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Abstract
Cyclodextrins (CDs) are well-known carriers for encapsulating hydrophobic molecules, while among cannabinoids, canna-
bidiol (CBD) has attracted considerable attention due to its therapeutic capability. In this framework, we employed molecular 
dynamics and docking techniques for investigating the interaction energy and thermodynamical issues between different 
CDs (α, β, and γ type) and CBD immersed in water and a solution mimicking a physiological environment. We quantified 
the energetic aspects, for different thermal conditions, in which both aqueous solutions interact with CBDs and CDs and the 
CBD-CDs complex itself. In order to approximate the physiological conditions, our simulations also included the mammalian 
temperature. The calculations revealed significant interaction energy between lactate and the CD surface and a movement of 
lactate toward CD as well. We observed an almost constant number of lactate molecules forming clusters without exhibiting 
a temperature dependence. Next, the degree of CBD-CDs complexation at four different temperatures was analyzed. The 
results showed that the complexation depends on the medium, becoming weaker with the temperature increment. Our find-
ings highlighted that the entropy contribution is relevant for CBD-α-CD and CBD-β-CD, while CBD-γ-CD is practically 
insensitive to temperature changes for both solutions. In both water and artificial physiological solutions, the γ-CD appears 
more stable than the other complexes. Overall, CBD achieved partial encapsulation considering α-CD and β-CD, showing 
a temperature dependence, while γ-CD remained fully immersed no matter the thermal level assumed. We also discuss the 
pharmacological relevance and physiological implications of these findings.
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Introduction

Research into thermal effects is relevant for understand-
ing several physiological mechanisms, such as allowing an 
appropriate design of different drugs. In cell biology, tem-
perature regulates the biochemical pathways by modulat-
ing membrane fluidity, protein stability, ion channels, and 

receptors dynamics, among others (Mundt et al. 2018; Rosa 
et al. 2017; Hubbard et al. 1971; Lee and Deutsch 1990; 
Murata and Los 1997). Specifically, in brain tissue the meta-
bolic activity remains a complex issue in physiology because 
the neuronal activity is critically dependent on the on the 
thermal levels (Kiyatkin 2019; Brooks 1983; Horel 1996). 
Consequently, experimental paradigms employing thermal 
regulation still represent an excellent strategy to uncover 
many interesting biophysical properties in both physiologi-
cal and pharmacological contexts (Bikkina et al. 2017; Schiff 
and Somjen 1985; Andersen and Moser 1995; Yang and 
Wang 2006). From this evidence, it is clear that tempera-
ture variation can provide a suitable method of manipulat-
ing interactions between molecules and their surrounding 
environment.

Nowadays, numerous studies still focus on the physico-
chemical properties of aqueous systems, considering high 
concentrations of only a few ionic species (Zasetsky and 
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Svishchev 2001; Payne et al. 1995a, b, c). However, within 
a more realistic perspective in physiology, it is required 
to investigate such properties considering dilute solutions 
composed of ionic species found in physiological fluids. In 
particular, understanding artificial physiological solutions 
has been fundamental not only in basic research but also for 
clinical purposes (Baskett 2003; Ziance et al. 2009). Within 
this scope, one can highlight the Ringer lactate solution 
(RL solution), also known as Hartmann or sodium lactate 
solution, commonly employed in administering intravenous 
medication (Baskett 2003; Iqbal et al. 2018). This fluid 
has low hypotonic and caloric levels, being preferred for 
shock resuscitation, after a blood loss due to trauma (Ichai 
et al. 2014; Bondoli et al. 1978). Although RL represents a 
slightly hypotonic and low caloric solution, few side effects 
have been documented in the literature. For this reason, it 
becomes relevant to quantify how pharmaceuticals and pro-
teins interact with the RL constituents.

Experimental work has been an important procedure in 
uncovering biophysical aspects of the ionic interactions 
with natural and synthetic molecules. For example, solubil-
ity decrement promotes changes in the melting temperature 
of proteins (Kramer et al. 2012). Reports also revealed how 
calcium ions interact with the family of gastrin peptide hor-
mones, considering both immersed in two different organic 
liquids (Peggion et al. 1983). Last, but not least, a subse-
quent thermodynamic study also clarified the magnesium 
interplay with human growth hormone, showing a protein 
thermal stability increment in the presence of this ion (Sab-
oury et al. 2006).

Although there is a wealth of literature, quantified by 
different experimental work, valuable information about 
ion-protein interactions was also achieved using simulation 
methods (Gunsteren and Mark 1992). In this sense, thanks 
to the extensive development of analytical and numerical 
methods, molecular dynamics and molecular docking have 
been vastly applied in recent years (Durrant and McCam-
mon 2011). Both methodologies allow for the translation 
of physical laws representing the biological system into a 
faithful mechanistic representation of experimental results. 
Another remarkable advantage of the in-silico approach is 
the opportunity to access refined mechanisms inaccessible 
by empirical protocols. In this context, computational simu-
lations represent a useful procedure to investigate protein 
interaction with aqueous solution components in distinct 
physicochemical conditions (Fraternali and van Gunsteren 
1996; Soares et al. 2003). Among applications based on 
physiological motivation, simulations enabled the exami-
nation of how sodium and chloride propagation is processed 
near the lysosome surface (Friedman 2011). Among the 
broad spectrum of possibilities, theoretical studies involving 
CDs solubility in aqueous solutions also emerge as a relevant 
field due to their industry and research applications. Mainly, 

simulations are necessary for understanding the encapsula-
tion mechanism of hydrophobic molecules into CDs, provid-
ing valuable data to be used by the pharmaceutical industry 
and basic science.

