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Abstract
It has been known for decades that proteins undergo conformational changes in response to binding ligands. Such changes are 
usually accompanied by a loss of entropy by the protein, and thus conformational changes are integral to the thermodynamics 
of ligand association. Methods to detect these alterations are numerous; here, we focus on the sedimentation velocity (SV) 
mode of AUC, which has several advantages, including ease of use and rigorous data-selection criteria. In SV, it is assumed 
that conformational changes manifest primarily as differences in the sedimentation coefficient (the s-value). Two methods of 
determining s-value differences were assessed. The first method used the widely adopted c(s) distribution to gather statistics 
on the s-value differences to determine whether the observed changes were reliable. In the second method, a decades-old 
technique called “difference SV” was revived and updated to address its viability in this era of modern instrumentation. 
Both methods worked well to determine the extent of conformational changes to three model systems. Both simulations 
and experiments were used to explore the strengths and limitations of the methods. Finally, software incorporating these 
methodologies was produced.

Keywords  Analytical ultracentrifugation · Protein conformational changes · Difference sedimentation velocity · c(s) 
distributions · Treponema pallidum · Periplasmic binding proteins

Introduction

Ligand-induced conformational changes in proteins have 
been documented in many instances. ABC transporters 
(Davidson and Maloney 2007), gated ion channels (Cat-
terall et al. 2017), G-protein-coupled receptors (Deupi and 
Standfuss 2011), and enzymes (Gerhart and Schachman 
1968; Bennett and Steitz 1978) are just a few exam-
ples of proteins that undergo structural rearrangements 

as intrinsic parts of their respective functional cycles. 
Additionally, there has been recent interest in targeting 
intrinsically disordered proteins with small molecules 
that induce conformational shifts (e.g., (Krishnan et al. 
2014)). These structural transformations have a number 
of purposes. For example, in enzymes, they may trigger 
allosteric communication between an effector binding site 
and an active site (Kamata et al. 2004). Some enzymes 
might use conformational changes to shelter substrates or 
products from the bulk solvent, preventing side reactions 
with water (Dwyer and Hellinga 2004; Fawaz et al. 2011; 
Khan et al. 2017). Small-molecule-binding proteins, like 
the bilobed periplasmic ligand-binding proteins (LBPs), 
feature significant interlobe motions as an integral part 
of the ligand-binding mechanism; these changes serve to 
maximize protein–ligand contacts, desolvate the ligand, 
and provide a physical barrier to dissociation (Mao et al. 
1982; Felder et al. 1999; Dwyer and Hellinga 2004). Gen-
erally, unliganded proteins that undergo conformational 
changes exist in an ensemble of structural states which 
collectively may be called the “open” state. Once a ligand 
binds, this variation collapses into just one or a few states, 
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which can be characterized as “closed” [notably, some 
binding events lead to a less compact conformation (Har-
ris and Winzor 1988)]. There is an obvious loss of entropy 
in transitioning from the open to the closed state(s), and 
any thorough thermodynamic study of the ligand-binding 
process must take this into account.

The methods to study protein conformational changes are 
manifold. Obviously, X-ray crystallography of the unbound 
and bound states can and has reported on the conformational 
changes (e.g., Bennett and Steitz 1978; Kamata et al. 2004), 
with the omnipresent caveat that the crystal lattice may 
influence conformations. Recent technological and analytic 
advances in cryo-electron microscopy (Bai et al. 2013; Li 
et al. 2013) have allowed this method to monitor ligand-
induced conformational changes both gross and subtle (e.g., 
Gutmann et al. 2018; Shang et al. 2019; Uchikawa et al. 
2019), but the method involves expensive, specialized equip-
ment and substantial technical expertise at present. Multi-
dimensional solution NMR spectroscopy offers insights 
into ligand-induced changes, but it can involve sometimes 
expensive labeling techniques for the proteins (Persons et al. 
2018). Another solution method is small-angle X-ray scat-
tering (SAXS). The calculation of the radius of gyration (Rg) 
from the Guinier region of a scattering profile is an excel-
lent means to monitor conformational changes (Newcomer 
et al. 1981; Borrok et al. 2009), but the need for specialized 
equipment (usually a synchrotron) and the possibility of 
radiation damage limit the applicability of SAXS. Finally, 
several modern methods, such as second-harmonic genera-
tion (SHG) (Moree et al. 2015), and surface-acoustic wave 
(SAW) (Länge et al. 2008), and double electron–electron 
resonance (DEER) (Jeschke 2012), require immobilization 

on a surface and/or labeling the protein (with a proprietary 
dye or a spin label). Such modifications to the protein’s envi-
ronment may be suited to some proteins, but not all.

It was recognized decades ago that the sedimentation 
velocity (SV) mode of analytical ultracentrifugation could be 
used to monitor protein conformational changes (Richards 
and Schachman 1959; Kirschner and Schachman 1971b) in 
solution with no perturbations to the macromolecule. This 
is because the migration velocity of proteins in a centrifu-
gal field (monitored without labeling and quantified by the 
sedimentation coefficient, s) is governed in part by their 
respective hydrodynamic radii (RH). These latter quantities 
will vary commensurately with the proteins’ conformational 
changes. That is, when compared side-by-side, if the same 
protein has different s-values in the presence and absence 
of ligand, it is likely due to a conformation difference 
(after mass changes are accounted for; if ligand-induced 
oligomerization is present, this analysis is not applicable). 
Historically, two possibilities to quantify these changes 
were considered. In the first, two independent experiments 
were carried out, plus and minus ligand (e.g., see Gerhart 
and Schachman 1968; Oberfelder et al. 1984; Jacobsen and 
Winzor 1997). The s-values were determined, and changes 
were attributed to conformational differences. However, this 
was deemed too imprecise to quantify small conformational 
changes, motivating the second method. The advent of inter-
ferometric monitoring of the protein-concentration profiles 
led Schachman and colleagues to propose a technique called 
“difference sedimentation velocity” (DSV) (Richards and 
Schachman 1959; Kirschner and Schachman 1971b). In this 
method, protein is placed in both sectors of a dual-sectored 
centerpiece (Fig. 1a). In one sector, a ligand hypothesized 

Fig. 1   Difference sedimentation velocity. a Signal profiles of the 
individual sectors. A schematic of the standard sedimentation veloc-
ity centerpiece is shown inset, with the reference sector colored red 
and the sample sector blue. A vector of centrifugal force is shown 
as a white arrow. Simulated SV data are shown. A 9.5% differ-
ence between the sedimentation coefficients in the reference (4.2 S) 
and sample (4.6 S) sectors was simulated. Profiles originating from 
the reference and sample sectors are respectively colored accord-

ing to the inset centerpiece diagram and inset legend. Both simula-
tions originated from the same meniscus value (6.1 cm) and both are 
shown at the same time point after the commencement of centrifu-
gation (7090 s). b The difference curve that results from subtracting 
the “reference line” from the “sample” line in part a. The curve does 
not return to zero on the right-hand side; this depicts the difference in 
radial dilution between the sectors. If there were no difference in the 
sedimentation coefficients, this offset would be absent
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to induce a conformational change upon binding is added; 
in the other, a similarly sized, but non-binding ligand is 
included. Using the interference optics, monochromatic 
light is passed simultaneously through both sectors, and 
these slits of light are recombined to form a radial interfer-
ence pattern. In this way, the radially dependent refractive-
index differences between the sectors can be measured. If 
there is no conformational change, then the macromolecular 
solutes in both sectors migrate identically, and no differ-
ence is recorded. However, a ligand-induced conformational 
change can lead to a different (usually faster) velocity in the 
ligand-containing sector only, resulting in a Gaussian-like 
difference pattern (Fig. 1b). This method was deemed sensi-
tive enough to detect very small Δs-values (on the order of 
0.5%). DSV was successfully used to measure conforma-
tional changes in aspartyl transcarbamylase (Kirschner and 
Schachman 1971a), ribonucleotide reductase (Singh et al. 
1977), and several other proteins (Kirschner and Schachman 
1971b).

Both methods described above were introduced in an era 
of AUC in which graphical methods were used to analyze 
data. For both, data from the Beckman Model-E centrifuge 
were recorded on photographic plates. Measurements were 
taken from these plates to calculate the values needed for 
the respective analysis; for SV, the maxima of differential 
curves obtained using Schlieren optics, and for DSV, the 
first moment of the interferometric difference concentration 
distribution. Often, technology such as a microcomparator 
was used to digitize the measurements obtained from the 
photographs. Thus, few measurements could be taken per 
run and analysis could be arduous.

