tryptophan residues of BSA was done by keeping the con-
stant concentration of BSA (1 μM) while varying the com-
plex concentration (0–18 μM). The fluorescence measure-
ments were performed at three temperatures (298.2, 310.2 
and 318.2 K). The range of synchronous scanning were 
λex = 280 and λem = 298 at 15 nm, λex = 280 and λem = 342 
at 60 nm. The three-dimensional (3D) and (2D) countour 
plot excitation and emission spectra of BSA in the absence 
and presence of the complex were recorded in the range of 
220–350 nm.

Radical scavenging studies

DPPH radical scavenging activity

To determine the  DPPH· free radical scavenging capac-
ity of the complex, a solution of  DPPH· (0.5 mL, 0.1 mM) 
was added to 1.5 mL of the complex solutions in ethanol 
at different concentrations (Gulcin 2006). These solutions 
were then vortexed thoroughly and incubated in the dark for 
30 min. After another 30 min, the absorbance was measured 
at 517 nm.

Hydrogen peroxide scavenging activity

The principle of the assay is based on a decrease in the 
absorbance of hydrogen peroxide upon oxidation of hydro-
gen peroxide (Ruch et al. 1989). A solution of 40 mM hydro-
gen peroxide was prepared in 0.1 M phosphate buffer (pH 
7.4). After different concentrations of the complex in 3.4 mL 
phosphate buffer were added to 0.6 mL of hydrogen perox-
ide solution (40 mM), the absorbance of the mixture was 
recorded at 230 nm. Trolox, ascorbic acid, and BHT were 
used as reference compounds. The percentage of radical 

Table 1  Crystal data and refinement parameters for the complex

CCDC 1996812

Empirical formula C44H36Cl2Cu2N6O14

Formula weight (g  mol−1) 1070.77
Temperature (K) 120
Radiation MoKα (λ = 0.71073)
Crystal system Triclinic
Space group P-1
a (Å) 7.4887 (5)
b (Å) 13.3524 (8)
c (Å) 21.2505 (12)
α (°) 87.098 (5)
β (°) 80.861 (4)
γ (°) 81.209 (5)
Crystal size (mm) 0.14 × 0.09 × 0.08
V (Å3) 2072.5 (2)
Z 2
ρcalcd (g  cm−3) 1.716
µ  (mm−1) 1.237
F(000) 1092
2θ range for data collection (°) 5.828–50.05
h/k/l − 8 ≤ h ≤ 8, − 15 ≤ k ≤ 15, − 

25 ≤ l ≤ 25
Reflections collected 23,182
Independent reflections 7260 [Rint = 0.0879, 

Rsigma = 0.1036]
Data/restraints/parameters 7260/21/622
Goodness-of-fit on F2 (S) 1.020
Final R indices [I > 2σ(I)] R1 = 0.0559, wR2 = 0.1189
R indices (all data) R1 = 0.1052, wR2 = 0.1361
Largest diff. peak and hole (e Å−3) 0.86/− 0.98
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scavenging by the complex and reference compounds was 
calculated using the following equation:

where A0 and Ac represent the absorbance in the absence 
and presence of the complex, respectively. The 50% activity 
 (IC50) was calculated using the percentage of activity.

Results and discussion

Description of the crystal structure

The solid-state structures and geometries of the complex 
were determined by single-crystal X-ray structural analysis. 
Crystallographic data and refinement details of the data col-
lection are given in Table 1. The selected bond lengths and 
bond angles are given in Table 2. Single-crystal X-ray dif-
fraction analysis reveals that the complex crystallizes in the 
triclinic crystal system with space group P-1. The solid-state 
structure of the complex is shown in Fig. 2a.