Molecular docking is credited as a powerful approach 
for structure-based drug discovery. It constitutes a suit-
able method to predict and confirm important biophysical 
properties, useful for a better comprehension of the com-
plex formed between CDs and different molecules (Kitchen 
et al. 2004; Meng et al. 2011), such as in systems in which 
the size did not drastically diverge from our work, where 
the results predicted reinforced the experimental findings. 
For example, Chung et al. (2019) and Elmes et al. (2015) 
used docking to study how cannabidiol modulates the effects 
of delta-9-tetrahydrocannabinol (Δ-9-THC or THC) on the 
cannabinoid receptor type 1 and fatty acid-binding proteins, 
respectively. Furthermore, Chaudhuri et al. (2010) combined 
docking, semi-empirical calculations, and fluorescence spec-
troscopic, to give detailed insights into the serotonin encap-
sulation mechanism in the β-CD cavity. Docking has been 
successfully applied by Upadhye et al. (2010) which who 
also combined experimental and theoretical investigation, to 
study the THC inclusion into β-CD. The same study showed 
that employing molecular docking is still the most probable 
mode of THC binding with β-CD. Also, it is important to 
mention that many studies using molecular docking were 
carried out in encapsulation of different molecules within 
α-CD (Cai et al. 2001), β-CD (Chen et al. 2019), and γ-CD 
(Pahari et  al. 2018), respectively. Thus, when carefully 
used, molecular docking represents a robust methodology 
for investigating the CBD inclusion in CDs.

The compound THC is a lipophilic molecule with active 
principle extracted from the leaves of the plant Cannabis 
sativa, which is used for both recreational and pharmacolog-
ical purposes (Hadland et al. 2015; Baron 2015). In humans, 
moderate consumption of this substance produces periods of 
euphoria followed by relaxation, while higher doses lead to 
a predominantly depressive effect (Ameri 1999). Although 
many different mechanisms have been discovered, it is well 
known that cannabinoids modify molecular mechanisms 
related to learning and memory processes in the hippocam-
pus (Riedel and Davies 2005). This evidence of its direct 
action in the central nervous system trigged an intense study 
to synthesize substances, mimicking the pharmacological 
effects, according to those observed in THC. Furthermore, it 
was required to make the identification and characterization 
of the binding sites of these substances (Freund et al. 2003). 
In this framework, two important independent studies car-
ried out in the rat nervous system identified the cannabinoid 
binding site and cloned the first G protein-coupled recep-
tor known as CB1 or cannabinoid receptor type 1 (Devane 
et al. 1992; Matsuda et al. 1990). Later, Munro et al. (1993) 
reported another receptor cloned into cells of the immune 
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system, known by CB2 receptors. The discovery of CB2 
was particularly remarkable because it has enabled a bet-
ter understanding of the effects of cannabinoids relative to 
the peripheral system. Naturally, with the identification and 
localization of cannabinoids receptors, the next step was to 
find and further characterize the endogenous and exogenous 
cannabinoids. In this sense, the first endocannabinoid dis-
covered was called anandamide or arachidonyl-ethanolamide 
(AEA) (Devane et al. 1992). Further studies by Sugiura et al. 
(1995, 2001) showed that 2-arachidonylglycerol (2-AG) 
competes with the AEA for the same cannabinoid receptor, 
thus confirming the presence of another endocannabinoid 
in mammals.

The biosynthesis of both endocannabinoids is a matter of 
intense studies, being mainly associated with two processes. 
The first is related to the elevation of the intracellular cal-
cium ions (Ca2+) concentration (Lenz et al. 1998), which 
originated from the stocks of the endoplasmic reticulum and 
the entrance of Ca2+ (Llano et al. 1991). About the produc-
tion of cannabinoids, the exact mechanism for the recruit-
ment of a high concentration of intracellular Ca2 + is not 
accurately known yet (Xu and Xen 2015). Relative to the 
other process, the presence of metabotropic type 1 glutamate 
receptors (mGluR1) or muscarinic acetylcholine receptors 
(mAChR) activate enzymes in the intracellular environment, 
such as phospholipase C, hydrolyzes the cellular membrane, 
giving the precursor molecules required for the endocan-
nabinoid synthesis (Chevaleyre et al. 2006). The produced 
molecules perform a retrograde diffusion, where they bind to 
receptors located at the axon terminal and suppress the neu-
rotransmission machinery. The attenuation in neurotransmit-
ter release occurs because CB1 receptors interact with potas-
sium and calcium channels via G protein (Pitler and Alger 
1994). Electrophysiological studies in the hippocampus and 
cerebellum of rats reported, during a repetitive electrical 
stimulus, suppression of the postsynaptic potentials that the 
same cell receives. This intriguing phenomenon is defined 
as depolarization-induced suppression of inhibition (DSI) 
(Pitler and Alger 1992; Vincent et al. 1992). Surprisingly, 
subsequent research on glutamatergic synapses revealed a 
suppressive effect of excitatory levels later defined as depo-
larization-induced suppression of excitation (DSE) (Kreitzer 
and Regehr 2001; Maejima et al. 2001; Levenes et al. 2001). 
Thus, the richness and complexity of cannabinoid mecha-
nisms is evident, opening up plenty of room for theoretical 
studies investigating how these substances interact with the 
components of physiological fluids and artificial aqueous 
solutions.

The large variety of synthetic cannabinoids and their 
therapeutic potential encouraged a deeper investigation of 
these substances. Among phytocannabinoids, one can high-
light CBD thanks to its potential benefits in post-traumatic 
stress disorder, anxiety, pain, and epilepsy (Elms et al. 2019; 

Lee et al. 2017; Hammell et al. 2016; Silvestro et al. 2019; 
Burstein 2015). Unlike other psychoactive compounds, a 
CBD remarkable advantage includes the absence of euphoric 
effects commonly linked to THC use. Recently, in vitro stud-
ies, involving extracellular field potential recordings, suggest 
that CBD induce long-term potentiation in the CA1 region 
of the mice hippocampal slices (Maggio et al. 2018).

Furthermore, in the amygdala, there was an enhancement 
of spine densities modified after the administration of CBD 
(Uhernik et al. 2018). However, despite the unquestionable 
importance of CBD in pharmacology, CBD’s poor solubil-
ity in aqueous solutions still represents obstacles for clinical 
applications and in vitro investigations. In fact, electrophysi-
ological experiments, performed in brain slices, frequently 
require a tissue immersion in hydrophilic solutions such 
as artificial cerebrospinal fluid. Thus, CBD application in 
hydrophobic environment requires an appropriate host com-
pound as an efficient way to enhance their water bioavail-
ability and solubility.

