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Abstract
The movement of magnetotactic bacteria is done in a viscous media in the low Reynolds number regime. In the present 
research, the simple model for magnetotactic bacteria motion, proposed by Nogueira and Lins de Barros (Eur Biophys J 
24:13–21, 1995), was used to numerically simulate their trajectory. The model was done considering a spherical bacterium 
with a single flagellum and a magnetic moment positioned in the sphere center and parallel to the flagella. The numerical 
solution shows that the trajectory is a cylindrical helix and that the body Euler angles have linear dependencies on time. 
Using that information, analytical expressions were obtained for the first time for the center-of-mass coordinates, showing 
that the trajectories are helixes oriented to the magnetic field direction. They also show that the magnetic moment does not 
align to the magnetic field, but it precesses around it, being fully oriented only for very high magnetic fields. The analytical 
solution obtained permits to relate for the first time the flagellar force to the axial velocity and helical radius. Trajectories 
of uncultivated magnetotactic bacteria were registered in video and the coordinates were obtained for several bacteria in 
different magnetic fields. The trajectories showed to be a complex mixture of two oscillating functions: one with frequency 
lower than 5 Hz and the other one with frequency higher than 10 Hz. The simple model of Nogueira and Lins de Barros 
shows to be incomplete, because is unable to explain the trajectories composed of two oscillating functions observed in 
uncultivated magnetotactic bacteria.
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Introduction

Magnetotactic bacteria (MTB) are prokaryotes that passively 
interact with the geomagnetic field through biomineralized 
magnetic nanoparticles arranged in a chain inside the bac-
terial cytoplasm (Yan et al. 2012). Each magnetic nanopar-
ticle is involved by a lipid membrane and the nanoparti-
cle + membrane set is known as magnetosome. MTB move 
using their flagella in a viscous fluid in the low Reynolds 
number regime (Klumpp et al. 2019), where viscous forces 
are stronger than inertial forces. In that case, the net force 
and torque acting on the bacteria are null. Optical micros-
copy observations have shown that the 2D trajectory of MTB 
under the influence of external magnetic fields is undula-
tory, similar to the 2D projection of helical trajectories (see, 

for example, references Nogueira and Lins de Barros 1995; 
Lefevre et al. 2009; Zhang et al. 2012; Chen et al. 2015). 
For the multicellular magnetotactic prokaryote Candidatus 
Magnetoglobus multicellularis has been assumed that the 
trajectory is a cylindrical helix and the velocity, helix radius, 
and frequency were obtained from the trajectory coordinates 
(Almeida et al. 2013; Keim et al. 2018). To study the motion 
of MTB in the low Reynolds number regime is necessary 
to know all the forces and torques acting on the bacteria 
(Klumpp et al. 2019). Nogueira and Lins de Barros (1995) 
developed a simple model using that approach, considering 
a spherical MTB with a single flagellum and a magnetosome 
chain aligned to the flagellum action line. With that model, 
they were able to calculate numerically the temporal evolu-
tion of the center of mass coordinates (x, y, z), being the 
trajectory similar to a cylindrical helix. On the other hand, 
Cui et al. (2012), Yang et al. (2012), and Kong et al. (2014) 
studied the motion of non-spherical MTB, to include the 
effect of the bacterial body geometry on the viscous forces. 
To do that, they numerically simulated the motion using 
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the second Newton’s law, considering all the forces and tor-
ques and calculating the appropriate inertial terms for the 
geometrical body form. They also included a relative incli-
nation λ between the magnetosome chain and the flagellar 
action line. Yang et al. (2012) observed that when λ ≠ 0, 
the velocity decreases when the magnetic field increases, 
effect also observed experimentally by Pan et al. (2009). 
Anyway, in any of those studies was obtained an analytical 
expression for the MTB motion trajectory, associating the 
force parameters to the trajectory parameters. An analytical 
solution for the motion of micro-organisms in terms of the 
applied forces and torques is important, because it permits to 
understand how those parameters influence the observed tra-
jectory. In the present paper, the motion of MTB is numeri-
cally simulated using the model of Nogueira and Lins de 
Barros (1995), the numerical solution for the center of mass 
coordinates (x, y, z) and for the Euler’s angles (θ, ϕ, ψ) is 
obtained and discussed and for the first time is shown that 
an analytical solution can be found for the trajectory, relat-
ing the flagellar and drag force parameters to the trajectory 
parameters. Those results were compared to experimental 
measurements of the motion of uncultured MTB under dif-
ferent magnetic fields, showing that the analytical solution 
for the simple model of Nogueira and Lins de Barros (1995) 
is incomplete.