However, modern methods of data acquisition and analy-
sis have significantly improved. Data are acquired quickly 
and digitally, enabling the collection of hundreds of scans 
per AUC experiment. No external, manual measurement 
of the data is necessary. Also, the introduction of modern 
computerized data analysis, particularly the c(s) method 
(Schuck 2000), has allowed rapid assessment of s-values by 
fitting sedimentation models directly to the digitized data. 
Despite these advances, the use of AUC to detect small con-
formational changes in proteins is uncommon. Some notable 
exceptions include iron-regulatory proteins (Yikilmaz et al. 
2005), matrilin-3 (Fresquet et al. 2007), canine plasminogen 
(Kornblatt and Schuck 2005) and 5-enolpyruvylshikimate-
3-phosphate synthase (Borges et al. 2006).

Our interest in these conformational changes was 
spawned by recently determined X-ray crystal structures 
featuring substantial ligand-induced rearrangements. Struc-
tures of a mutated glucose-binding protein (the product of 
gene tp0684; called “TpMglB-2WA” herein) from the syphilis 
spirochete, Treponema pallidum, suggested that the protein 
undergoes a domain closure featuring a rotation of approxi-
mately 39° upon binding d-glucose (Brautigam et al. 2018), 

in accord with the known properties of this family of ligand-
binding proteins from ABC transporters (Mao et al. 1982; 
Borrok et al. 2007).

In this report, we used modern AUC and computational 
methods to examine whether they could detect the conforma-
tional changes described above. Both the SV and DSV meth-
ods were applied to a model protein, bovine serum albumin, 
as well as to TpMglB-2WA. In all cases, we were able to 
detect small differences in sedimentation coefficients on the 
order of 2%. Our studies revealed a set of best practices and 
computational methods, some of which are encoded into a 
new, freely available software program called DiSECT.

Results

Hydrodynamic modeling

Throughout this work, we describe a scenario that could 
become common under the current state of the technologies 
surrounding structural biology. That is, that X-ray crystal 
structures of a protein in a liganded (or “holo”) and unli-
ganded apo form are available, and they show a conforma-
tional change in the protein upon ligand binding. A natural 
question arises from such structures: does an alteration of 
similar magnitude occur in solution? We thus address how 
a combination of hydrodynamic modeling and SV experi-
ments could be used to answer this question.

The availability of the apo- and holo- X-ray crystal 
structures of TpMglB-2WA (Brautigam et al. 2018) pre-
sented a good opportunity to address this question (Fig. 2). 
In the structures, the protein has an “open” appearance 

Fig. 2   Crystal structures of TpMglB-2WA show a d-glucose-induced 
conformational change. Ribbons-style representations of the crystal 
structures are shown, with α-helices in red, β-strands as blue arrows, 
and regions without regular secondary structure in light blue. a Apo 
TpMglB-2WA. b TpMglB-2WA bound to d-glucose. The glucose mol-
ecule is depicted as spheres, with carbon atoms in black and oxygen 
in red



732	 European Biophysics Journal (2020) 49:729–743

1 3

without ligand (Fig. 2a), but “closes” upon binding d-glu-
cose (Fig. 2b). First, we chose to perform hydrodynamic 
modeling (de la Torre et al. 2000; Fleming and Fleming 
2018) on the respective coordinate sets. These calculations 
would reveal the expected s-values for the unliganded and 
liganded versions of the protein. As pointed out by Err-
ington and Rowe (2003), the s-values obtained by modeling 
efforts may not reflect the veracity of a given conforma-
tional state. For example, if the modeling predicted 3.31 
S for the holo structure but the actual experiment on the 
holo protein showed a value of 3.45 S, this result does not 
necessarily confirm that the solution and crystal conforma-
tion are different. However, the same authors point out that 
the hypothetical magnitude of the change, what we termed 
the “hydrodynamically modeled Δs” (ΔsModel), predicted 
by modeling both forms observed in the crystal structures 
should prove reliable in predicting the solution behavior of 
the respective forms. Our focus, therefore, is in determining 
the expected Δs elicited by the “structural” ligand-induced 
conformational change, then comparing to the “solution” 
result later.

We used two methods to calculate sedimentation coef-
ficients from the structural models. The first was the bead 
modeling encoded in the software HYDROPRO (de la Torre 
et al. 2000). In this program, care was taken to achieve the 
most accurate s-values from the modeling. For example, the 
mass of d-glucose was included in the holo-TpMglB-2WA 
model. As a result, the modeled s-value of apo-TpMglB-2WA 
was 3.23 S, while that of the holo form was 3.32 S. We also 
used the same structural models to calculate the respective 
s-values using a recently introduced convex-hull method 
(Fleming and Fleming 2018), which resulted in 3.39 S and 
3.48 S for these two structural forms, respectively. Although 
it is interesting that the two calculations resulted in ~ 5% 
differences for the predicted s-values, the most important 
aspects of these results are that they both predicted an 
increase of the s-value in the presence of d-glucose and that 
they both predicted the value of ΔsModel would be 0.09 S. If 
we assume that each hydrodynamic simulation has an error 
of 1% and that the errors add in quadrature, the standard 
error in the ΔsModel would be 0.05 S.

Conformational changes: the SV method

SV general considerations

In the SV method, one aims to determine s-values from 
experiments conducted both with and without ligand pre-
sent. After that is achieved, the difference should be cal-
culated, with appropriate experimental and analytic errors 
taken into account. Obviously, in employing this method, 
researchers must aim for the most precise s measurements 
possible; but how is that achieved? Errington and Rowe 

(2003) enumerated the factors that could lead to impreci-
sion and inaccuracy in s-values; they are not recapitulated 
here, but most of these factors disappear when comparative 
sedimentation experiments are performed simultaneously, 
i.e., side-by-side in the same instrument. Thus, because all 
comparative experiments demand high precision, we con-
ducted them simultaneously in a single 8-hole AUC rotor. 
However, some factors affecting precision still remained. SV 
experiments are conducted in AUC “cells”, which consist of 
a dual-sectored centerpiece positioned between transparent 
windows. These cells must be inserted into the rotor and 
aligned precisely with respect to the vector of centrifugal 
force (Fig. 1a, inset). Thus, cell-to-cell shape inconsisten-
cies and individual cell-alignment procedures can cause 
variability in the determination of s. Because these factors 
are specific to cells, determining reliable s-values for Δs 
determinations necessitates obtaining the averages of sev-
eral measurements from different cells. Given the limitation 
of eight cells per experiment, the number of replicates can 
conveniently range between three and four (e.g., three cells 
containing ligand-free protein, and three containing ligand-
bound protein). Because each individual s-value determina-
tion will have an accompanying analytical error, we prefer 
to calculate mean of these replicates using a scheme that 
weights each measurement with its respective analytic error 
(see “Methods”). In this paper, we will term the weighted 
mean of three or four s measurements “sav”, and the estimate 
of the weighted standard deviation from this calculation is 
“σav”.

SV model system

A traditional means to test whether a Δs can be reliably 
measured is to use a model system. In the past, the large (132 
S) bushy stunt virus (BSV) has been used for this purpose 
(Kirschner and Schachman 1971b). To induce a small Δs 
consistent with a conformational change, D2O was intro-
duced into only one of the samples to be compared, altering 
the mass of the virus along with the viscosity and density of 
the solution (Kirschner and Schachman 1971b). In this work, 
we employ the same strategy using bovine serum albumin 
(BSA), a much smaller macromolecule having an experi-
mental s-value of about 4.3 S under dilute conditions.

Experimentally, we conducted eight SV experiments 
in a single run of the AUC. Four of the cells had BSA at 
1 mg/mL in PBS buffer. Also, four of the cells contained 
BSA at an identical concentration, but with the PBS sup-
plemented 4% (v/v) in D2O. Taking the changes in BSA 
mass (through deuterium exchange), solution density, and 
solution viscosity into account (Kirschner and Schachman 
1971b), we expected a Δsav of approximately 0.08 S. To 
maximize the number of data points reporting on s, we used 
the Rayleigh interference optics exclusively and collected 
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one concentration profile per minute. The absorbance optics 
were not employed, because their lower data density and 
longer time of acquisition (ca. 90 s per scan in our centri-
fuge) would have a significantly reduced the amount of data 
available for analysis. The data were analyzed by the c(s) 
methodology (Schuck 2000), and the individual s-values 
were obtained by integrating the respective c(s) distribu-
tions. The distributions showed that the protein was almost 
entirely monomeric and monodisperse (Fig. S1), and this 
latter observation was confirmed using a Bayesian analy-
sis (Brown et al. 2007) (i.e., no microheterogeneity was 
observed; not shown). Analytic errors were assessed using 
a Monte Carlo procedure (see “Methods”) (Schuck 2016).

The results, summarized in Table 1, demonstrated that 
a difference in sav-values was observed to be 0.08 S, as 
expected. However, given the measurement and analysis 
errors, could this difference be the result of chance experi-
mental variations? To explore this possibility, we used the 
results in conjunction with t-statistics to calculate that the 
probability of this difference occurring by chance is extraor-
dinarily low (p = 2 × 10–9; two-sided Student’s t test). The SV 
method thus appears to be a reliable way to obtain a Δsav of 
this magnitude.