The structure consists of two Cu(ii) ion linked by two 
indole-3-acetate (3-IAA−), one bridged water ligand, two 
chelating phenanthroline (phen), two uncoordinated perchlo-
rate  (ClO4

−) as an electron balancing anion, and one lattice 
water molecule. As can be seen in Fig. 2a, b, the central 
Cu1 ion has a distorted five-coordinate square pyramidal 
geometry  (CuN3O2), in which the tau‐descriptor (τ5) values 
for Cu1 atoms is 0.01 (Addision et al. 1984), through two 
carboxylate oxygen atoms  (O1,  O3) of 3-IAA, one chelat-
ing phen nitrogen atoms  (N1,  N2), an oxygen atom  (O13) 
of water ligand in the axial position. The other  Cu2 centre 
has almost same coordination arrangement as in Cu1 ion, 
except for the weak coordination bond  (Cu2–O4 = 2.676 (4) 

(1)% Radical activity = [(A0 − Ac)∕A0] × 100,

Å). In  [Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O, equato-
rial bond lengths (Cu1–N1 = 2.002 (4) Å, Cu1–N2 = 1.987 
(4) Å, Cu2–N3 = 2.002 (4) Å, Cu2–N4 = 1.995 (4) 
Å, Cu1–O1 = 1.933 (4) Å, Cu1–O3 = 1.999 (3) Å, 
Cu2–O2 = 1.945 (4) Å, Cu2–O3 = 2.010 (3) 2.010 (3)) and 
weakly bound axial bond distances (Cu1–O13 = 2.411 (4) 
Å, Cu2–O13 = 2.348 (4) Å) are comparable to Cu(ii) based 
complexes (İnci et al. 2016, 2017b, 2019b). Crystal struc-
ture is mainly stabilized by classical O–H · O, N–H · O and 
non-classical C–H · O, X–H · Cl (X: N, O, C) hydrogen 
bonding interactions (Table 3) as existed in many supra-
molecular systems. The chlorate anion as hydrogen bond 
acceptor participates three classical hydrogen bonding 
interactions (O14 · O9 = 2.831 (10) Å, O8 · N5 = 2.996 (6) 
Å, O6 · O13 = 2.802 (7) Å), which are defined as moder-
ate H-bonds. The lattice water molecule behave as both 
hydrogen bond donor and acceptor to link perchlorate and 
complex cation  [Cu2(phen)2(3-IAA)2(H2O)]2+ by moder-
ate H-bonds, namely, O14 · O4 = 2.831 (9) Å and O13 · 
O14 = 2.909 (9) Å as can be seen in Fig. 2c. Additionaly, 
the weak C–H · O interactions contibuted the stability of 
crystal structure (Table 3). As shown in Fig. 2d, complex 
exhibits strong (3.366 and 3.744 Å) and moderate (4.264, 
4.316 Å) intramolecular aromatic ring stacking interactions 
between the aromatic ring of the phen and 3-IAA ligand. 
In addition to intramolecular aromatic ring stacking, strong 
and moderate intermolecular π-stacking interactions (3.662, 
3.720, and 3.918 Å) are observed in the three-dimensional 
supramolecular network (Fig. 2e).

Spectral characterization

The FTIR spectrum showed peaks associated with ligands 
(phen and 3-IAA) coordinated to a copper(ii) metal ion. 
The strong absorption peaks at 3373  cm−1 belong to the 

Table 2  Selected bond lengths 
(Å) and bond angles (°) for the 
complex

Bond lengths (Å)