The CDs molecules are endowed with a hydrophilic outer 
surface and a hydrophobic inner cavity, forming a toroidal 
shape. There are three natural CD types: α, β and γ, con-
sisting of six, seven and eight α-(1,4)-linked glycosyl units, 
respectively. The peculiar architecture of CD is propitious 
to form encapsulation complexes with a vast range of guest 
molecules. CDs are a product of enzymatic degradation of 
starch by glucanotransferase (Valle 2004), being practically 
nontoxic, appropriate in food industry, cosmetics, personal 
care, and toiletry (Gidwani and Vyas 2015). After complexes 
of CDs are formed, drugs have their physicochemical prop-
erties modified as, for instance, solubility and stability. 
In pharmaceutics, CDs complexation is employed in the 
enhancement of aqueous solubility of lipophilic drugs. Due 
to this undoubted importance, in different fields of knowl-
edge, numerous efforts have been devoted to characteriz-
ing CD using experimental and theoretical approaches. For 
instance, Hingerty et al. (1984) performed a detailed study 
on α, β and γ-CD using neutron diffraction, revealing that 
hydrogen bonds exhibit dynamical behavior even in the solid 
state. Experimental investigation has also contemplated the 
thermal effects on CD, as reported by Steffens et al. (2007) 
who studied, how N-adamantylacrylamide was complexed 
with β-CD at different temperatures. Moreover, Ishiwata and 
Kamyia, using fluorimetric data and a temperature range of 
288.15–313.15 K, investigated the influence between war-
farin and the coumachlor complex in β-CD (Ishiwata and 
Kamyia 1998). Furthermore, simulations also contributed 
to reveal several biophysical details of the thermal effects 
on CDs (Koehler et  al. 1987). Finally, using molecular 
dynamics simulations, Winkler et al. (2000) studied how the 
hydration process depends on temperature variation β-CD. 
Overall, motivated by the explanations given above, the 
present work intends to carry out theoretical investigations 
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to characterize how different temperatures may modulate 
CBD-CDs complexation immersed in water and RL solution.

Materials and methods

Docking simulation

Docking simulations of CBD (COD-CID 13956-29-1) 
into targets α-CD (COD-CID 444913), β-CD (COD-CID 
444041), and γ-CD (COD-CID 5287407) were based on 
three-dimensional structures from PubChem (https​://pubch​
em.ncbi.nlm.nih.gov/) in the “SDF” file format. OpenBabel 
version 2.3.1 converted CD and CBD representations into 
the PDB format (O’Boyle et al. 2011). For these original 
structures, polar hydrogen atoms were added using the Auto-
dockTools (Morris et al. 2009), and partial charges were 
calculated using empirical force field MMFF94 (Halgren 
1999). We considered six degrees of freedom for CBD with 
all CDs being rigid.

Docking simulations employed the Autodock Vina ver-
sion 1.1.2 (Trott and Olson 2010), where the simulation 
boxes were defined around the coordinates of the CDs cent-
ers with size 40 Å in each direction and a grid spacing of 
0.375 Å. The box was created in such a way that it was suf-
ficiently large to include not only the respective cavities of 
the CDs but also the structure of the CBD. Table 1 shows 
the best parameters applied to adjust CBD docking into CD 
with the energy range specifying the maximum number of 
binding modes to the output. Identical solutions in terms 
of conformation were divided into families, where the best 
modes of binding were chosen by adopting the lowest bind-
ing free energy value and visualized through Pymol version 
1.4.1. (DeLano 2011). Each complex obtained, taking into 
account the lowest energy, was subject to new optimization 
using the Steepest Descent algorithm to increase the accu-
racy of the results.

Molecular dynamics

The simulations were built using the Gromacs 5.1.2 
package, adopting the OPLS-AA force field to the struc-
tures taken of the complexes obtained from the docking 
procedure (Abraham et al. 2016; Jorgensen et al. 1996; 
Dodda et al. 2017). The CDs, CBD, and lactate topologies 

were generated by the web LigParGen Server (Jorgensen 
et  al. 1996). The present work considers CBD-α-CD, 
CBD-β-CD, and CBD-γ-CD complexes immersed into 
a saline solution, which resembles a RL type, contain-
ing the following concentrations: Na+ (1.66 mmol L−1), 
Cl− (1.98  mmol  L−1), lactate (7.7  mmol  L−1), K+ 
(5.4 mmol L−1), and Ca2+ (1.44 mmol L−1), such as the 
same CDs types immersed in only water. The complexes 
soaked in a volume of 216 nm3 of cubic boxes, contain-
ing 2100 water molecules of the tip3p type in a minimum 
distance of 1 nm between the complexes and walls. Neu-
tralization of systems was achieved by adding 150 mM of 
NaCl molecules. The systems were minimized with steep-
est descent algorithm and equilibrated with restraint posi-
tion to guarantee the accommodation of the solvent around 
the complex. We assumed NPT conditions (T = 298 K and 
P = 1 bar) during 50 ns, applying periodic boundary condi-
tions (Wardi 1988).

Temperature was maintained constant using Berend-
sen’s method with the time constant of 0.1  ps, while 
pressure was equilibrated at 1 bar by Berendsen barostat 
employing 1 ps time constant relaxation (Berendsen et al. 
1984). LINCS algorithm was applied for all bonds within 
the complex allowing 2 fs time steps and SETTLE algo-
rithm was adopted for water molecule bonds (Hess et al. 
1997; Miyamoto and Kollman 1992). The cut-off used for 
the non-bonded interactions was ~ 1 nm with electrostatic 
interactions computed using the particle mesh Ewald 
method (Darden et al. 1993). Table S1 shows a compila-
tion of the parameters used in the simulations. The initial 
velocity was generated from the Maxwell–Boltzmann dis-
tribution, while graphs and figures were created employ-
ing Origin (OriginLab, Northampton, MA) and V.M.D. 
version 1.9.1. (Humphrey et al. 1996). We explored the 
same protocol for all simulations running during 250 ns 
for four temperatures initiating at 298 K in steps of 12 K 
until it reached 334 K.