SV of TpMglB‑2WA

To measure sav for TpMglB-2WA in both the holo and apo 
forms, we conducted six SV experiments in a single run of 
the AUC. Three of the centrifugation cells contained 1.0 mg/
mL TpMglB-2WA with 1 mM d-glucose, and the other three 
held the same concentration of protein, but also a ligand 
with no detectable affinity for TpMglB-2 (Brautigam et al. 
2016), d-ribose, at 1 mM concentration. The same analytic 
workflow as used for BSA was employed here. These distri-
butions showed that the preparations of TpMglB-2WA were 

essentially monodisperse; ~ 92% of the observed signal was 
from the monomeric form of this protein (Fig. S2). Visu-
ally, the d-glucose-containing samples always had a discern-
ibly larger s-value (Fig. 3). The best s-values of TpMglB-
2WA determined by integration of the c(s) distributions are 
shown in Table 2. They display consistently larger values 
for the d-glucose-containing samples, which comports with 
the ligand-induced closure of the cleft (Fig. 2) observed in 
crystal structures (Brautigam et al. 2018). We found that 
Δsav was 0.082 S (Table 2), which is not far from the ΔsModel 
calculated above (0.09 S). The probability that the meas-
ured difference of 0.082 S could exist by chance is very 
low (p = 0.0004 using a two-sided Student’s t test). The Δs 
that would be expected if the change were due the mass of 
the binding ligand alone can be calculated (Kirschner and 
Schachman 1971b); for the current case, that value is 0.02 
S. The probability that the change was less than 0.02 S lead-
ing to the observed values being observed by chance was 

Table 1   Sedimentation coefficients of BSA derived from the SV 
method

a The values in parentheses represent the Monte Carlo-based standard 
error of the sedimentation coefficients

Trial Sedimentation coefficient (in Svedbergs) in 
presence of

PBS PBS/4% D2O

1 4.384 (0.001)a 4.309 (0.003)
2 4.386 (0.002) 4.303 (0.002)
3 4.387 (0.002) 4.309 (0.002)
4 4.395 (0.003) 4.303 (0.002)
Statistical properties
sav 4.386 4.306
σav 0.004 0.003
σav/√N 0.002 0.002

Fig. 3   Two c(s) distributions for TpMglB-2WA. The experiments were 
conducted in the presence of genuine ligand (d-glucose) or a mock 
ligand (d-ribose) as indicated in the inset legend

Table 2   Sedimentation coefficients of TpMglB-2WA derived from the 
SV method

a The values in parentheses represent the Monte Carlo-based standard 
error of the sedimentation coefficients

Trial Sedimentation coefficient (in Svedbergs) in 
presence of

d-Glucose d-Ribose

1 3.264 (0.001)a 3.189 (0.001)
2 3.287 (0.002) 3.199 (0.002)
3 3.281 (0.002) 3.186 (0.001)
Statistical properties
sav 3.271 3.189
σav 0.014 0.005
σav/√N 0.008 0.003
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similarly low (p = 0.001, one-sided Student’s t test). Finally, 
the question can be asked about the consistency of the SV 
result with the ΔsModel. With the assumptions that the σav’s 
add in quadrature and that the σ of the modeled Δs is 0.05 
S, we estimate that the probability of the 0.008 S differ-
ence between the ΔsModel and Δsav being chance is 0.45, i.e., 
there does not seem to be a reliable difference between the 
two values. The results thus seem consistent with the notion 
that a conformational change of similar magnitude to that 
observed in the TpMglB-2WA structures is also observed in 
solution. 

Conformational changes: the difference 
sedimentation velocity method

Overall considerations and strategy

In the late 1950s, Schachman and coworkers demonstrated 
that the Rayleigh interference optical system was uniquely 
capable of detecting very small changes in s-values (Rich-
ards and Schachman 1959). The strategy was simple: 
introduce identical concentrations of the subject protein 
into the reference and sample sectors of a standard center-
piece, with the only difference between the two being the 
presence of a conformation-changing ligand in one sec-
tor and not in the other (Richards and Schachman 1959; 
Kirschner and Schachman 1971b). The advantage of this 
approach is that it determines the refractive-index differ-
ence between the reference sector and the sample sector of 
a standard centerpiece. If there is a difference in the sedi-
mentation velocity of the solutes in the sectors (Fig. 1a), it 
can be identified as a time-dependent increase in the first 
moment of the resulting difference curve (Fig. 1b) (Richards 
and Schachman 1959; Kirschner and Schachman 1971b). 

Hence, these moments can be calculated and plotted as a 
function of time (radial migration), with any slope indicat-
ing a difference in s of the material in the sectors (Fig. 4). 
This method, therefore, measures Δs directly, without the 
need of calculating individual s-values and subtracting one 
from another, as was done above. Although refinements on 
the procedure were made throughout the 1970s (Kirschner 
and Schachman 1971a, b; Skerrett 1975; Rees et al. 1977), 
they were always accomplished with older hardware (i.e., 
the Beckman Model-E analytical ultracentrifuge). Because 
of the laboriousness of the data acquisition and analysis, this 
type of analysis was usually performed using 5–10 scans.

Previously (Brautigam et al. 2016), we employed this 
linearized DSV method to determine whether wild-type 
TpMglB-2 underwent a conformational change when bound 
to d-glucose. In this work, we sought to refine the method for 
the modern hardware, examine critical control experiments, 
and explore the possibility of directly analyzing the DSV 
curves with differenced Lamm-equation solutions in addi-
tion to integrating them and performing the linear-regression 
analysis employed decades ago. Critically, the modern hard-
ware allows us to perform the analyses on tens to hundreds 
of scans, an advantage that should improve accuracy and 
precision.

Experimentally, two simultaneously performed studies 
are essential to provide enough information for the analy-
sis. First, as is standard DSV practice, one centerpiece sec-
tor should be filled with unliganded protein, and the second 
with the identical concentration of protein along with the 
ligand that induces the conformational change. It is useful 
to include in the “unliganded” sample a small molecule that 
has a similar molar mass to the ligand, but does not bind 
to the subject protein; this expedient helps to prevent the 
detection of refractive-index differences due to presence of 

Fig. 4   Linearized first-moment data for BSA and TpMglB-2WA. In 
both cases, the circles represent the data, and black lines are fits to 
those data. Blue circles are for the actual experiment, and red ones 
are for the negative control experiment. a BSA data. Data are extrap-
olated to x values of 0.0; the y-intercept should depict the difference 
in meniscus position between the reference and sample sectors (Rich-

ards and Schachman 1959; Kirschner and Schachman 1971b). The 
slopes are the respective Δs/s̄ values, which have been transformed 
to Δslin in the text. The negative slope for the “actual” data (blue 
circles) is a consequence of the reference sector being filled slightly 
more than the sample sector (this was inadvertent). b The TpMglB-
2WA data
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a small molecule in only one sector (Oberfelder et al. 1985). 
The second experiment is a control: using exactly the same 
concentration as present in the DSV experiment, a stand-
ard AUC experiment (i.e., buffer in the reference sector, 
unliganded protein in the sample sector) should be carried 
out and analyzed to establish the magnitude of the signal 
(ΔJU) and the s-value (sU) of the unliganded solute under the 
experimental conditions. We called this control the “SAM 
Control” (for “s And Magnitude”). It is necessary to input 
these values and fix the magnitude in the analysis method 
described below. Another useful, but not essential, control 
experiment is provided by applying identical solutions to 
both sectors. Thus, there should be no Δs between the sec-
tors, and analyses of these data serve as a test of the user’s 
technique and apparatus.

The analysis of the DSV data acquired as described above 
(or simulated) was carried out using an automated algorithm 
implemented as a stand-alone Python program (“DiSECT”, 
see below). Upon starting the program, the information 
from the SAM control was inputted, and then the data were 
loaded followed by choosing the menisci and the radial fit-
ting limits. After that, the algorithm was actuated. It auto-
matically determined the data range that was useful for the 
analysis from hundreds of available scans. It calculated time-
invariant noise (Schuck and Demeler 1999) in the data and 
removed it. The normalized first moments of the baseline-
subtracted difference curves were calculated and tabulated, 
and a linear regression was performed on these (Fig. 4), with 
the quantity Δs/s (where s is the mean s-value of the mate-
rial in the reference and sample sectors) being derived from 
the slope of the regressed line (Kirschner and Schachman 
1971b). The values obtained from this linearized analysis 

were used as the starting point for a direct analysis of the 
difference-curve data (Fig. 5) using the transport terms of an 
approximate analytic solution of the Lamm equation (Behlke 
and Ristau 2002). The analysis can be performed in just a 
few seconds with hundreds of scans and minimal user input.