Cu1–N1 2.002 (4) Cu1–N2 1.987 (4) Cu1–O1 1.933 (4)
Cu1–O3 1.999 (3) Cu1–O13 2.411 (4) Cu2–N3 2.002 (4)
Cu2–N4 1.995 (4) Cu2–O2 1.945 (4) Cu2–O3 2.010 (3)
Cu2–O13 2.348 (4) Cu2–O4 2.676 (4)
Bond angles (°)
N1–Cu1–O13 110.45 (16) N2–Cu1–N1 82.80 (17) N2–Cu1–O3 96.25 (16)
N2–Cu1–O13 94.17 (16) O1–Cu1–N1 89.14 (16) O1–Cu1–N2 171.73 (16)
O1–Cu1–O3 91.50 (15) O1–Cu1–O13 90.36 (16) O3–Cu1–N1 172.55 (16)
O3–Cu1–O13 76.97 (14) N3–Cu2–O3 177.43 (17) N3–Cu2–O13 99.97 (16)
N4–Cu2–N3 82.38 (17) N4–Cu2–O3 96.01 (15) N4–Cu2–O13 99.68 (16)
O2–Cu2–N3 90.29 (16) O2–Cu2–N4 167.20 (15) O2–Cu2–O3 91.65 (14)
O2–Cu2–O13 91.90 (16) O3–Cu2–O13 78.28 (14) O2–Cu2–O4 87.19 (14)
O3–Cu2–O4 53.59 (14) O4–Cu2–O13 131.77 (14) O4–Cu2–N3 128.23 (16)
O4–Cu2–N4 89.12 (15)
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–NH– group. No significant shifts were observed on the 
peaks among 3-IAA, suggesting that nitrogen atom in the 
indole ring did not coordinate with copper(ii) ion. The 
characteristic peaks in the FTIR spectra were because of 
asymmetric and symmetric stretching vibrational modes 
of  COO− group. The absorption peaks appearing at 1578 
and 1432  cm−1 are assigned to the asymmetric stretching 
vibrations and symmetric stretching vibrations of the car-
boxylate groups, while the characteristic bands of asymmet-
ric and symmetric stretching vibrations of the carboxylate 
groups in free 3-IAA are 1661 and 1467  cm−1, respectively. 
This results indicates that oxygen atoms on the carboxylate 
groups of the 3-IAA are involved in coordination with the 
copper(ii) ion. The value of Δ(COO−) (υa − υs) is equal to 
194  cm−1 near to the values reported by several authors in 
this chelating mode (Viossat et al. 2003; Donnay et al. 1965; 
Tian et al. 1995). Compared to the free ligands, the bands 
observed in the 1580–1389  cm−1 range of the ν(C=N) and 
ν(C = C) groups were shifted to higher frequencies in the 

range 1620–1419  cm−1 in the complex. The FTIR spectra 
of the complex showed peaks at 791 and 712  cm−1. These 
peaks (out-of-plane CH stretching vibrations) were assigned 
as coordinated νphen skeletal vibrations. This results indicate 
that the participation with nitrogen atom of the C=N (phen-
anthroline ring) groups in coordination of the copper(ii) ion. 
The broad band centered about 3600–3400  cm−1 confirms 
the existence of the water molecule. The very strong broad 
peaks in the ~ 1070  cm−1 region suggest discrete perchlorate 
anions in the complex.

The complex showed good solubility in water, methanol, 
 CH3CN and DMSO and were found to be stable in both 
the solid and solution phases. The electronic absorption 
spectra of the complex recorded indicated two bands which 
appeared around 272 and 295 nm corresponded to π–π* and 
n–π* intra-ligand transitions of coordinated 3-IAA and phen 
(Kamnev et al. 2001; Ambrosek et al. 2010). The ESI‐MS 
analysis of the complex shows the presence of [Cu(phen)
(3-IAA)]+ ion (m/z 417.05) as the most abundant species, 

Fig. 2  a Crystal structure of 
 [Cu2(phen)2(3-IAA)2(H2O)]
(ClO4)2·H2O with displacement 
ellipsoids drawn at the 30% 
probability level. The uncoordi-
nated chlorate anion and lattice 
water molecule are omitted 
for clarity. H-atoms are shown 
as small spheres of arbitrary 
radii. b A view of the copper 
coordination environment in 
 [Cu2(phen)2(IA)2(H2O)]2+. 
c Perspective view of inter-
moleculer hydrogen bonding 
interactions in crystal structure. 
d, e Illustration of intra- and 
intermolecular π · π stacking 
interactions
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representing the original complex with loss of perchlorate 
ion, coordinated and uncoordinated water molecules (Fig. 
S1).

DNA binding activities

The interaction of the complex with CT-DNA has been stud-
ied with electronic absorption spectroscopy to research the 
possible binding modes to CT-DNA and determine the bind-
ing constants (Kb) to CT-DNA. The results of the electronic 
absorption spectra of the complex in the absence and pres-
ence of CT-DNA are displayed in Fig. 3a. Upon increasing 
the ratio of the concentration of CT-DNA to those of the 
complex, the absorption bands of the complex displayed 
hypochromism and from the absorption data, a plot was 
drawn of [DNA]/(εa − εf) values versus DNA concentrations 
for the titration of DNA to the complex using the following 
equation (Pyle et al. 1989):

[DNA] is the concentration of DNA in terms of base-
pairs, εa is the apparent extinction bound form. Each of 
data, when fitted to the above equation, gave a straight 
line with a slope of 1/(εb − εf) and a y-intercept of 1/Kb(εb 
− εf). Kb was calculated from the ratio of the slope to the 
intercept. The Kb value of the complex was calculated and 
given in Table 4. The logarithm of the Kb value (log Kb) for 