The binding free energies between CBD-CD were cal-
culated using the molecular mechanics (MM) based on 
Poisson-Boltzmann surface area (MM-PBSA) (Kumari 
and Kumar 2014). The MM-PBSA approach combines 
three energetic terms to account for the change in the 
free energy of binding. ΔGbind was estimated from the 
free energies of the reactants and product of the reaction 
according to the equation:

 where GPL, GP and GL are the total free energy of the pro-
tein−ligand complex, total free energies of the isolated 
protein, and ligand in solvent, respectively. The advan-
tage of MM-PBSA compared to rigorous methods of free 
energy calculations, like free energy perturbation (FEP) and 

(1)ΔGbind = ⟨GPL⟩ − ⟨G
P
⟩ − ⟨G

L
⟩,

Table 1   Parameters used in 
docking simulations

Parameters Value

Energy range 10
Num modes 20
Exhaustiveness 8
Seed − 150

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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thermodynamic integration (TI), is that these methods are 
computationally expensive. In this approach, Eq. 1 is esti-
mated from:

 where the first three terms are from the MM energy terms 
from bonded (bond, angle and dihedral), electrostatic, and 
van der Waals interactions. Gpol and Gnp are the polar and 
non-polar contributions to the solvation free energies and 
the last term refers to entropy. Calculations of binding free 
energy assumed two approaches: first, considering the CBD-
CD complex in an aqueous solution medium, followed by a 
second, contemplating the CBD-CD complex in the RL solu-
tion. Configurational entropy was estimated from trajectory 
based on the variance–covariance matrix of the atomic posi-
tional fluctuations, using a quasi-harmonic method, where 
the variance–covariance matrix was calculated for all atoms 
in the complex. In the quasi-harmonic method using Car-
tesian coordinates, the mass-weighted variance–covariance 
matrix is first calculated from MD trajectories, in which the 
overall translations and rotations of the solute molecule are 
removed using least-squares fits of mass-weighted coordi-
nates (Hikiri et al. 2016).

Let us justify the temperature range used in the present 
work. From a physiological point of view, thermal changes in 
vertebrates may be associated with conditions of hypother-
mia and hyperthermia. As reported by several authors, the 
study of the interaction of substances at a temperature much 
higher than that found in physiological patterns is important 
in the pharmacological domain. For example, Chiang et al. 
used MD calculations, to assess the temperature dependence 
of the celecoxib (CCB) and hydroxypropyl-β-CD (HP-β-CD) 
complexation in water solution (Chiang et al. 2014). Besides 
assuming room temperature (298 K) these authors also con-
sidered 333 K, enabling to document a transition state of 
CCB and HP-β-CD, showing an exit at a higher tempera-
ture of celecoxib and HP-β-CD. Moreover, Steffens et al. 
(2007) using the interval 323.15–363.15 K, observed that 
N-adamantylacrylamide, when complexed with randomly 
methylated-β-CD exhibits, below a critical temperature 
(338.15  K), a polymerized solution predominance. A 

(2)ΔGbind = Ebond + Eele + Evdw + Gpol + Gnp − TΔS,

precipitation mechanism above this temperature leads to an 
increase in the relative polymerization rate.

Lamparczyk and Zarzycki (1995) adopted a wide range 
of temperatures (from 5 to 353.15 K) to quantify the tem-
perature impact on the separation of estradiol and equilin 
by liquid chromatography employing mobile phases modi-
fied by β-CD. Finally, Manilla et al. (2007) employed sev-
eral temperatures within the interval of 323.15–553.15 K, 
using the precipitation complexation methodology, to obtain 
a CBD complex with β-CD for sublingual administration. 
In summary, the temperatures used in the present work 
are within the thermal levels, in accordance with previous 
studies involving the formation of the CBD-CD complex. 
Simulations occurred during 250 ns, using four temperatures 
initiating at 298 K with a step of 12 K until it achieving 
334 K. Finally, the initial velocity was generated from the 
Maxwell–Boltzmann distribution. Graphs and figures were 
created employing Origin (OriginLab, Northampton, MA) 
and V.M.D. version 1.9.1. (Humphrey et al. 1996).

Results and discussion

Docking

The preparation and characterization of a 1:1 stoichiometry 
of CBD and THC encapsulated in β-CD were independently 
studied by Mannila et al. (2005), (2007) and Upadhye et al. 
(2010). Assuming the same stoichiometry, we show that 
the most likely ways of bonding are the introduction of the 
methyl group attached to the aromatic ring of CBD within 
the hydrophobic cavity of α, β-CD (Fig. 1a, b). Moreo-
ver, we found that hydrogen bonds play an essential role 
in the stabilization of complexes, where the interactions 
between the methyl and hydroxyl group of α, β-CD pro-
duce hydrogen bonds (HB) with the energy of − 0.519 and 
− 0.147 kcal mol−1, respectively. Additionally, CBD is fully 
inserted in the γ-CD cavity (Fig. 1c) to form HB with total 
energy − 1028 kcal mol−1 (see Table S2 in Supplementary 
Material) and van der Waals interactions controlling the 
binding of the CBD with the three CDs.

Fig. 1   Binding pose of CBD 
within the CDs: a α-CD-CBD, 
b β-CD-CBD and c γ-CD-CBD 
cavity during the complex 
formation
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System stability

For all systems and temperatures, the energetic stability was 
confirmed in both water and RL solutions (data not shown). 
To illustrate this calculation we highlighted kinetic, poten-
tial energies as function of time (Figs. 2, 3), and root-mean 

square deviation-RMSD relative to initial structure select-
ing 310 K (mammalian physiological temperature). This 
temperature was used as a representative illustration due to 
relevance for animal physiology and clinical applications.

The simulations revealed that all systems are energetically 
stable. However, due to the large number of conformations, 
which define the stability of biological systems, we observed 
fluctuations and a partial equilibrium regime, evidenced by 
many plateaus around average values for the α-CD, β-CD, 
and γ-CD complexes. It is important to mention that in both 
water and RL solution the γ-CD appears more stable than 

(a)

(b)

(c)

Fig. 2   From up to down three calculations at 310 K, considering the 
kinetic energies for CDs immersed in RL solution (main panel) and 
water (inset): a α-CD, b β-CD, and c γ-CD

(a)

(b)

(c)

Fig. 3   From up to down three calculations at 310 K considering the 
potential energies for CDs immersed in RL solution (main panel) and 
water (inset): a α-CD, b β-CD, and c γ-CD
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α-CD and β-CD complexes. Figure 4 brings a representa-
tive view of RMSD in both solutions displaying the same 
equilibrium states as experimented by the systems. We also 
investigated the root mean square fluctuation (RMSF) value 
for all CD atoms concerning their initial coordinates. In this 
context, Figure S1 from Supplementary Material depicts the 
difference between the medium providing a more precise 
view of CD flexibility. The difference in CD fluctuations 
is much larger when the CBD binds in water as a solvent, 
perhaps related to structured waters near the complexes.