Motion model in the low Reynolds number 
regime

Nogueira and Lins de Barros (1995) considered the follow-
ing relations valid in the low Reynolds number regime:

It is defined a system fixed to the body (e1, e2, e3) with 
origin in the center-of-mass located in the center of the 
spherical body. e3 is in the direction of the diameter parallel 
to the flagella. It is also defined a system fixed to the labo-
ratory (eX, eY, eZ) (Fig. 1). In the system fixed to the body, 
Fflagella can be written as follows:

where ω is the flagellar angular velocity, also calculated as 
2πf being f the rotation frequency. Assuming that the magne-
totactic bacteria are a coccus; the hydrodynamic force FHidro 
can be written as follows:

where η is the fluid viscosity, R is the bacterial radius, and v 
is the relative velocity. Thus:

(1a)�flagella + �Hidro = 0,

(1b)�flagella + �Hidro + �magnetic + �body = 0.

(2)�flagella = F12
(

cos�t �1 + sin�t �2
)

+ F3 �3,

(3)�Hidro = −6��R�,

where V3 = F3∕6��R and V12 = F12∕6��R.

In Eq. (1b) τbody denotes the reaction torque due to the 
torque that generates the rotation of the flagellum. As ω is 
constant, we can consider that τbody is also constant:

The flagellar torque is calculated directly as follows:

where N12 = RF12 . The hydrodynamic torque τHidro is cal-
culated considering a spherical body rotating in a viscous 
medium:

Ω is the angular velocity of the body and can be written in 
terms of the Euler angles (ϕ, θ, ψ) in the body system:

and in the laboratory system:

(4)� = V12

(

cos�t �1 + sin�t �2
)

+ V3 �3,

(5)�body = −�body�3.

(6)�flagella = R�3 × � = N12(− sin�t �1 + cos�t �2),

(7)�Hidro= −8��R3�,

(8a)�1 = �
�

sin � sin� + �
�

cos� ,

(8b)�2 = �
�

sin � sin� − �
�

cos� ,

(8c)�3 = �
�

cos� + �
�

,

(8d)�x = �
�

sin � sin� + �
�

cos�,

(8e)�y = −�
�

sin � cos� + �
�

sin�,

(8f)�z = �
�

cos � + �
�

,

Fig. 1   Schematic representation of the reference system used in the 
theoretical model for MTB motion. The magnetotactic bacterium is 
assumed to be spheroidal with a single flagellum rotating with angu-
lar velocity ω and a magnetic moment m fixed in the center of the 
bacterial body and oriented parallel to the flagellum. e1, e2, and e3 
are orthonormal vectors fixed to the bacterial body. ex, ey, and ez are 
orthonormal vectors fixed to the laboratory. The applied magnetic 
field B is directed in the − ez direction. The Euler angle θ is the angle 
among e3 and ez
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where ′ means total time derivative.
To calculate the magnetic torque, we consider that the 

magnetosome chain is collinear to the e3 direction producing 
a magnetic moment m = m e3. To write the magnetic field B, 
we consider the system fixed to the laboratory, and without 
loss of generality, we consider B collinear to ez: B = − Bez. 
In this case:

The model of Nogueira and Lins de Barros (1995) consid-
ers B constant, and for t > 0, B is antiparallel to eZ. Adding 
Eqs. (5–7, 9) to Eq. (1b), it is possible find an expression for 
Ω, and using Eqs. (8a–8c), it is possible to find the following 
equations for the Euler angles:

The movement of the center of mass can be written rela-
tive to the system fixed to the laboratory from Eq. (4) and 
the proper transformation between the laboratory and body 
systems. The result is as follows:

In Eqs.  (10) and (11), the following is valid: 
� = (N12∕8��R

3), � = (mB∕8��R3), � = (�body∕8��R
3) , and 

V12 can be written as (4/3)αR. Observe that in the system 
fixed to the laboratory, if the fluid has null velocity, the rela-
tive velocity in Eq. (3) becomes the center of mass velocity.

Numerical solution

Equations (10) and (11) are coupled. To solve them numer-
ically was used the numerical integrator LSODA from 
ODEPACK library, available in Python language (Hind-
marsh 1983). The parameters used were: η = 1 × 10−3 
Pa·s, R = 1 μm, m = 1.5 × 10−15 A·m2, F3 = F12 = 4 × 10−12 
N, ω = 250  rad/s, τbody = 2 × 10−18 N·m, α = 159  rad/s, 
γ = 79  rad/s, V3 = V12 = 212  μm/s, and B = (0.1, 0.6, 1, 
2, 4, 8, 16, 20, 30, 40, 50, 60, 100, 200, 300, 400, 500) 
Oe. The results for x, y, z, ϕ, θ, and ψ for B = 60 Oe are 
shown in Figs. 2 and 3. It is observed that after a while, 
the coordinates x and y oscillate as sinusoidal waves 
and the coordinate z varies linearly (Fig.  2). Those are 
characteristics of a helical trajectory with coordinates 

(9)�magnetic =� × � = mB sin�(cos��1 - sin��2).

(10a)�
�

= � csc � cos(�t + �),

(10b)�
�

= � sin � − � sin(�t + �),

(10c)�
�

= −� − � cot � cos(�t + �).

(11a)
x� = V12[cos� cos(�t + �) − sin� cos � sin(�t + �)] + V3 sin� sin �,

(11b)
y� = V12[sin� cos(�t + �) + cos� cos � sin(�t + �)]

− V3 cos� sin �,

(11c)z� = V12 sin � sin(�t + �) + V3 cos �.

x(t) = R ⋅ cos(2�ft), y(t) = R ⋅ sin(2�ft) and z(t) = VZ ⋅ t   , 
where VZ is the axial velocity and R is the radius of the 
helix. It is observed that the Euler angle θ after a while gets 
a constant value θE. At t = 0, the value of θ is zero, and after 
the inversion of the magnetic field, the magnetic moment 
tends to align to the magnetic field. Figure 3 shows that θ 
does not attain 180°, meaning that the bacterial body and 

Fig. 2   Numerical results for the center of mass coordinates as func-
tion of time for a magnetic field of 60 Oe. a Coordinate x. b Coordi-
nate y. c Coordinate z
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the magnetic moment are precessing around the magnetic 
field vector. Angles ϕ and ψ after some time vary linearly. 
That behavior is observed for all the magnetic field values 
used in the numerical analysis. It can be stated that, after 
some time, the trajectory gets a stationary state, where the 
center-of-mass coordinates vary as a cylindrical helix with 

axis parallel to the magnetic field, and the angles can be 
written as follows:

  
From the numerical solutions, it is observed that ω2 does 

not depend on the magnetic field and �2 = � . From Eqs. (8d, 
e, f), it can be calculated the angular velocity of the body Ω:

It can be observed that the body angular velocity is a 
vector that precesses around the axis ez that is the magnetic 
field direction. As the magnetic moment is fixed to the body 
(Fig. 1), it precesses around the magnetic field with angular 
velocity ω1. The body spins around the ez axis with angular 
velocity −�1 − � ⋅ cos(�E).