(2)
[DNA] /

(

�a − �f
)

= [DNA]∕
(

�b − �f
)

+ 1∕Kb

(

�b − �f
)

the complex was 3.42. Absorption spectra of the complex 
showed that as the concentration of CT-DNA increases, the 
curve presents hypochromism. Hypochromic effect is attrib-
uted to the intercalative binding mode and also combined 
with a red shift is considered as an indication of intercala-
tion of small molecules into DNA because of the stacking 
of the chromophore pairs (Chen et al. 2011). The calculated 
Kb value for the complex was found to be of lower magni-
tude than the classical intercalator EB (ethidium bromide) 
(Kb = 1.23 ×  105  M−1, log Kb = 5.09) (Psomas 2008). The 
Kb values found for the complex could be explained by the 
presence of an indole ring that reduces partially the binder 
flexibility (Pandya et al. 2010). Additionally, the indole ring 
and 1,10-phenanthroline ring shows high electron density 
favorable to π-stacking interactions CT-DNA nucleotides 
(Hossain and Kumar 2009; Li et al. 2010; İnci et al. 2019c). 
The electronic absorption titration studies reveal that the 
complex could a moderate intercalative binding mode with 
CT-DNA base pairs.

EB displacement experiments of the complex have also 
been performed. The fluorescent emission titration of the 
complex is displayed in Fig. 3b. An increase in the concen-
tration of the complex results in a decrease in the emission 
intensity of the EB + CT-DNA solution. The apparent bind-
ing constant (Kapp) is the concentration of the compound 

Table 3  Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) − x + 1, − y + 1, − z; (ii) x − 1, y, z; (iii) x, y − 1, 
z; (iv) − x + 1, − y + 1, − z + 1

D–H · A D–H H · A D · A D–H · A

O14–H14A · Cl4 0.87 2.81 3.677 (8) 172
O14–H14A · O9 0.87 2.00 2.831 (10) 159
O14–H14B · O4 0.87 2.34 2.831 (9) 116
C1–H1 · O2 0.95 2.52 3.009 (6) 112
C2–H2 ·  O5i 0.95 2.62 3.328 (6) 132
C10–H10 · O7 0.95 2.64 3.433 (7) 142
C13–H13 · O1 0.95 2.50 2.972 (6) 111
C13–H13 ·  O11ii 0.95 2.62 3.333 (7) 133
C26–H26A · O10 0.99 2.58 3.549 (8) 165
C28–H28 · O9 0.95 2.56 3.481 (7) 164
C31–H31 ·  Cl3iii 0.95 2.97 3.772 (6) 144
O13–H13A ·  O6ii 0.82 (2) 2.02 (2) 2.802 (7) 159 (5)
O13–H13B ·  O14ii 0.84 (2) 2.10 (2) 2.909 (9) 162 (5)
O13–H13B ·  O4ii 0.84 (2) 2.44 (4) 2.944 (5) 119 (4)
N5–H5A ·  O8iii 0.88 2.17 2.996 (6) 157
N6–H6A ·  Cl4iv 0.88 2.88 3.616 (5) 142
N6–H6A ·  O11iv 0.88 2.06 2.928 (6) 170
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emission intensity of the CT- DNA bound EB at different concentra-
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in the medium that reduces the fluorescence intensity of 
EB by 50% and it could be calculated using Eq. (3) (Karlin 
et al. 1987). With the addition of the complex to CT-DNA, 
there was a considerable decrease in the emission intensity 
because of the replacement of EB by the complex.

where [Complex] is the concentration of the complex at 50% 
reduction of fluorescence intensity  (KEB = 1.0 ×  107  M−1, 
[EB] = 1.3 μM) (Lee et al. 1993). The quenching plots fol-
lowed the Stern–Volmer relationship of the form (Lakowicz 
and Weber 1973):

where I0 and I are the fluorescence intensities of the excited 
CT-DNA + EB in the absence and presence of the complex. 
Ksv is the Stern–Volmer quenching constant and [Complex] 
is the concentration of the quencher. The Stern–Volmer 
quenching constant (Ksv) and Kapp values are illustrated in 
Table 5. The log Ksv value was calculated to be 3.72 for the 
complex. The Ksv value of the complex is lower than that 
observed for classical intercalator EB  (107  M−1) (Waring 
1965) which imply that the complex bind with CT-DNA rel-
atively less strongly than classical intercalators. This results 
could be clarified that cationic metal complexes including 
aromatic planar ligands show moderate binding strength 
(Cory et al. 1985). There are likely reasons that explaining 