DSV of simulated data

As a first test of this methodology, we simulated noisy, BSA-
like data using an independent data-generation algorithm. 
We chose the numerical Lamm-equation simulations avail-
able in SEDFIT (Brown and Schuck 2008). Because that 
program does not simulate difference curves like that in 
Fig. 1b directly, a custom simulation workflow was estab-
lished (see “Methods”). The simulation parameters are given 
in Table 3. Note that the reference and sample sectors were 
given different menisci; a deliberate meniscus mismatch is 
commonly introduced into DSV experiments to give the 
difference curves a significant magnitude, facilitating the 
analysis (Kirschner and Schachman 1971b; Oberfelder et al. 
1985). No SAM experiment was simulated, as sU and ΔJU 
were known to the user.

We first simulated a system in which the ligand was 
placed in the sample sector only, causing a change of 
roughly 1.8% in the sedimentation coefficient (0.08 S). To 
test the stability of the algorithm for all likely configurations, 
four scenarios were tested: the four combinations possible 
from the reference/sample menisci mismatches and ligand-
induced protein expansion vs. compaction (scenarios 1–4 
in Table 3). In comparing the values of Δs obtained from 
the linearized fit (Δslin) and that obtained from the direct 
fit to the difference data (ΔsDSV), we found that the latter 

Fig. 5   DSV results. In both parts, the upper graph shows the noise- 
and baseline-subtracted data (circles) and fits to those data (black 
lines). For clarity, only every 5th analyzed scan is shown. Colors 
represent the respective time of the scans, from early (purple) to late 
(red). The bottom graph shows the residuals between the data and the 

fits as respectively colored circles. a The BSA D2O/H2O experiment. 
b The TpMglB-2WA d-ribose /d-glucose experiment. The differing 
“sign” of the DSV curves is a result of a slight (and inadvertent) over-
filling of the sample sector in the case of BSA and deliberate under-
filling of the sample sector for TpMglB-2WA experiment
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methodology consistently lent more accuracy and precision 
to the analysis. All of the ΔsDSV values obtained were within 
1.25% of the simulated value, suggesting that the analytic 
strategy is capable of arriving at robust estimates of Δs using 
noisy but otherwise ideal data.

We examined a fifth scenario under which the sedimen-
tation coefficients were identical in both sectors. Both the 
linearized and direct-fitting approaches correctly identified 
that lack of a sedimentation-coefficient difference between 
the sectors (Table 3). Thus, it appears that these methods do 
not easily yield false-positive results.

DSV on BSA

In analogy to the preliminary experiments above that 
explored differences in sedimentation coefficient induced by 
the addition of D2O to a solution of PBS, we conducted DSV 
experiments in a similar mode. That is, in this DSV experi-
ment, a solution of 4.5 mg/mL of BSA in PBS was placed 
into the sample sector of the centerpiece, while an identical 
concentration of BSA was introduced into the reference sec-
tor, but this solution was 4% (v/v) D2O. A SAM experiment 
was also conducted along with a negative control with BSA 
and 4% D2O in both sectors.

The analysis of the SAM experiment demonstrated that 
15.032 fringes of material were present, and the best s-value 
for the BSA monomer was 3.974 S. The lower s-value for the 
BSA monomer compared to the SV experiment described 
above can be ascribed to non-ideality in the more con-
centrated BSA solutions used in this part. After that, the 
remainder of the analysis was conducted using the software 

that contains the analytic methods described herein, entitled 
DiSECT. The analytic workflow was: (1) Start DiSECT. (2) 
Load the DSV data. (3) Input sU and ΔJU. (4) Adjust the 
positions of the menisci and fitting limits on the data. (5) 
Actuate the execution of the algorithm. And (6) refine and 
finalize the results. The results (Figs. 4a, 5a) showed that the 
algorithm performed well (Table 4). For the negative con-
trol experiment, ΔsDSV was − 0.0069 [− 0.0080, − 0.0058] S 
(throughout this work, 95% confidence intervals obtained by 
an automated error-surface projection method are presented 
in square brackets), showing a slightly negative bias from 
the expected value of 0.0 S. For the comparison between 
D2O and H2O, ΔsDSV was 0.0701 [0.0689, 0.0712] S. Again, 
this was slightly lower than the expected value of 0.08 S. 
Instead of just a few scans, we were able to accomplish these 
analyses with 167 and 134 scans for the control and heavy 
water-comparison experiments, respectively.

DSV of TpMglB‑2WA

We performed three simultaneous AUC experiments with 
TpMglB-2WA at 4.4 mg/mL, chosen to be analogous to the 
BSA studies presented above. The first experiment compared 
the sedimentation of the protein in the presence of d-ribose 
vs. d-glucose (the sugars were included at a concentration of 
1 mM). Protein with d-ribose was introduced into the refer-
ence sector, and protein with d-glucose was in the sample 
sector. Another experiment was the negative control: d-glu-
cose was included with the protein in both sectors of the 
centerpiece, and thus no Δs should be detectable. Finally, 

Table 3   Results of simulatedb DSV experiments

a The values in brackets represent the 95% confidence intervals for the respective value
b Other simulation parameters: rotor speed, 50,000 rpm; partial-specific volume, 0.73 mL/g; solution density, 1.0 g/mL; solution viscosity, 
0.01002 Poise; molar mass, 66,000 g/mol

Scenario mR (cm) mS (cm) sR (S) sS (S) Δslin (S) ΔsDSV (S) Error (DSV) (%)

1 6.1 6.13 4.4 4.48 0.766 [0.0751, 0.0782]a 0.0803 [0.0787, 0.0818] + 0.375
2 6.13 6.1 4.4 4.48 0.0746 [0.0734, 0.0759] 0.0791 [0.0777, 0.0806] − 1.25
3 6.1 6.13 4.48 4.4 − 0.0761 [− 0.0773, − 0.0748] − 0.0792 [− 0.0806, − 0.0777] + 1.25
4 6.13 6.1 4.48 4.4 − 0.0781 [− 0.0797, − 0.0765] − 0.0803 [− 0.0819, − 0.0787] − 0.75
5 6.1 6.13 4.4 4.4 0.001 [− 0.0013, 0.0014] 0.0001 [− 0.0014, 0.0016] + 0.01

Table 4   Results of empirical DSV experiments

Ref. sector Sample sector Δslin (S) ΔsDSV (S)

BSA + PBS + 4% D2O BSA + PBS + 4% D2O − 0.0036 [− 0.0038, − 0.0034] − 0.0069 [− 0.0080, − 0.058]
BSA + PBS + 4% D2O BSA + PBS + 4% D2O 0.0694 [0.0686, 0.0702] 0.0701 [0.0689, 0.0712]
TpMglB-2WA + d-glucose TpMglB-2WA + d-glucose 0.0004 [− 0.0007, 0.0014] − 0.003 [− 0.006, 0.000]
TpMglB-2WA + d-ribose TpMglB-2WA + d-glucose 0.0645 [0.0619, 0.068] 0.067 [0.064, 0.071]
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the SAM experiment featured reference buffer in the refer-
ence sector and unliganded 4.4 mg/mL TpMglB-2WA in the 
sample sector. The interference optics were used, and one 
concentration profile was acquired per minute.

With the data in hand, we followed the same analytic 
procedure that had been established with the BSA experi-
ments (Figs. 4b, 5b; Table 4), using 88 scans for the negative 
control and 95 scans for the d-ribose/d-glucose experiment. 
The values of sU and ΔJU were 3.135 S and 14.041 fringes, 
respectively. The Δslin was 0.0645 [0.0619, 0.0680] S and 
the ΔsDSV was 0.067 [0.064, 0.071] S (Figs. 4b, 5b). Thus, 
there was clear evidence of a difference in the sedimentation 
coefficient between the d-glucose-bound form of TpMglB-
2WA and the same protein in the presence of d-ribose.

The question remains, however, whether the observed dif-
ference accords with ΔsModel (the hydrodynamically mod-
eled Δs) as calculated above. The ΔsDSV is well above the 
value calculated if d-glucose bound with no accompany-
ing conformational change (0.02 S, vide supra), and thus 
the conformational change was reliably detected by DSV. 
With significant assumptions, a two-sided t test may be 
performed to examine the possibility of a real difference 
between ΔsModel (0.09 ± 0.05 S) and ΔsDSV (0.067 ± 0.002 
S, with the σDSV estimated as the upper limit of the 95% 
confidence interval minus the best refined value divided by 
two). With these assumptions in place, p = 0.36. Statistically, 
therefore, it appears that the ΔsDSV is consistent with the 
expected conformational change (or, more precisely, it can-
not be stated confidently that there is any difference between 
ΔsModel and ΔsDSV).