The trajectory radius R and axial velocity Vz (Fig. 4), θE 
and ω1 (Fig. 5), and ϕ0 and ψ0 (Fig. 6) are shown as function 
of the magnetic field B. It is observed that the axial veloc-
ity decreases initially, gets a minimum value, and growths 
to get a stable value. It has been assumed in the literature 
(Pan et al. 2009; Yang et al. 2012) that a decrease of the 
velocity when the magnetic field increases is associated to 
an intrinsic inclination of the magnetosome chain relative to 
the flagellar bundle. Here, our results show that the velocity 
decreases even when the magnetosome chain is aligned to 
the flagella.

Analytical solution

Equation (12) permits to find a solution for the coordinates 
of the center of mass (x, y, z) solving (Eq. 11). If Eq. (12) is 
used in Eq. (10), the following expressions are found:

After some algebra, the following can be shown:

(12a)� = �0 − �1 ⋅ t,

(12b)� = �0 − �2 ⋅ t,

(12c)� = �E.

(13a)�x = −� ⋅ sin(�E) ⋅ sin(�0 − �1 ⋅ t),

(13b)�y = � ⋅ sin(�E) ⋅ cos(�0 − �1 ⋅ t),

(13c)�z = −� ⋅ cos(�E) − �1,

(13d)� =
[

�2
1
+ �2 + 2 ⋅ � ⋅ �1 ⋅ cos(�E)

]1∕2
.

(14a)−�1 = � csc(�E) cos(�0),

(14b)0 = � sin(�E) − � sin(�0),

(14c)−�2 = −� − � cot(�E) cos(�0) = −�.

(15a)
[

�2∕
(

�2
1
+ �2

)]

+
[

(� − �)2∕�2
1

]

= 1,

(15b)tan(�0) = −�∕�1,

Fig. 3   Numerical results for the Euler angles as a function of time for 
a magnetic field of 60 Oe. a Angle ϕ. b Angle ψ. c Angle θ. Observe 
that after some time, θ becomes constant in an equilibrium value θE, 
whose value is not equal to 0, π, or 2π, meaning that the magneto-
some chain is not aligned to the magnetic field
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If the magnetic field is null (� = 0) , Eq. (15) transforms 
into:

For high magnetic fields (� → ∞) , Eq. (15) transforms into:

(15c)tan(�E) = � cos(�0)∕(� − �).

(16a)�1 =
(

�2 + (� − �)2
)1∕2

,

(16b)�0 = 0 or �,

(16c)tan(�E) = �∕(� − �).

(17a)�1 = � − �,

(17b)�0 = �∕2,

(17c)�E = �.

Using Eq. (12) in Eq. (11), and after simple integration, the 
following solution for the center-of-mass coordinates is found:

where R12 = V12∕�1 and R3 = V3∕�1 . Equation 18 repre-
sents a cylindrical helix, because the projection of the trajec-
tory in the XY plane is a circle of radius:

From Eq. (18c), the axial velocity is identified as follows:

(18a)

x = x0 − (R12 sin(�0) cos(�E) cos(�0 − �1t))

+ [(R3 sin(�E) cos(�0 − �1t)

− R12 cos(�0) sin(�0 − �1t))],

(18b)

y = y0 − (R12 sin(�0) cos(�E) sin(�0 − �1t))

+ [(R3 sin(�E) sin(�0 − �1t)

+ R12 cos(�0) cos(�0 − �1t))],

(18c)z = z0 + (V3 cos(�E) + V12 sin(�E) sin(�0))t,

(19)

r =
[

(

R3 sin(�E) − R12 sin(�0) cos(�E)
)2

+ R2
12
cos2(�0)

]1∕2

.