Temperature dependence of the radius of gyration (Rg), 
displayed in Fig. 5, indicates that in water the average values 
around 0.523 nm (α-CD), 0.528 nm (β-CD), and 0.638 nm 
(γ-CD) are close to those found in the RL solution. The 
only exception was computed for β-CD in the RL solution, 

where Rg decreased to 0.171 nm at 322 K, showing that Rg 
is not substantially affected by this solvent concentration or 
temperature in these simulations.

CBD displacement

The CBD retention time into CD for the temperature range 
assumed here may be directly linked to steric effects caused 
by the average displacement of the hydroxyl group atoms, 
especially in the saline medium. The retention time is short 
at high temperature for α-CD or β-CD and long for γ-CD 
because of the balance among non-bonded forces. The driv-
ing forces of complexation are non-bonded interactions act-
ing among the CBD, cavity, and solvent (Tong and Wen 
2008). In the present investigation, only the methyl group 
that bonded to the aromatic ring from CBD is encapsulated 
in the α-CD or β-CD, configuring a partial CBD-CD inter-
action, although, in some cases, CBD drifts to move large 
distances outwards from cavity. Snapshots at last frame of 
simulation (Figs. S2–S4, Supplementary Material) evidence 
that CBD occupies the wide side cavity of the CD, whereas 
its more flexible tail part tends to stick out toward the sol-
vent. Furthermore, when CDB is partially inserted in CD it 
acquires distinct conformations. Defining the z-axis as the 
axis through of the CD center, the stretched initial orienta-
tion of the CBD is observed in the direction of the y-axis 
for 310 K (α-CD). In temperatures ranging 310–334 K, tail 
direction follows the y-axis for β-CD. An interesting result 
is the CD rotation (90º) in the RL solution; however, it does 
not change its conformation as response to CBD orientation 
that is free to rotate until leaving the CD cavity.

Numerous conformations above 310 K caused translation 
movement of the ligand out of the CD cavity (M1 movie in 
the Supplementary Material), allowing the entrance of other 
molecules into the cavity. This phenomenon occurs because 
non-bonded interactions are not sufficient to counterbalance 
the CBD configurational entropy increase as a response to 
the rising temperature. Specially, for RL solution, we evalu-
ated translational movement measuring the distance between 
the CD and CBD centers. Between 310 and 334 K, the dis-
tance for β-CD increased from 0.248 to 0.526 nm, while for 
α-CD it changed from 0.248 to 0.481 nm, when temperature 
rises from 322 to 334 K. The γ-CD complex remains stable 
with restricted movement into the cavity for all temperatures, 
even when the wide side cavity showed to be occupied by 
cluster of lactate molecules and others ions.

We also documented, concerning α-CD and β-CD, a 
stronger interaction between lactate and γ-CD, such as a 
formation of lactate clusters (26 to 28 molecules, depending 
of temperature) around the CBD- γ-CD cavity as shown in 
the Supplementary Material (Figure S5). However, we did 
not find clusters formed among the ions. In early work, Silva 
and Santos 2018 have reported similar behavior between an 

Fig. 4   A representative RMSD profile, taken at 310  K, considering 
CDs immersed in RL solution (main panel) and water (inset)

Fig. 5   The Rg profile of each CD as a function of the temperature. 
The numbers 1 and 2 in parentheses represent water and RL solution, 
respectively
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ionic solvent in the estradiol-sex hormone-binding globulin 
(SHBG) complex, suggesting the existence of an attractor 
at the SHBG surface (Da Silva and Dos Santos 2018). An 
inspection of electrostatic and van der Waals contributions, 
looking at the interaction between CDs and RL components 
(Tables 2, 3, 4), indicates that the average positioning of 
these components on CDs favor, in general, the prevalence 
of electrostatic interactions. However, this behavior changes 
with respect to lactate, where the attractive component of 
van der Waals dominates the interaction. The data reveal 
that temperature continuously changes the reorientation of 
the components of the RL solution in relation to the CD 
molecule due to the electrodynamics effect, producing an 
oscillating behavior of the interactions. Moreover, the results 
show that temperature continuously changes the reorien-
tation of the components of the RL solution with the CD 
molecule due to the electrodynamics effect producing an 
oscillating behavior of the interactions. For example, for 
the Ca+ 2 interacting with α-CD, an increase in electrostatic 
attraction and the attractive component of van der Waals 
is observed for the temperature range from 298 to 310 K, 
but this attraction decreases at 322 K. It increases again at 
334 K, while for K+ the repulsive component of the van der 
Waals interaction continually rises when the temperature 
increases. Tables 5, 6, 7 show these interactions in respect to 
CBD and the components of the RL solution. The energies 
also maintain the oscillating pattern, with emphasis on the 
attractive component of van der Waals that dominates the 
lactate-CD interaction. Altogether, we conclude that there 
the unfavorable variation in electrostatic energy is compen-
sated by the attractive component of van der Waals, where 
the balance between these interactions controls the binding 
energy. This result of the temperature action in the intermo-
lecular interactions, when the CBD-CD complex is solvated 
in certain salt concentration, such as the dielectric constant 
is modified.

The calculations for HB, performed taking into account 
the distance from the donor atom and acceptor consider-
ing ≤ 0.35 nm and angle ≤ 30º, demonstrated that the amount 
of HB between CBD and CDs as a function of temperature 
has a stable number of interactions for β-CD (RL) and γ-CD 
(both solvents). We found an average of 0.1 bonds when the 
solvent is water, but no HB was found on γ-CD when the 
solution is RL, unlike β-CD whose mean HB was 0.9. In 
fact, on the α-CD, the number of HB increased from 0.15 
(298 K) to 0.42 (322 K and 334 K), while in β-CD water it 
reduced from 0.25 HB (322 K) to 0.0 (334 K). Therefore, we 
credit the difference in the amount of HB formed between 
CBD-CD, not only to the increase in temperature, but also 
to the environment produced by the solvent. In water, the 
distance of ~ 0.2 nm between the centers of mass of the CBD 
and the γ-CD in relation to the temperature range studied, 
showed that the CBD is stable within the cavity, whereas for 

α-CD and β-CD the distance remains around 0.29 nm. On 
the other hand, in the RL solution, the CBD escapes from 
the β-CD when temperature greater than or equal to 310 K, 
whereas for α-CD the thermal threshold was at 322 K. In 
summary, this specific finding suggests that van der Waals 
interaction combined with hydrophobic contacts, play an 
important role in the γ-CD stabilization.