(3)KEB ⋅ [EB] = Kapp ⋅ [Complex],

(4)I0∕I = 1 + KSV ⋅ [Complex],

the decrease of EB + CT-DNA fluorescence intensity on 
addition of the complex: (i) The binding between EB and 
the complex could occur and intensity of EB + CT-DNA 
decreases (ii) the complex competes EB in binding with 
CT-DNA and excludes intercalated EB from the CT-DNA 
double helix, and thus the concentration of bound EB is 
reduced. (iii) The addition of the complex contributes to 
formation of a novel non fluorescence complex, EB + CT-
DNA + complex, which induces the fluorescence quenching 
of EB + CT-DNA (Bi et al. 2008).

To clarify the intercalative mode of binding of the com-
plex with CT-DNA, Hoechst 33258 displacement assay was 
also performed. Hoechst 33258 binds to the minor groove of 
DNA with specificity for AT-rich sequence, and it is used to 
explore competitive replacement by groove binders (Khajeh 
et al. 2018). With increasing concentration of the complex, 
there was no change in the fluorescent intensity of Hoechst 
33258 + CT-DNA. For this reason, we could consider that 
the complex could not be a minor groove binder.

BSA binding activities

The electronic absorption spectra was used to find out the 
mechanism of quenching process. Figure 4a indicates the 
electronic absorption spectra of BSA in the absence and 
presence of the complex. On the addition of the complex, 
there were evident changes in the absorption intensity and 
peak position of BSA, suggesting that the quenching process 

Table 4  The binding parameters (log Kb, log Kapp, log KSV) for the interaction of the complex with CT-DNA

*Hypo: hypochromism (%Hypo = A − A0/A0)

Complex Electronic absorption spectroscopy

Kb log Kb λmax % Hypo*
2.64 ×  103 ± 0.03 3.42 ± 0.03 271.6 13.2

Complex Ethidium bromide (EB)

Ksv log Ksv Kapp log Kapp

5.21 ×  103 ± 0.03 3.72 ± 0.03 2.50 ×  105 ± 0.01 5.40 ± 0.01

Table 5  BSA binding parameters [quenching constant (Ksv and Kq), modified Stern–Volmer constant (Ka), binding constant (KA), number of 
binding sites (n)], the thermodynamic parameters (ΔG°, ΔH° ve ΔS°) and the distance parameters (J, R0, r ve E) of BSA + the complex

Compounds T log Ksv log Kq log Ka log  KA n

Complex 298.2 5.03 ± 0.04 13.04 ± 0.04 4.85 ± 0.01 5.30 ± 0.02 1.05
310.2 4.57 ± 0.05 12.70 ± 0.05 4.69 ± 0.03 5.19 ± 0.03 1.11
318.2 4.31 ± 0.04 12.35 ± 0.04 3.92 ± 0.02 4.37 ± 0.02 1.00

Compound T ΔG° (kJ  mol−1) ΔH° (kJ  mol−1) ΔS° (J  mol−1  K−1) r (nm) % E

Complex 298.2 − 30.97
310.2 − 29.08 − 78.07 − 157.98 0.48 44.71
318.2 − 27.81
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was static quenching, since the formation of BSA + complex 
in the static quenching caused some changes in the elec-
tronic absorption spectrum of BSA, whereas the collision 
and energy transfer during the dynamic quenching could not 
result in changes in absorption spectrum of BSA. Therefore, 
the fluorescence quenching of BSA is induced by the forma-
tion of BSA + complex, which displayed a static quenching 
mechanism (Zhang et al. 2013).