Discussion

In this study, we have used two means to detect sedimen-
tation coefficient differences between the same protein in 
two different solutions, with the ultimate goal of provid-
ing a modern update to the classic literature on monitoring 
ligand-induced macromolecular conformational changes 
using SV. The first method was rooted in the c(s) analysis 
(Figs. 3, S1, and S2). In examining our results, we can rec-
ommend some best practices to maximize the precision of 
the measured s-values and thus the user’s confidence in the 
veracity of the posited change in conformation. At least three 
replicates each of mock-liganded and ligand-bound proteins 
should be examined in a single AUC experiment (i.e., a total 
of 6–8 centrifugation cells should be used). It is critical that 
all experiments be done at identical protein concentration, 
as concentration differences can lead to apparent s-value 
changes. Doing all at the same time eliminates many sources 
of experimental variability (Errington and Rowe 2003), and 
the recommended number of replicates allows the user to 
achieve meaningful statistics that can account for cell-to-cell 

variability. The interference optics should be used exclu-
sively for data acquisition when possible, because the speed 
of data acquisition allows more data to be collected, which 
improves the precision in s. Finally, we suggest a Monte 
Carlo-based protocol (Schuck 2016) to determine the con-
fidence interval on each measured s-value, followed by the 
determination of a weighted mean to obtain the best estimate 
of s from each set of replicates, sav. Standard statistics on 
Δsav can yield the confidence with which the conformational 
change may be stated. In our case, Δsav was detected very 
reliably for both the BSA test and TpMglB-2WA.

We also employed a new DSV method to detect changes 
in conformation (Figs. 4, 5), manifested in the quantity 
ΔsDSV. The method relies on fitting the Gaussian-like 
DSV data directly, rather than the linearized analysis first 
employed by Schachman and colleagues (Richards and 
Schachman 1959; Kirschner and Schachman 1971b). Sedi-
mentation-coefficient differences were reliably detected in 
these experiments. Here, we found that replicates are not 
obligatory. This is because the method directly detects the 
difference in sedimentation velocity of two solutes side-by-
side in a single centerpiece. With careful experimentation, 
incorrectly detecting a significant ΔsDSV is very unlikely. 
The experiment, as we envision it, usually employs only 
three centrifugation cells: one “SAM” experiment, contain-
ing buffer in the reference sector and the macromolecule 
under study in the sample sector, which allows the s-value 
and signal magnitude of the sample to be elucidated; one 
experimental cell, having macromolecule plus a mock ligand 
in the reference sector and the macromolecule plus the true 
ligand in the sample sector; and one negative control to 
check for systematic offsets in ΔsDSV, containing macro-
molecule with the true ligand in both sectors. As before, 
the macromolecular concentrations in all samples must be 
identical. Following the suggestions of earlier practitioners 
(Kirschner and Schachman 1971b; Oberfelder et al. 1985), 
we deliberately introduced a meniscus mismatch to the lat-
ter two experiments, allowing easier integration and inter-
pretation of the resulting difference curves. In the current 
instance, we detected a ΔsDSV in TpMglB-2WA upon ligand 
binding that was commensurate with our hydrodynamic 
calculations.

Importantly, we have undertaken our DSV experiments 
with no special equipment, adjustments, or customized appa-
ratus. The goal was to ascertain whether the method could 
be implemented using the currently deployed centrifuge by 
a careful experimenter who is not an expert in interference 
optics. The success of the experiment demonstrates that 
conformational changes of the magnitude studied herein are 
readily detected in DSV experiments without extraordinary 
measures.

Our DSV analytic protocol includes performing a “lin-
earized” analysis (Kirschner and Schachman 1971a) to 
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obtain estimates for Δs, then fitting the interferometric data 
directly. This latter part was accomplished using the trans-
port terms of an equation formulated by Behlke and Ristau 
(2002), which has also been used in other contexts [e.g., in 
the SVEDBERG program by Philo (1997)]. For each scan 
analyzed, our algorithm calculates two concentration profiles 
and subtracts them, allowing the fitting of these difference 
curves to the DSV data. We found that most parameters in 
the fitting were well-specified by the data, i.e., the refine-
ments of those values did not lead to unreliable results. The 
overall concentration, ΔJU, was not one of these parameters. 
In our tests of the algorithm, it was strongly correlated with 
other parameters, and thus it is imperative to find its value 
via the SAM experiment and fix it during the analysis.

Despite the positive DSV result, there is clearly room for 
improvement of the DSV protocol. First, as implemented 
above, the method consumes nearly 10  mg of protein 
(~ 2 mL at ~ 5 mg/mL using our three-experiment protocol). 
In preliminary studies (not shown), we found that concentra-
tions of protein down to 2 mg/mL could reliably report on 
ΔsDSV. Also, changes in centerpiece design featuring nar-
rower sectors (Desai et al. 2016; To et al. 2019) are envi-
sioned, thus lowering the volume (and hence total mass of 
material) necessary to conduct a DSV experiment.

But the most serious drawback that we observed in our 
DSV studies was a systematically negative bias was in the 
observed ΔsDSV values (Table 4). For example, the apparent 
error in the measurement of ΔsDSV for TpMglB-2WA was 
− 18% (cf. Δsav and ΔsDSV, Tables 2, 4). The source of this 
bias is unknown at present. At least one candidate source 
errors of this magnitude can be immediately eliminated: the 
direct-fitting algorithm. Our simulations of DSV experi-
ments (Table 3) demonstrated that the analytic method works 
well, and can only account for errors on the order of 1%. One 
possibility is in data preparation for the direct fitting, specifi-
cally with regard to the baseline subtraction. The TI noise 
elements that are part of the baseline are calculated from the 
last 10 scans of the experiment, but those can be well sepa-
rated in time from the subset of scans that is analyzed in our 
method. Also, contaminating species existing within the dif-
fusional envelope of the main species could alter the baseline 
calculation and the shape of the DSV data curve. Another 
potential source of the problem may lie in the modern inter-
ference optical system and other aspects of interferometric 
data collection. The alignment of the Rayleigh interference 
system and the alignment of the cells within the rotor was 
accomplished more crudely compared to the exacting meth-
ods employed by Schachman and colleagues (Richards and 
Schachman 1959; Kirschner and Schachman 1971b). The 
originators of the DSV technique outlined some other puta-
tive sources of data-collection errors, including light path-
length differences in the assembled AUC cells and fringe 
“necking” or “bowing” (owing to large refractive-index 

gradients) (Kirschner and Schachman 1971b). We envision 
that systematic centerpiece flaws or fringe gradients induced 
by the deliberate meniscus mismatch could also contribute to 
the bias. A final possible source of error is differential non-
ideality effects that manifest at the high concentrations used 
for the DSV studies. This could be systematically explored 
by examining the experimental sedimentation coefficient of 
TpMglB-2WA as a function of concentration in the presence 
of d-ribose and d-glucose to see if there are differing non-
ideality constants. Means to improve the performance of the 
DSV experiments and calculations are currently under study.

Despite the slight bias in the DSV results, we found that 
both modern, AUC-based methods of detecting a ligand-
induced conformational change explored in this study can 
yield acceptable results. The user may, therefore, choose 
the method to best meet experimental needs. The c(s)-based 
technique works well for systems in which sample quan-
tity is limited or there is some noninteracting contaminant 
present (the distribution may be integrated to exclude the 
contaminant). However, this method can be laborious, and 
it requires the user to have at least six centrifugation cells 
and an eight-hole rotor on hand. Notably, the eight-hole rotor 
cannot achieve rotor speeds higher than 50,000 rpm, and 
thus small proteins and peptides may not be amenable to 
this approach. The DSV method requires only three cells 
and thus a four- or eight-hole rotor may be employed (ena-
bling speeds up to 60,000 rpm). Using our approach, the 
latter data require only minimal processing, and the actual 
DSV analysis takes only seconds. The downside is the high 
(2–5 mg/mL) concentration and high purity (> 95%) of 
material required.

Two types of ligand-induced conformational changes 
in proteins are possible. In the first, the protein expands 
upon ligand binding, as in rabbit pyruvate kinase (Harris 
and Winzor 1988), manifesting as a smaller sedimentation 
coefficient in the presence of the ligand. This phenomenon 
is clear-cut evidence for a conformational change. In the 
second scenario, the protein contracts, causing its sedimen-
tation coefficient to rise slightly; a classic example is acetyl 
transcarbamylase (Kirschner and Schachman 1971a), and 
it was also the case for TpMglB-2WA (Fig. 2) (Brautigam 
et al. 2018). However, another possible explanation is that 
ligand binding induces oligomerization of the protein; that 
event would also result in a larger s-value. However, this 
alternative explanation is unlikely. Using TpMglB-2WA as 
an example and assuming a monomer–dimer equilibrium 
for the protein when ligand is bound, the observed ΔsDSV 
and the concentrations used would indicate a KD of about 
40 mM. However, if doubt exists, standard SV experiments 
with saturating concentrations of ligand and various con-
centrations of protein could be undertaken to corroborate 
the conformational-change hypothesis.
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We have incorporated several aspects of our method-
ologies into a new freeware program called “DiSECT” 
(Difference Sedimentation to Elucidate Conformational 
Transitions). The program performs all of the calculations 
necessary to determine ΔsDSV. There are a number of built-
in accessory functions also, including integration of the 
c(s) distribution from a SAM experiment, calculation of sav 
and σav, and determination of ΔsDSV expected from ligand-
binding alone. It is critical to perform the latter calculation 
to correlate ΔsDSV with conformational changes as opposed 
to mere gains in mass from ligand binding. Functionality 
from HullRad (Fleming and Fleming 2018) is also included 
in DiSECT to enable the calculation of a predicted Δs from 
structural models of two conformational states. Any user 
may download the software from https​://bioph​ysics​.swmed​
.edu/MBR/softw​are.html.