Effects of RL solution

The environment generated by the solvent affects the proper-
ties of interaction CBD-CD. The properties of the medium 
naturally depend on the component properties, such as size, 
charge, and the balance of interactions. The arrangements 
of solvent molecules around and inside the complexes are 
analyzed by calculating the radial distribution function g(r) 
for the CDs centers. Relative to α-CD and β-CD, some mol-
ecules of water are located in the cavities for both solvents. 
At average, most water molecules are found at the narrow 
side of the cavities, when only water is the solvent, follow-
ing the quantities: 2, 3 and 3.5 for α-CD, β-CD, and γ-CD, 
respectively. On the other hand, in the RL solution the aver-
age values for the number of water molecules are practi-
cally unaltered. Figure 6 presents a reduction in the number 
of solvent molecules (RL solution) from 310 K around the 
β-CD complex and few molecules remain inside the cavities. 
We also highlight the permanent presence of the one-lactate 
molecule in the cavity of the β-CD and about three water 
molecules inside γ-CD.

When the solvent is only water, the calculation indicates 
the existence of many water molecules around 0.8 nm from 
the CD center, corresponding to the more pronounced peak 
in the α-CD and β-CD complexes (data not shown). Never-
theless, in γ-CD the peak occurs at 0.2 nm and a second at 
0.5 nm from the center. When analyzed in the RL solution, 
g(r) gives a significant difference in the distribution of sol-
vents, indicating that ions around the α-CD and β-CD tends 
to increase at 310 K reaching 0.80 and 0.72, respectively. 
Nevertheless, in several cases for the CBD-CD interaction, 
some water molecules remaining inside of the cavities. The 
temperature increasing promotes water loss from the cavity 
starting at 310 K, while hydration shells over CD become 
more mobile and diffuse into bulk water (Frank et al. 2002).

Binding free energy calculations

In this section, let us analyze the consequences of differ-
ent solutions on binding free energy. Ions themselves seem 
to have large effects over complexation and stability of the 
complexes. It has been suggested that, in some cases, coun-
terions participate directly in complex formation that is in 
the generation of a ternary drug-CD-salt (Kawabata et al. 
2011). The data presented in Tables 5, 6, 7 give account 
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of the ionic effect over binding CBD-CD. Electrostatic and 
van der Waals interactions among CDB, CD, and ions can 
indicate, in terms of these interactions, an apparent forma-
tion of weak ternary complexes CBD-CD-Cl− and CBD-
CD-LAC, among others possible complexes. Still, according 
to Tables 5, 6, 7, it is suggested that there is a formation of 
CBD- α-CD-LAC > CBD- β-CD-LAC > CBD-γ-CD-LAC 
complexes in the same manner that CBD-β-CD-Cl− < CBD-
α-CD-Cl− < CBD-γ-CD-Cl−. When the salt dissolves, the 
counterions create a favorable pH change in the diffusion 
layer formed on the surface of the dissolving particle (Sera-
juddin 2007; Kawabata et al. 2011). The diffusion coefficient 
was calculated at 310 K between 10 and 150 ns of trajec-
tory to ensure the mean number of ions are in bulk solvent 
(Supplementary Material, Table S3). The Na+ mobility is 
higher than Cl− because the first provides less attraction over 
water molecules than the latter, facilitating Na+ motion in 
the solution. Figure 7 depicts the ion charge densities at 
box coordinates at 310 K, where the charge density oscil-
lation is damping of electric fields caused by the presence 
of mobile ions. When the ion moves, there is a perturbation 
of the electrodynamics equilibrium, but the electric field 
produced by the ions themselves tends to restore the equi-
librium. The average densities over CBD-CD complexes are 
the same: − 1.81 e nm−3 (Cl−) and 1.71 e nm−3 (Na+) for 
α-CD, β-CD, and γ-CD, showing a standard deviation of 
only ± 0.04 e nm−3.

The binding free energy is expected to depend on salt 
concentration because of its action on the configurational 
entropy. Calculations of configurational entropy displayed 
lower changes in aqueous than in the RL solution. The CBD-
CD binding directly undergoes influence of the changes in its 
conformations. From water to RL solution at 310 K, confor-
mational entropy changes for CBD-α-CD: from 1070.83 to 

1125.85 J/mol K; CBD-β-CD: from 1097.94 to 1310.59 J/
mol K; CBD-γ-CD: from 715.95 to 854.52 J/mol K. The 
values were calculated using the quasi-harmonic method 
and the bias in the entropy from the water to the RL solu-
tion is consistent with binding, including CBD-γ-CD, due 
to greatest conformational restriction upon CBD, but also 
due to flexibility of the γ-CD, as we can verify in M2 movie 
available in the Supplementary Material.

In order to predict the binding free energies, the MM-
PBSA approach was employed to estimate the binding free 
energies from 298 to 334 K, taking into account changes in 
conformational entropy. A value of ɛ = 3 was assumed as 
default for the internal dielectric constant, while the exter-
nal dielectric constant was calculated with the GROMACS 
tool for each temperature as shown in Fig. 8. As shown in 
Fig. 9, further calculations exhibited the values of binding 
free energy as a function of temperature at the last 200 ns 
of simulation for each system. The results suggest that the 
salt effect on binding is a cause of the interactions declin-
ing between CBD and CD, when compared with the water 
medium. Consequently, the CBD-CD complexation must be 
less favorable when it is assumed in the RL solution instead 
of only in water solution. It is relevant to mention that the 
van der Waals interaction was the strongest contribution to 
CBD and CDs complexation. Yet, the results suggest that the 
entropy contribution is relevant for CBD-α-CD and CBD-
β-CD, while CBD-γ-CD is practically insensitive to tempera-
ture for both solutions. It is interesting to note that the values 
of binding free energy at 322 K, produce complexes more 
stable than at room temperature, with the exception of CBD-
α-CD (− 30.89 kJ mol−1 for 322 K and − 37.58 kJ mol−1 for 
298 K) in water solution at room temperature. Considering 
the non-covalent interactions, one would expect a stability 
deterioration of the complexes as the temperature increases. 
At elevated thermal levels, water molecules inside the CD 
cavity are not energetically comparable to water molecules 
in the bulk (Buschmann et al. 2000).