Quenching measurement of BSA fluorescence is a 
significant method to determine the interactions of the 
complex with BSA. As known, there were two types of 
quenching mechanisms of protein fluorescence, static and 

dynamic quenching (Kang et al. 2004). In static quench-
ing, the complex binds to amino acids residues (Phe, Tyr 
and Trp) of BSA and a non-fluorescence BSA + com-
plex was formed, resulting in decrease of the fluores-
cence intensity of BSA (Lakowicz and Weber 1973). The 
dynamic quenching results from the collision diffusion of 
the complex and BSAduring the excitation process (Liu 
et al. 2011). These quenching mechanisms could be dis-
tinguished by their different dependence on temperature. 
In the static quenching, Stern–Volmer quenching con-
stants, Ksv, decrease with increasing temperature because 
increased temperature result in decreased stability of 
BSA + complex. On the contrary, in the dynamic quench-
ing, higher temperature results in larger diffusion coef-
ficients, Stern–Volmer quenching constants, Ksv, increase 
with increasing temperature (Wani et al. 2017). To deter-
mine BSA binding behaviors of the complex, quenching 
experiments were performed at different temperatures 
(298.2, 310.2 and 318.2 K) and analyzed using classical 
Stern–Volmer equation (Fig. 4b):

where I0 and I are the fluorescence intensities in the absence 
and presence of the complex, respectively. [Complex], Kq 
and τ0 are the total concentration of the complex, the quench-
ing rate constant and the average lifetime of biopolymer in 
the absence of the quencher (τ0 =  10–8 s) (Lakowicz 1999), 
respectively. The log Ksv and log Kq is given in Table 5. As 
shown in Table 5, for the complex, the Stern–Volmer plots 
were linear and the values of Ksv decreased with increasing 
temperature. Evidently, the rate constants of BSA quenching 
initiated by the complex are higher than 2.0 ×  1010  M−1  s−1, 
which is the maximum collision quenching constant of vari-
ous types of quenchers of biomacromolecules (Ware 1962). 
These results indicate that the binding of the complex to 
BSA is responsible for the quenching of its tryptophan fluo-
rescence by the static quenching mechanism. These results 
also suggested that there was a strong binding between the 
complex and BSA and BSA + complex might be stored and 
carried by protein in the body (Jiao et al. 2020).

The modified Stern–Volmer equation was also used to 
evaluate the association constant, log Ka, for BSA + com-
plexes interaction (Lakowicz 1999):

where Ka is the modified Stern–Volmer association con-
stant, which equals the quotient of an ordinate 1/fa and slope 
1/faKa for the accessible fluorophores, and ƒa is the fraction 
of accessible fluorescence. As shown in Table 5, the decreas-
ing of log Ka with increasing temperature was in accordance 
with the dependence of log Ksv values on temperature, which 
is a static type quenching mechanism. In static quenching, 

(5)I0∕I = 1+Kq ⋅ �0[Complex] = 1 + KSV ⋅ [Complex],

(6)I0∕(I0 − I) = 1∕(fa ⋅ Ka) ⋅ 1∕([Complex]) + 1∕fa,
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the binding constant (KA) and the number of binding sites 
(n) could be calculated according to the following equation.

where in the present case, KA is the binding constant to a 
site, and n is the number of binding sites per albumin. The 
log KA and n for the complex were listed in Table 5. These 
results displayed that the log KA values decreased as tem-
perature increased for the complexes. This could mean that 
when temperature is raised hydrogen interactions become 
weaker, resulting in a decrease of the binding constant val-
ues (log KA) between the complex and BSA. Additionally, 
the value of n was approximately equal to 1, implying that 
there was one single binding site on BSA for the complex.

The thermodynamic parameters could be calculated on 
the basis of the van’t Hoff equation:

ΔG is the free energy change, KA binding constant, T 
is temperature, and R is the gas constant. ΔG, ΔH and ΔS 
could be determined by the regression curve of ln KA ver-
sus 1/T. The values of ΔH, ΔS and ΔG were presented in 
Table 5. For the complex, the negative values of ΔH and 
ΔS demonstrated that hydrogen bonds and van der Waals 
interactions play major roles in the binding process and 
stabilizes the BSA + complex formation. Furthermore, a 
negative value of ΔG shows the spontaneity of the interac-
tion. Besides aromaticity and ring shape, hydrogen bond-
ing could play a role in the partitioning of the indole ring 
(Wimley and White 1996; Persson et al. 1988). Zhang 
and co-workers conducted a study of the anticancer activ-
ity of [Cu(3-IAA)2(phen)] which inhibited the growth 
of the cells MDA-MB-31 and MCF7 lines at very low 
concentrations, 4.20 and 5.21 µM, respectively. They per-
formed to analyze the possible interaction between [Cu(3-
IAA)2(phen)] and the catalytically active 20S proteasome 
by molecular docking simulation. The results show that 
[Cu(3-IAA)2(phen)] forms a few hydrogen bonds with 
the receptor. It forms a hydrogen bond with sidechain by 
its indole nitrogen atom and its carboxylic oxygen atom 
(Zhang et al. 2016). Here, it is significant that 3-IAA hav-
ing in the structure of the complex containing indole ring 
plays an active role.

The distance between the acceptor and donor could be 
determined by FRET (Sklar et al. 1977). Figure 4c displays 
the overlap between the electronic absorption spectrum of 
the complex and the fluorescence emission spectrum of 
BSA. The energy transfer efficiency (E) is obtained using 
the equation:

(7)log (I0 − I)∕I = logKA + n log[Complex],

(8)In K = −ΔH∕RT + ΔS∕R

(9)ΔG = ΔH − TΔS = −RT lnKA

where I and I0 are the luminescence intensities of BSA 
in the presence and absence of the complex (1 μM), r is 
the distance between the acceptor and the donor and R0 is 
the critical distance when the transfer efficiency is 50%. It 
can be given by following equation:

F(λ) is the luminescence intensity of the BSA at the 
particular wavelength (λ), ε(λ) is the molar absorption 
coefficient of the complex at the particular wavelength (λ) 
and its unit is  cm−1  M−1 (Wang et al. 2008). E, energy 
transfer, and overlapping integration values were obtained 
from Eqs. (10) and (12), respectively. To determine the 
Förster’s critical distance using Eq. (10), we have used 
K2 = 2/3, N = 1.336 and ϕ = 0.118 for BSA (Shaikh et al. 
2006). The values of r and E % of the BSA + complex sys-
tem are presented in Table 5. The exact binding location 
over BSA of the complex might not be detected. However 
admissible prediction about the binding position could be 
made from the FRET study which indicates that the dis-
tance between BSA and the complex. Found r values is 
about 0.48 nm for the complex and thus we could recom-
mend that the complex bind near BSA (Cheng et al. 2009; 
Prasanth et al. 2016). Furthermore, the value of r less 
than 8 nm indicated that the nonradiative energy transfer 
and the static quenching interaction between BSA and the 
complex. The energy transferred to the complex from BSA 
is 44.71% for the complex (Table 5).

Synchronous fluorescence spectroscopy gives the valu-
able knowledge about the molecular environment in the 
surroundings of the tyrosine and tryptophan residues in 
proteins. As shown in Fig. S2, on addition of the complex, 
the fluorescence intensity of tyrosine residue at 300 nm 
decreased of up to 37.94% and the fluorescence inten-
sity of tryptophan residue at 340 nm decreased of up to 
72.22%. It might be found that the quenching of fluores-
cence intensity of Trp residues was stronger than that of 
Tyr residues, displaying that Trp residues induced more 
quenching of the intrinsic fluorescence of BSA and as a 
result the complex was closer to Trp residues compared to 
Tyr residues (Klajnert and Bryszewska 2002).

Three dimensional fluorescence spectroscopy (3D) 
analysis and the contour map (2D) could provide much 
considerable knowledge and detailed conformational 
changes of BSA. Thus, the 3D spectra of free BSA and 
BSA + complex system was measured as illustrated in 
Fig. 5. As given in Fig. 5, “Peak a” (λex = λem) indicates 

(10)E = 1 − (I∕I0) =
(

R6
0

)

∕
(

R6
0
+ r6

)

(11)R6
0
= 8.8 × 10−25K2�JN−4

(12)J =
∑

F(�)�(�)�4Δ�∕
∑

F(�)Δ�
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the Rayleigh scattering peak. “Peak b” indicates the spec-
tral behavior of the tryptophan and tyrosine residues. 
The results indicated that the contour map (2D) of BSA 
and BSA + the complex was clearly distinct. The fluores-
cence intensity of “Peak a” and “Peak b” was found to 
be increased with the addition of the complex. The fluo-
rescence intensity of “Peak a” was found to be increased 
with the addition of the complex due to the formation of 
BSA + complex. Thus, the diameter of the BSA increased 
and resulted in the enhancement of scattering effect (Tian 
et al. 2010). These experimental results displayed that the 
binding of the complex with BSA affected conformational 
and microenvironment of tyrosine and tryptophan residues 
in BSA.