Methods

Protein purification

Bovine serum albumen (BSA) was purchased from Sigma-
Aldrich Corp. (St. Louis, MO; Cat#A7030). The powder was 
dissolved in phosphate-buffered saline buffer (PBS, 10 mM 
sodium phosphate, 1.76 mM potassium phosphate, 137 mM 
NaCl, 2.7 mM potassium chloride, pH 7.4) to a final con-
centration of 20 mg/mL, then filtered through a 0.22-μm 
centrifuge filter unit (Millipore). The solution was cooled 
to 4 °C and all subsequent purification steps occurred at 
this temperature. This solution was applied to a Superdex 
200 16/60 size-exclusion column (GE Healthcare Bio-Sci-
ences, Marlborough, MA) that had been equilibrated with 
PBS. Fractions deemed likely to contain the BSA monomer 
were pooled and concentrated to 8–10 mg/mL using a Mil-
lipore Ultra-4 centrifugation concentrator. Concentrations 
were determined spectrophotometrically using extinction 
coefficients calculated by the ProtParam utility of ExPASy 
(Gasteiger et al. 2005).

TpMglB-2WA was expressed and purified as described 
elsewhere (Brautigam et al. 2018). The composition of the 
protein’s storage buffer (Buffer B) was 10 mM sodium phos-
phate, pH 7.5, 100 mM NaCl.

Hydrodynamics calculations

HYDROPRO (de la Torre et al. 2000; Ortega et al. 2011) 
was used to calculate the hydrodynamic properties of the 
apo- and holo-TpMglB-2 models resulting from the crystal-
lography (Brautigam et al. 2018). Masses of the polypep-
tides were calculated from the respective amino-acid com-
positions, as were the respective partial-specific volumes 
(Laue et al. 1992). The mass of d-glucose was included in 

the calculation for the holo-TpMglB-2 structure. Because 
there were slight differences in the termini of the proteins, 
the models were manually truncated such that the same num-
ber of amino-acid residues were present in both.

The same PDB files were used in the analysis by HullRad. 
We used a calculator embedded in DiSECT that used the 
HullRad code (Fleming and Fleming 2018) to calculate the 
hydrodynamic properties of the individual structures and 
report on their differences. Masses were automatically cal-
culated form the contents of the PDB files.

Analytical ultracentrifugation

All AUC SV experiments were performed in an Optima 
XL-I analytical ultracentrifuge (Beckman-Coulter, Indian-
apolis, IN) at 20 °C using the Rayleigh interferometer only. 
Charcoal-filled Epon centerpieces were positioned between 
two sapphire windows in aluminum housings. In the SV 
method experiments, the reference sector was filled with 
Buffer B, and the sample sector was filled with 1 mg/mL 
TpMglB-2WA in Buffer B supplemented with either 1 mM 
d-ribose or 1 mM d-glucose. A total of six cells were pre-
pared, three with d-ribose, and three with d-glucose. The 
assembled cells were then inserted into the holes of an An50-
Ti rotor and incubated in the centrifuge under vacuum for ca. 
2.5 h. Next, centrifugation was commenced at 50,000 rpm, 
with one scan collected every 1 min until no evidence of 
solute migration could be observed.

For DSV, we performed three simultaneous experi-
ments: (1) a “SAM” experiment, in which Buffer B was 
introduced into the reference sector, and ~ 5 mg/mL protein 
was inserted into the sample sector; (2) a negative control, 
in which both sectors were filled with identically prepared 
solutions of protein with 1 mM ligand (d-glucose), and (3) 
the conformational change experiment, in which both sec-
tors contained ca. 5 mg/mL protein, with the reference sec-
tor having 1 mM mock ligand (d-ribose) and the sample 
sector containing 1 mM d-glucose. In experiments (2) and 
(3), the sample sector was deliberately underfilled by ca. 
6 μL, introducing a meniscus mismatch. This practice was 
suggested by Schachman and coworkers (Kirschner and 
Schachman 1971b) to yield more readily interpretable DSV 
patterns. The assembled cells were positioned in an An50-Ti 
rotor which was placed in the centrifuge and temperature-
equilibrated under vacuum for at least 2.5 h. Centrifugation 
was then initiated at 50,000 rpm. One interferometric scan 
was collected every 1 or 0.5 min; a total of 999 scans was 
always collected.

The same procedures were used for the BSA-containing 
experiments, except as follows. The buffer used was PBS. 
Samples were supplemented to 4% (v/v) with either D2O 
(99.9%, Sigma Cat#151882) or H2O to mimic a conforma-
tional change in the protein.

https://biophysics.swmed.edu/MBR/software.html
https://biophysics.swmed.edu/MBR/software.html
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Data analysis

All scans were time-stamp corrected (Zhao et al. 2013) 
using the software REDATE (https​://bioph​ysics​.swmed​
.edu/MBR/softw​are.html). The data were analyzed using 
SEDFIT (Schuck 2000), applying the following parameters 
during the c(s) analysis: Maximum Entropy regularization 
at a confidence level of 0.683, final s-resolution of 150, smin 
of 0.0 S, smax of 10.0 S, radially invariant and time-invariant 
noise calculation (Schuck and Demeler 1999). Integration 
(Schuck 1998) in SEDFIT was used to determine the best 
weighted-average s-value (sw,b) for each replicate. A multi-
step method (Schuck 2016) to determine the error (σw,b) for 
each replicate was employed. First, F-statistics were used 
to determine the extreme values of the sample meniscus 
(m+ and m−) that were still compatible with the data (a con-
fidence level of 68.3% was used). The distributions were 
integrated again at these extrema, and the resulting s-values 
were defined as sw,m+ and sw,m−. Then, with the menisci fixed 
at m+ and m−, two Monte Carlo (MC) simulations were car-
ried out in SEDFIT to examine the error introduced by the 
integration and regularization. We found that the reported 
68.3% confidence intervals from the MC simulations did 
not bracket the respective sw,m+ or sw,m−. However, we sur-
mised that the simulations still captured the amount of error 
expected from integration and regularization, and thus we 
defined σw,m+ and σw,m− as one half of the reported inter-
val from the Monte Carlo procedure. This resulted in four 
potential values to describe the confidence interval on sw,b: 
sw,m+ ± σw,m+ and sw,m− ± σw,m− We took the maximum and 
minimum (sw,max and sw,min, respectively) of these four to 
describe the error interval, and σw,b was then defined as the 
greater of sw,max − sw,b and sw,b − sw,min. Finally, the calcula-
tion of the weighted mean, sav, was accomplished via

and the overall σ for the respective sav, σav, was

where n is the number of replicates, which was always three 
in our studies.

To analyze the DSV experiments, the standard c(s) 
methodology was used to analyze the SAM experiment. 
The remaining analyses were accomplished in DiSECT. 
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First, the experimental cell was identified by the user, and 
then the software loaded the last ten scans from that cell. 
It examined these and estimated the positions of the ref-
erence and sample menisci (mr and ms, respectively). At 
this point, the two menisci and the radial integration limits 
(rmin and rmax, i.e., the radii that all integrations must be 
within) were adjusted by the user if necessary. Next, the 
SAM-control c(s) distribution from SEDFIT was pasted 
into DiSECT’s integration tool, and the calculated values 
of s (sU) and the total fringe signal (ΔJU) were commu-
nicated by the tool to DiSECT. Finally, the method was 
initiated. All steps were automated from that point for-
ward. The program calculated the time-invariant (TI) noise 
(Schuck and Demeler 1999) from the last ten scans and 
subtracted it from all subject scans. It located the identity 
of the scan in which the boundary should have roughly 
traversed half of the solution column by defining an inte-
grated time ( ∫ �2dt , which is recorded by the instrument 
in the header of the scan file) that met this criterion:

Having established which scan best meets this criterion, 
the algorithm moved backward through time, recording 
the scans less the TI noise and fitting a Gaussian curve 
to each. When the − 3σ (or − 4σ; this is user-adjustable) 
value of the curve was less than rmin, the search stopped 
and an analogous search in the forward direction in time 
was made. Thus, the algorithm automatically selected 
for the time range that would be included in the analy-
sis. Next, the routine iterated through all included scans, 
establishing a separate baseline for each (this was neces-
sary despite the subtraction of the TI noise). The y values 
of this baseline-corrected difference curve were termed 
ΔJ(r,rav)corr, with the mean radius of the DSV peak, rav, 
serving as a time variable. The first moment of the curve 
was found by multiplying ΔJ(r,rav)corr by r and performing 
a trapezoidal integration of the resulting curve; this was 
followed by normalization, yielding the ordinate (y) in the 
linear plot used to deduce Δs/s:

 where rs, the solvent plateau, was the mean of the respec-
tive fitted Gaussian curve less 3 (or 4) times the respective 
sigma, and rp, the solution plateau, was the mean plus 3σ 
(or 4 σ), J0 was defined as ΔJU, and m was the mean of the 
reference and sample menisci. The absolute value was taken 

(3)∫ �2dt ≈
ln
(

rmax+rmin

2

)
− ln

(
mr+ms

2

)

sU
.