We observed that enough water molecules escape from 
cavities at 322 K, except for the ones firmly bonded. The 
water molecule flux increases from the cavity towards CDs 
outside the hydrophobic contacts between atoms inner CDs 
cavity and CBD methyl group making binding more favora-
ble. As a result, it seems that the ability of CD to enclose 
molecules is related to the cavity size, ligands dimension, 
temperature, and medium. The CD type plays an important 
role in the complexation of CBD-CD as we can see in α-CD, 
β-CD, and γ-CD complexes. It is important to mention that 
CD and drug-CD complexes do not easily cross biological 
membranes (Stella and He 2008). This could represent a 
potential pharmacological limitation, since the drug needs 
to be safely transported to the binding site, where it will be 
released from the complex. In this context, experiments have 
shown that only negligible amounts of hydrophilic CBD and 

Fig. 6   The g(r) behavior in relation to temperature. The numbers 1 
and 2 in parentheses represent water and RL solution, respectively
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drug-CD complexes can permeate lipophilic membranes 
such as those that compose the skin and gastrointestinal 
mucosa (Vazquez et al. 1991; Uekama et al. 1998). There-
fore, in the cases where the CBD is partially encapsulated, 

due to its high lipophilicity the diffusion must be enhanced 
through the membrane (Fasinu et al. 2016; Ohlsson et al. 
1986).

Further remarks

An important issue in pharmacy is how to preserve the 
stability of temperature-controlled pharmaceuticals with-
out modifying their efficacy (Ziance et  al. 2009). For 
example, ideally physiological solutions should maintain 
stability within a recommended temperature, established 
by the manufacturer. However, solutions are exposed dur-
ing transport and storage to thermal gradient tempera-
tures before they are administered to the patients. Thus, 
it is important to investigate possible temperature effects 
in the physical-chemistry properties of artificial physi-
ological solutions. Motivated by clinical arguments the 
present investigation outlined the energetic behavior and 
possible biophysical role of the RL constituents regarding 
the inclusion mechanism of CBD within different CDs. 
Additionally, we opted to select different CDs, submitted 
to different thermal levels, because this strategy certainly 
allows for a better comprehension of both physiological 
and pharmacological aspects about the formation of the 
CDs-CBD complex.

In pharmacology, CDs applications require a precise 
understanding of the physiological scenario involved when 
these substances permeate the intestinal barrier and the 
blood–brain barrier (BBB) (Matsuda 1999; Vecsernyés et al. 
2014). Understanding both interactions certainly could shed 
light on the potential side effects and how the drug-CD com-
plex obtain access to the circulation and the central nerv-
ous system, where it will be transported toward the binding 

Fig. 7   Spectrum of charge density oscillation of RL solution compo-
nents for each CD taken at 310 K

Fig. 8   External dielectric constant values concerning temperature. 
The numbers 1 and 2 in parentheses represent water and RL solution, 
respectively
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site. Studies suggest that CDs intracerebral injections are 
associated with a certain level of toxicity, after its admin-
istration. Congruent with this finding, Vecsernyés et al. 
state that assumption of different CDs may be necessary 
due to the different degrees of toxicity imposed as result 
of interaction with the physiological substrate (Vecsernyés 
et al. 2014). Within this concern, Dreyfuss and Oppenhe-
imer also presented a discussion on cellular interactions 
with CDs showing their effects on mammalian cells of 
endocrine, cardiovascular, immune, and nervous systems, 
among others (Dreyfuss and Oppenheimer 2011). According 
to these authors, the cellular effects are mostly based on CDs 
interplay with the cell membrane, rich in cholesterol and 
sphingolipids. In this context, CDs may remove cholesterol 
from the cellular membrane. Thus, such arguments must be 
considered if one considers CBDs therapeutic potential in 
several neurological diseases, such as epilepsy and brain 
tumors.

On the other hand, toxicological research has shown that 
γ-CD seems to be safe even when administered parenter-
ally, while α-CD and β-CD are not suitable for this pur-
pose. Injection of γ-CD promoted insignificant irritation, 
being rapidly degraded to glucose in the upper intestinal 
tract by intestinal enzymes (Valle 2004). Moreover, Mon-
naert et al. (2004) found that α-CD removed phospholip-
ids and that β-CD extracted cholesterol and phospholipids 
from BBB membranes. Still according to these investigators, 
γ-CD was less lipid selective than the other CDs, implying 
a safer clinical application. These arguments, in conjunc-
tion with our results, in principle support γ-CD adoption 
as the more suitable candidate for CBD encapsulation and 
clinical application. Thus, the complex scenario pointed out 

by these works reinforced our strategy to consider different 
CDs-CBD interactions in the RL solution.

Our simulations showed that CBD is partially enveloped 
in α-CD and β-CD, while γ-CD fully engulfs the cannabi-
noid. Thus, to obtain efficient delivery from CDs, it is per-
tinent to understand a possible physiological scenario of 
CBD encapsulation degree within the CDs. This issue is 
particularly important if one reason is to understand how 
the interaction between CBD and the binding site could be 
affected by partial or even full encapsulation. The envelop-
ing degree of CBD is even more pertinent since the level of 
encapsulation may be directly linked to the physicochemi-
cal properties of the host and guest molecules. Certainly, 
partial or total encapsulation may modulate the facility for 
releasing, when the complex achieves the binding site. In 
this framework, the level of CBD adjustment within CDs can 
also affect the level for a controlled release, hence it depends 
on the interactive forces between CD and CBD. In this sense, 
an intriguing question formulated by Stella asked how the 
CD is released if a drug is tightly bound to it (Stella and He 
2008). Based on his questioning the partial encapsulation 
observed in our work may reflect that the forces that main-
tain the complex stable are weakening. In contrast, in total 
CBD enveloping such forces may have a greater magnitude. 
As we observed for CBD-γ-CD, full encapsulation may be 
beneficial for providing an electrostatic protection from the 
aqueous ambient and decrease an eventual toxicity level and 
side effects. Our results showed that the CBD total encap-
sulation may be clinically attractive thanks to the greater 
stability at all temperatures adopted here (in particular with 
respect to the physiological framework), which could guar-
antee a controlled release of cannabinoid. Nevertheless, 
since CBD is a non-intoxicating cannabinoid, both α-CD 
and β-CD, in which they formed a partial encapsulation, 
also arise as a secondary pharmacological option. Partial 
encapsulation could facilitate the release of CBD over the 
binding site compared to the total encapsulation. Conversely, 
partial encapsulation can decrease the CBD-CD complex 
stability, making it more difficult to have a controlled release 
of the cannabinoid. Summarizing, although our investigation 
suggests that γ-CD represents the best choice, the pros and 
cons presented here depict a complex scenario, emphasiz-
ing the necessity for additional theoretical and experimental 
investigations.