Radical scavenging activity

To determine whether the complex has radical scavenging 
activity, we performed DPPH and  H2O2 assays. The half 
minimum inhibitory concentration  (IC50) calculated for 
the complex, asc, trolox and BHT is tabulated (Table 6). 
The radical scavenging effect of the complex and stand-
ards on DPPH radical decreased in the order of the com-
plex > trolox > BHT > ascorbic acid and  H2O2 radical 
decreased in the order of ascorbic acid > BHT > trolox > the 
complex (Fig.  6). Comparing both methods with each 
other, it was observed that the complex had better  H2O2 
scavenging activity. The  H2O2 scavenging activity depends 

on compound ability to lose electron (ET), whereas in the 
DPPH scavenging activity depends on compound ability to 
transfer hydrogen atom (HAT) (Wright et al. 2001). There-
fore, it could be said that the complex has better ability to 
induce electron loss according to  H2O2 scavenging activity 
results. 

β-Carotene is used as an antioxidant agent. From Table 6, 
it is evident that the complex demonstrated higher radical 
svavenging effects on DPPH methods with lower  IC50 val-
ues when compared with β-carotene (Widowati et al. 2017). 
Additionally, catechin is also used an antioxidant agent. It is 
clear that the complex demonstrated higher radical svaveng-
ing effects on  H2O2 methods with lower  IC50 values when 

Fig. 5  Three-dimensional and 
contour plot of the fluorescence 
spectra of BSA, BSA + the 
complex
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Table 6  The antioxidant and radical scavenging activities of the com-
plex

♣ in this study, ⁂ İnci et al. (2019a), Φ Rahman et al. (2015), § Wid-
owati et al. (2017)

IC50 (μM)

Compounds DPPH H2O2 Ref
Complex 3.45 ± 0.04 1.88 ± 0.03 ♣
Ascorbic acid 25.6 0.02 ⁂
Trolox 7.73 0.12 ⁂
BHT 15.04 0.03 ⁂
Catechin – 75.0 Φ
β-Carotene 415.3 – §
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compared with catechin (Rahman et al. 2015). An odd elec-
tron in copper(ii) ion of the complex decreases the capacity 
to balance the unpaired electrons and there by arrest the 
free radicals (İnci et al. 2019a). Shirinzadeh and co-work-
ers found that the indole ring in melatonin indicated as the 
center responsible for antioxidant properties, because of its 
high resonance stability and low activation energy barrier 
in direct reactions against free radicals (Shirinzadeh et al. 
2010). Monica and co-workers have synthesized a novel 
series of indole based tryptophan and tryptamine deriva-
tives and evaluated that their antioxidant activities depend 
on the substituents on the relative positions of indole ring 
(Monica Estevao et al. 2010). In another group’s study, a 
series of substituted 2-arylindoles was synthesized and their 
antioxidant properties evaluated. They uncovered that fluoro 
analogues have indicated antioxidant activity comparable to 
melatonin (Karaaslan et al. 2013).

Conclusions

A novel  water  so lub le  copper ( i i )  complex , 
 [Cu2(phen)2(3-IAA)2(H2O)](ClO4)2·H2O, was synthesized 
and structurally charactrized. The complex indicated a mod-
erate intercalative CT-DNA binding propensity which was 
proved by electronic absorption studies, EB and Hoechst 
33258 displacement assays. The results also indicated that 
the complex could bind with BSA, the fluorescence quench-
ing mechanism was static and the binding reaction was spon-
taneous. The complex indicated free radical scavenging 
activity when compared to standard antioxidants. The indole 
ring can be used as a strategy to increase macromolecular 
interactions (DNA, protein, enzyme, etc.) and radical scven-
ing activity of new complexes. This study also provides a 

new approach for understanding the nature and site of bind-
ing of the complexes with macromolecules.
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