Fig. 4   a Axial velocity VZ as function of the magnetic field B 
obtained from the derivative of z(t) (Fig. 1c). The insert shows − dθE/
dB as function of B, calculated from the θE curve (Fig.  5a). Observed 
that VZ and − dθE/dB have a minimum value in the same magnetic 
field of about 30 Oe. b Radius of the cylindrical helix as function 
of the magnetic field B. It was obtained directly from x(t) or y(t) 
(Fig. 1a, b), assuming that they represent the coordinates of an helix

Fig. 5   a Equilibrium angle θE as function of the magnetic field B. b 
Angular velocity ω1 as function of the magnetic field B. Each value 
corresponds with the inclination of angle ϕ as function of time 
(Fig. 2a)
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where θE and ψ0 are functions of β.
In the limit of higher magnetic fields (� → ∞) , the trajec-

tory becomes the following:

where R�

12
= V12∕(� − �) . In this case, the trajectory cor-

responds with the classical expression for a cylindrical helix.
For null magnetic fields (� = 0) , the trajectory is as 

follows:

(20)Vz = V3 cos(�E) + V12 sin(�E) sin(�0),

(21a)x = x0 + R
�

12
cos(�0 + (� − �)t),

(21b)y = y0 + R
�

12
sin(�0 + (� − �)t),

(21c)z = z0 + V3t,

(22a)
x = x0 + R3 sin(�E) cos(�0 − �1t) − R12 sin(�0 − �1t),

(22b)
y = y0 + R3 sin(�E) sin(�0 − �1t) + R12 cos(�0 − �1t),

Equation (22) show that the trajectory for normal non-
magnetic micro-organisms is a helix with parameters:

Equation (22) shows for the first time that non-magne-
totactic bacteria, while maintaining a constant swimming 
direction, must swim following helical trajectories with 
parameters described by Eq. (23). Interestingly, Eq. (22) 
represents a trajectory that is a particular case for the chiral 
ribbon that has been observed for the trajectory of sperm 
cells (Su et al. 2012, 2013):

where Ab = rbvz(v
2
z
+ �2

h
r2
h
)−1∕2 . rh, ωh, and θh are, respec-

tively, the chiral ribbon radius, angular velocity, and phase 
constant, and rb, ωb, and θb are, respectively, the beating 
waveform radius, beating angular velocity, and beating phase 
constant and vz is the forward velocity along the z axis. It 
is observed that Eqs. (18) and (22) are a particular case of 
Eq. (24) for ωb = 0, where the chiral ribbon becomes a cylin-
drical helix.

Experimental MTB trajectories

Uncultured MTB were collected at Ubatiba River, Marica, 
Rio de Janeiro, Brazil. They were maintained in the labora-
tory in plastic jars near to the window and at ambient condi-
tions in our lab in Rio de Janeiro city. The local geomagnetic 
parameters are: horizontal component = 18 μT, vertical com-
ponent = − 15 μT, and total intensity = 23 μT.

To isolate MTBs for the experiments, a sub-sample 
was transferred to a specially designed flask containing 
a lateral capillary aperture and a small magnet generate 
a magnetic field aligned to the capillary aperture (Lins 
et al. 2003). The studied uncultured MTB are South-seek-
ing and swam towards the capillary facing the North Pole 
of a magnet. After 5 min, samples were collected with 
a micropipette and put on a glass slide for observation 
in an inverted microscope. On the stage of the inverted 
microscope (Nikon Eclipse TS100) was set a pair of coils 
connected to a DC power supply and fixed to a glass 

(22c)z = z0 + V3 cos(�E)t.

(23a)r =
[

R2
3
⋅

[

�2∕�2
1

]

+ R2
12

]1∕2
,

(23b)�1 =
[

�2 + (� − �)2
]1∕2

,

(23c)Vz = V3 ⋅ [(� − �)∕�1].