The present report also characterized how aqueous solu-
tions interact with the CBD and CDs as well as the CBD-
CDs complex itself in different thermal conditions. To make 
an approximation with an artificial physiological environ-
ment, it was important to consider the physiological tem-
perature, such as a saline fluid constituted by components 
found in the mammal plasma. This strategy allowed us to 
determine the magnitude of the specific energies of the inter-
action of each ionic species and the lactate molecule with the 

Fig. 9   Binding free energy of CBD-CD in relation to temperature. 
The numbers 1 and 2 in parentheses represent water and RL solution, 
respectively
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CD and CBD. The simulations provided a more pronounced 
energy interaction between all CDs with water, lactate, and 
Cl−. Despite of the hydrophobic nature of CBD, it is also 
important to identify which solute component interacts more 
intensely with this cannabinoid, especially if one considers 
that α-CD and β-CD were observed to be partially encapsu-
lated. In this context, a theoretical study is also convenient 
to understand the CBD interaction with RL solution com-
ponents as a function of temperature. The energetic analy-
sis revealed that CBD interacts more intensely with water, 
lactate, and Cl− no matter the temperature value. The lack 
of explicit functional thermic dependence on the energy 
magnitude may be credited to water activity influence on 
the dielectric constant and complex electrostatic screening 
effects promoted by clustering such as ion-water and ion-ion 
interactions (Sipahiolgu et al. 2003; Chandra 2000; Li et al. 
2017). In this sense, the distinct levels of attractions and 
repulsion forces presented in Tables 2, 3, and 4 could be a 
consequence of dynamics effects on the dielectric constant, 
mediated by water and different ions species and their con-
centrations, respectively.

According to our findings, at physiological temperature, 
the kinetic and potential energies exhibit similar values 
and temporal stability for the three CDs. However, if one 
inspects the RMSD and RMSF it is possible to observe 
fluctuations, especially pronounced when α-CD and β-CD 
are immersed in the RL solution. In contrast, γ-CD remains 
stable during the simulation, again emerging as a coherent 
option to encapsulate CBD. From the Rg and g(r) results, we 
also confirmed the γ-CD stability pattern no matter the ther-
mal level used in the simulation. In summary, in conjunc-
tion with the previous discussion given above, these calcula-
tions also emphasized that the thermal paradigm used here, 
did not impose measurable changes in the structural flex-
ibility. In other words, RMSD and RMSF calculations did 
not show a stability reduction of the system formed by the 
γ-CD-CBD complex. In this sense, γ-CD is the best choice 
for clinical purposes, where the RL solution containing the 
complex, could be prepared at a physiological temperature 
before administration. Surely, this empirical procedure could 
provide more stability a priori, by minimizing undesirable 
fluctuations, which could affect the encapsulation perfor-
mance and controlled CBD release. It is worth mentioning 
that stabilization between CBD-CDs was reinforced, thanks 
to the fact that the number of hydrogen bonds does not sig-
nificantly change during the simulation.

The results extracted CBD-γ-CD reinforced a particular 
attention only on this system. We observe lactate clusters in 
front of the γ-CD cavity, without a dramatic thermal modu-
lation of the number of lactate molecules. Within this study 
temperature range, the number of hydrogen bonds practi-
cally does not increase between CBD and the four CDs as 
a function of the temperature. Finally, in contrast with the 

preferential orientation computed from the glucose cluster 
formation reported in our previous work, lactate did not 
exhibit any orientational preference for the four tempera-
tures. Indeed, besides enhancing the stabilization, lactate 
clustering near CDs arises as a beneficial mechanism by 
preventing the lactic acidosis state (Da Silva and Dos San-
tos 2018; Goodwin et al. 2007; Nimmo et al.1991). In this 
scheme, as similarly observed in other systems, lactate 
assembly also may regulate protein conformational CBD-
CDs stability in response to external perturbations (Imamura 
et al. 2003; Arakawa and Timasheff 1982). Last, but not 
least, lactate self-assembly emerges as a general mecha-
nism for conformational stability enhancement of CDs 
against temperature changes. On the other hand, deleteri-
ous effects of lactate crowding on CDs are not discarded. 
Thus, this complex scenario configures the opportunity for 
deeper investigation on the lactate concentration influence 
on CDs. In this perspective, it is relevant to uncover the criti-
cal lactate concentration would represent the maximal limit 
between either beneficial or deleterious effects.

Conclusion

Summarizing, we can conclude that this research contributes 
to elucidating the energetic aspects related to the CBD-CDs 
interactions in water and a saline environment. Our results 
showed that the entropy contribution was relevant for CBD-
α-CD and CBD-β-CD, while CBD-γ-CD remained practi-
cally thermally insensible in both aqueous environments. 
The γ-CD was the more stable complex when immersed 
in both water and the RL solution. Additionally, indepen-
dently of the system temperature, CBD was partially encap-
sulated in α-CD and β-CD, whereas the cannabinoid is fully 
engulfed in γ-CD for both water and the RL solution. From 
a pharmacological point of view, γ-CD arises as the most 
appropriate host for CBD. On the other hand, α-CD and 
β-CD, although they pharmacologically do not represent the 
best option for encapsulation, the physiological relevance 
of each CD used here could be matter of further investiga-
tion for verifying our hypothesis about facilitation of CBD 
release at the binding site. Thus, further studies verifying in 
detail the physiological properties of each CD are required 
as well. The simulations also quantified the energetic aspects 
of the water and RL solution interaction with CDs and CBD, 
highlighting a remarkable interaction energy between lactate 
and CDs surface. In addition, movement of lactate compo-
nents toward CDs also promoted clustering around this mol-
ecule. It could be interesting to investigate the lactate cluster 
regulation for both ionic concentrations and pH changes in 
the future. Finally, to achieve a more realistic physiological 
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scope, studies considering salt concentrations completely 
compatible with those found on RL solution are welcome.
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