(4)y =

||||||||||

rm∫
rs

ΔJ(r, rav)corrrdr

J0m
2

||||||||||

,

https://biophysics.swmed.edu/MBR/software.html
https://biophysics.swmed.edu/MBR/software.html
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so that a change in conformation would always result in a 
positive slope in the analyzed curve when mr < ms. For the 
abscissa, it was first necessary to calculate r:

The abscissa (x) was then calculated as

This version of the abscissa differs from that originally 
proposed by Kirschner and Schachman (Kirschner and 
Schachman 1971b). It is corrected for the fact that dif-
ferences in the solute’s sedimentation velocity results in 
baseline offsets in the centrifugal portion of the DSV peak 
(Fig. 1) (Kirschner and Schachman 1971b; Skerrett 1975). 
A plot of y vs. x for all analyzed scans was fitted to a straight 
line, with the slope corresponding to Δs/s and the y-intercept 
reporting on ||ms − mr

|| . Using the values obtained from the 
linear regression, a fit of baseline-subtracted interference 
data scans was initiated, with the starting value of Δs being 
Δslin:

Only the portions of the curves that were integrated in 
Eq. (4) were analyzed. To fit the difference curves directly, 
the concentration profiles for the reference (ΔJr(r,t,sr,D)) 
and sample sectors (ΔJs(r,t,ss,D)) were calculated separately, 
then values for the reference sector were subtracted from 
those for the sample sector, resulting in ΔΔJ(r,t,sr,ss,D). 
The equation used corresponded to the transport terms in 
the approximate analytic solution of the Lamm Equation 
formulated by Behlke and Ristau (2002), that is

where the symbol Φc denotes the complementary error 
function (sometimes called erfc) of the quantity enclosed 
in brackets, and using for convenience the dimensionless 
parameters:

(5)r =

rp∫
rs

ΔJ(r, rav)corrrdr

rp∫
rs

ΔJ(r, rav)corrdr

.

(6)x = ln
r

m
.

(7)Δslin =
2sU

(
Δs

/
s
)

2 − Δs
/
s
.

(8)

ΔJ(r, t, s,D) =
ΔJU

2e�

�
Φc

�
e�∕2 − 0.5w − 1 + 0.25�

�
e−�∕2 − e�∕2

�
√
�(e� − 1)

�

−
1

1 − b
exp

�
bw

�

�
Φc

�
w + 2b�

2
√
2��

�

+
2 − b

1 − b
exp

�
w + 2� (1 − b)

�

�
Φc

�
w + 2� (2 − b)

2
√
2��

��
,

 and the auxiliary parameters

For the reference sector, s = sU and m = mr ; for the sam-
ple sector, s = sU + Δs and m = ms . The diffusion coefficient 
(taken to be the same for both sectors) was a fitted parameter 
in this analysis; its initial value could be estimated from the 
molar mass of the solute using the Svedberg Equation, or 
it could simply be initialized at a realistic value (4–5 F in 
this paper), as we found that it had a robust radius of con-
vergence. After ΔΔJ(r,t,sr,ss,D) was calculated, a straight 
line between its first and last values was subtracted from 
it to mimic the baseline subtraction that was performed 
for the raw data. It was this function that was fitted to the 
baseline-subtracted interferometric data using the minimiza-
tion algorithm of Levenberg and Marquardt (1963) and the 
Nelder–Mead simplex algorithm (Nelder and Mead 1964). 
The above operations were typically performed on 80–200 
scans in just a few seconds using the program.

Data simulations

The simulated DSV data were generated using a combina-
tion of SEDFIT and a custom-written Python script. First, 
two standard SV data sets (one each for the reference and 
sample sectors) were simulated using typical parameters in 
SEDFIT; random Gaussian noise was added to each data 
set at a level of 0.005 fringes. Care was taken to build in 
a meniscus offset and to ensure that both data sets all had 
perfectly paired timestamps in their respective headers. The 
data sets were written to separate file folders. Then, the 
script was employed to pairwise subtract the reference sector 
data from the sample-sector data, and the results were writ-
ten as new files into a new file folder. These data could be 
read by DiSECT and subjected to the algorithms described 
above.

Acknowledgements  The authors wish to thank Dr. Peter Schuck for 
helpful discussions and the use of one of the analytical ultracentrifuges 
in his lab to collect some of the data presented herein. Parts of this 
research were supported by a Grant (AI056305) to M.V.N. from the 
National Institutes of Health.

Funding  NIH Grant No. AI056305 to M.V.N.

Availability of data and material  Available upon request.

(9)
� = 2D

/
s�2m2

� = 2s�2t,

(10)

b = 1 − �∕2

w = 2
[
(r∕m) − 1

]

� = e�∕2 − 1.



742	 European Biophysics Journal (2020) 49:729–743

1 3

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no competing 
interest.

Code availability  Compiled software freely available. Custom Python 
script available upon request.

References

Bai X, Fernandez IS, Mcmullan G, Scheres SHW (2013) Ribosome 
structures to near-atomic resolution from thirty thousand cryo-EM 
particles. Elife 2:e00461

Behlke J, Ristau O (2002) A new approximate whole boundary solution 
of the Lamm differential equation for the analysis of sedimenta-
tion velocity experiments. Biophys Chem 95:59–68

Bennett WS, Steitz TA (1978) Glucose-induced conformational change 
in yeast hexokinase. Proc Natl Acad Sci USA 75:4848–4852

Borges JC, Pereira JH, Vasconcelos IB et al (2006) Phosphate closes 
the solution structure of the 5-enolpyruvylshikimate-3-phosphate 
synthase (EPSPS) from Mycobacterium tuberculosis. Arch Bio-
chem Biophys 452:156–164

Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes 
of glucose/galactose-binding protein illuminated by open, unli-
ganded, and ultra-high-resolution ligand-bound structures. Protein 
Sci 16:1032–1041

Borrok MJ, Zhu Y, Forest KT, Kiessling LL (2009) Structure-based 
design of a periplasmic binding protein antagonist that prevents 
domain closure. ACS Chem Biol 4:447–456

Brautigam CA, Deka RK, Liu WZ, Norgard MV (2018) Crystal struc-
tures of MglB-2 (TP0684), a topologically variant d-glucose-bind-
ing protein from Treponema pallidum, reveal a ligand-induced 
conformational change. Protein Sci 27:880–885

Brautigam CA, Deka RK, Liu WZ, Norgard MV (2016) The Tp0684 
(MglB-2) lipoprotein of Treponema pallidum: a glucose-binding 
protein with divergent topology. PLoS ONE 11:e0161022

Brown PH, Balbo A, Schuck P (2007) Using prior knowledge in the 
determination of macromolecular size-distributions by analytical 
ultracentrifugation. Biomacromol 8:2011–2024

Brown PH, Schuck P (2008) A new adaptive grid-size algorithm for the 
simulation of sedimentation velocity profiles in analytical ultra-
centrifugation. Comput Phys Commun 178:105–120

Catterall WA, Wisedchaisri G, Zheng N (2017) The chemical basis for 
electrical signaling. Nat Chem Biol 13:455–463

Davidson AL, Maloney PC (2007) ABC transporters: how small 
machines do a big job. Trends Microbiol 15:448–455

de la Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydro-
dynamic properties of globular proteins from their atomic-level 
structures. Biophys J 78:719–730

Desai A, Krynitsky J, Pohida TJ et al (2016) 3-D printing for analytical 
ultracentrifugation. PLoS ONE 11:e0155201

Deupi X, Standfuss J (2011) Structural insights into agonist-induced 
activation of G-protein-coupled receptors. Curr Opin Struct Biol 
21:541–551

Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a ver-
satile superfamily for protein engineering. Curr Opin Struct Biol 
14:495–504

Errington N, Rowe AJ (2003) Probing conformation and confor-
mational change in proteins is optimally undertaken in relative 
mode. Eur Biophys J 32:511–517. https​://doi.org/10.1007/s0024​
9-003-0315-x

Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. 
Bioorg Chem 39:185–191

Felder CB, Graul RC, Lee AY et al (1999) The venus flytrap of peri-
plasmic binding proteins: an ancient protein module present in 
multiple drug receptors. AAPS J 1:7–26

Fleming PJ, Fleming KG (2018) HullRad: Fast calculations of folded 
and disordered protein and nucleic acid hydrodynamic properties. 
Biophys J 114:856–869

Fresquet M, Jowitt TA, Ylöstalo J et al (2007) Structural and func-
tional characterization of recombinant matrilin-3 A-domain 
and implications for human genetic bone diseases. J Biol Chem 
282:34634–34643

Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identifica-
tion and analysis tools on the ExPASy server. In: Walker JM (ed) 
The proteomics protocols handbook. Humana Press, Totowa, pp 
571–607

Gerhart JC, Schachman HK (1968) Allosteric interactions in aspartate 
transcarbamylase. II. Evidence for different conformational states 
of the protein in the presence and absence of specific ligands. 
Biochemistry 7:538–552

Gutmann T, Kim KH, Grzybek M et al (2018) Visualization of ligand-
induced transmembrane signaling in the full-length human insulin 
receptor. J Cell Biol 217:1643–1649

Harris SJ, Winzor DJ (1988) Thermodynamic nonideality as a probe 
of allosteric mechanisms: preexistence of the isomerization 
equilibrium for rabbit muscle pyruvate kinase. Arch Biochem 
Biophys 265:458–465

Jacobsen MP, Winzor DJ (1997) Studies of ligand-mediated confor-
mational changes in enzymes by difference sedimentation veloc-
ity in the Optima XL-A ultracentrifuge. Prog Colloid Polym 
Sci 107:82–87

Jeschke G (2012) DEER distance measurements on proteins. Annu 
Rev Phys Chem 63:419–446

Kamata K, Mitsuya M, Nishimura T et al (2004) Structural basis for 
allosteric regulation of the monomeric allosteric enzyme human 
glucokinase. Structure 12:429–438

Khan FI, Lan D, Durrani R et al (2017) The lid domain in lipases: 
structural and functional determinant of enzymatic properties. 
Front Bioeng Biotechnol 5:1–13

Kirschner MW, Schachman HK (1971a) Conformational changes 
in proteins as measured by difference seimentation studies. II. 
Effect of stereospecific ligands on the catalytic subunit of aspar-
tate transcarbamylase. Biochemistry 10:1919–1926

Kirschner MW, Schachman HK (1971b) Conformational changes in 
proteins as measured by difference sedimenation studies. I. A 
technique for measuring small changes in sedimenation coef-
ficient. Biochemistry 10:1900–1919

Kornblatt JA, Schuck P (2005) Influence of temperature on the 
conformation of canine plasminogen: an analytical ultracen-
trifugation and dynamic light scattering study. Biochemistry 
44:13122–13131. https​://doi.org/10.1021/bi050​895y

Krishnan N, Koveal D, Miller DH et al (2014) Targeting the disor-
dered C terminus of PTP1B with an allosteric inhibitor. Nat 
Chem Biol 10:558–566

Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosen-
sors: a review. Anal Bioanal Chem 392:1509–1519

Laue TM, Shah BD, Ridgeway RM, Pelletier SL (1992) Computer-
aided interpretation of analytical sedimentation data for pro-
teins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical 
ultracentrifugation in biochemistry and polymer science. The 
Royal Society of Chemistry, Cambridge, pp 90–125

Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-
induced motion correction enable near-atomic-resolution sin-
gle-particle cryo-EM. Nat Methods 10:584–590. https​://doi.
org/10.1038/nmeth​.2472

Mao B, Pear MR, McCammon JA, Quiocho FA (1982) Hinge-bend-
ing in l-arabinose- binding protein: the “Venus-flytrap” model. 
J Biol Chem 257:1131–1133

https://doi.org/10.1007/s00249-003-0315-x
https://doi.org/10.1007/s00249-003-0315-x
https://doi.org/10.1021/bi050895y
https://doi.org/10.1038/nmeth.2472
https://doi.org/10.1038/nmeth.2472


743European Biophysics Journal (2020) 49:729–743	

1 3

Marquardt DW (1963) An algorithm for the least-squares estimation 
of nonlinear parameters. J Soc Ind Appl Math 11:431–441

Moree B, Connell K, Mortensen RB et al (2015) Protein conforma-
tional changes are detected and resolved site specifically by 
second-harmonic generation. Biophys J 109:806–815

Nelder J, Mead R (1964) A simplex method for function minimiza-
tion. Comput J 7:308–313

Newcomer ME, Lewis BA, Quiocho FA (1981) The radius of gyra-
tion of l-arabinose-binding protein decreases upon binding of 
ligand. J Biol Chem 256:13218–13222

Oberfelder RW, Consler TG, Lee JC (1985) Measurement of changes 
of hydrodynamic properties by sedimentation. Methods Enzy-
mol 117:27–40

Oberfelder RW, Lee LL-Y, Lee JC (1984) Thermodynamic linkages 
in rabbit pyruvate kinase: kinetic, equilibrium, and structural 
studies. Biochemistry 23:3813–3821

Ortega A, Amorós D, García De La Torre J (2011) Prediction of 
hydrodynamic and other solution properties of rigid proteins 
from atomic- and residue-level models. Biophys J 101:892–898

Persons JD, Khan SN, Ishima R (2018) An NMR strategy to detect 
conformational differences in a protein complexed with highly 
analogous inhibitors in solution. Methods 148:9–18

Philo JS (1997) An improved function for fitting sedimentation velocity 
data for low- molecular-weight solutes. Biophys J 72:435–444

Rees AW, DeBuysere MS, Lewis EA (1977) Difference sedimentation 
velocity adapted to low molecular weight proteins. Arch Biochem 
Biophys 182:478–487

Richards EG, Schachman HK (1959) Ultracentrifuge studies with Ray-
leigh interference optics. I. General applications. J Phys Chem 
63:1578–1591

Schuck P (2000) Size distribution analysis of macromolecules by sedi-
mentation velocity ultracentrifugation and Lamm equation mod-
eling. Biophys J 78:1606–1619

Schuck P (2016) Sedimentation velocity analytical ultracentrifugation: 
discrete species and size-distributions of macromolecules and par-
ticles. CRC Press, Boca Raton

Schuck P (1998) Sedimentation analysis of noninteracting and self-
associating solutes using numerical solutions to the Lamm equa-
tion. Biophys J 75:1503–1512

Schuck P, Demeler B (1999) Direct sedimentation analysis of inter-
ference optical data in analytical ultracentrifugation. Biophys J 
76:2288–2296

Shang G, Zhang C, Chen ZJ et al (2019) Cryo-EM structures of STING 
reveal its mechanism of activation by cyclic GMP–AMP. Nature 
567:389–393

Singh D, Tamao Y, Blakley RL (1977) Regulation and cooperativity: 
the case of ribonucleotide reductase of Lactobacillus leischmanii. 
Adv Enzyme Regul 15:81–99

Skerrett RJ (1975) The theory of the difference sedimentation method. 
Anal Biochem 66:1–11

To SC, Brautigam CA, Chaturvedi SK et al (2019) Enhanced sample 
handling for analytical ultracentrifugation with 3D-printed cen-
terpieces. Anal Chem 91:5866–5873

Uchikawa E, Choi E, Shang G et al (2019) Activation mechanism of 
the insulin receptor revealed by cryo-EM structure of the fully 
liganded receptor–ligand complex. Elife 8:e48630

Yikilmaz E, Rouault TA, Schuck P (2005) Self-association and ligand 
induced conformational changes of iron regulatory proteins 1 and 
2. Biochemistry 44:8470–8478

Zhao H, Ghirlando R, Piszczek G et al (2013) Recorded scan times 
can limit the accuracy of sedimentation coefficients in analytical 
ultracentrifugation. Anal Biochem 437:104–108

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Using modern approaches to sedimentation velocity to detect conformational changes in proteins
	Abstract
	Introduction
	Results
	Hydrodynamic modeling
	Conformational changes: the SV method
	SV general considerations
	SV model system
	SV of TpMglB-2WA

	Conformational changes: the difference sedimentation velocity method
	Overall considerations and strategy
	DSV of simulated data
	DSV on BSA
	DSV of TpMglB-2WA


	Discussion
	Methods
	Protein purification
	Hydrodynamics calculations
	Analytical ultracentrifugation
	Data analysis

	Data simulations

	Acknowledgements 
	References