(24a)x = rh cos(�ht + �h) + Ab cos(�bt + �b) sin(�ht + �h),

(24b)y = rh sin(�ht + �h) − Ab cos(�bt + �b) cos(�ht + �h),

(24c)z = vzt + Ab(�hrh∕vz) cos(�bt + �b),

Fig. 6   a Phase constant ψ0 as function of the magnetic field B. Insert 
shows its decay for higher magnetic fields. b Phase constant ϕ0 as 
function of the magnetic field B. Insert shows its decay for higher 
magnetic fields
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microscope slide where the collected drop with MTB was 
placed. The used lens had magnification of 40×. The mag-
netic fields generated by the coils were 2.1 Oe, 2.9 Oe, 
3.8 Oe, and 4.6 Oe. The MTB motion was recorded in 
the inverted microscope with a digital camera (Lumera 
Infinity 1) in a rate of 82 fps. Experimentally for the video 
microscopy, the camera position was adjusted in such a 
way that the horizontal axis of the frames was aligned 
to the applied magnetic field B. The coordinates of the 
trajectories were obtained using the software ImageJ 
(NIH–USA). The coordinates were in pixel units and the 
conversion to μm was done using a calibration ruler, which 
consists in a 1 mm line divided in 100 parts. In the experi-
mental set-up, the external magnetic field is applied in the 
horizontal direction, meaning that the trajectory horizontal 
coordinate, as function of time, must be a straight line 
(Fig. 7c). As Fig. 7a shows, the 2D trajectory observed 
does not correspond with the projection of a single cylin-
drical helix but with a complex mixture of two cylindrical 
helixes, being one with low-frequency value and the other 
one with higher frequency value.

Let us consider the horizontal coordinate as the Z axis 
and the vertical coordinate as the X axis. If the helix axis 
is parallel to the Z axis and located on the focal plane 
together with the X axis, the observed trajectory must be 
similar to a sinusoidal function parallel to the Z axis. How-
ever, that is not the case, because all the curves have a 
little inclination relative to the magnetic field direction. It 
is known that MTB trajectories are misaligned to the mag-
netic field by an angle θm due to thermal noise (Kalmijn 
1981) and this noise is not included in the simple model 
used in the present study. In that case, the Z and X coordi-
nates must be rotated as follows:

being Z′ and X′ the coordinates observed in the experiment. 
To recover the coordinates Z and X, the angle θm in relation 
to the Z coordinate was calculated directly in the graph and 
both coordinates X′ and Z′ where rotated by that angle. The 
coordinates Z and X were fitted to the following expressions:

where A2 = R2vz(v
2
z
+ �2

1
R2
1
)−1∕2 . They are similar to 

Eq.  (24a) and (24c) that have been suggested for other 
micro-organisms swimming in the low Reynolds number 
regime showing two frequencies.

As Fig. 7 and Table 1 show, the trajectories are com-
posed of two oscillating functions, one with frequency 

(25a)Z
�

= Z cos �m + X sin �m

(25b)X
�

= −Z sin �m + X cos �m,

(26a)
X = R1 cos(�1t + �ph1) + A2 cos(�2t + �ph2) sin(�1t + �ph1),

(26b)Z = vzt + A2(�1R1∕vz) cos(�2t + �ph2),

lower than 5 Hz and other with frequency higher than 
10 Hz. As can be seen in Table 1, the axial velocity has 
a tendency to decrease (ANOVA test p = 0.06) when the 
magnetic field increases and the radii for higher frequen-
cies do not depend on the magnetic field. For the lower fre-
quencies, the radius increases and the frequency decreases 
when the magnetic field increases. Interestingly the axial 
velocity decreases and R1 increases when the magnetic 
field increases as predicted by the model and shown in 
Fig. 4. For the higher frequencies, only the frequency 
decreases when the magnetic field increases. The oscil-
lating function with lower frequency shows the higher 
radius and vice versa (Table 1). Qualitatively, the axial 
velocity and the higher frequency decrease as predicted 
by the model (Figs. 4a, 5b). One interesting problem to be 
considered here is the effect of the glass slide or wall effect 
in the motion parameters. Edwards et al. (2013) analyzed 
the motion of spherical microbeds driven by bacteria near 
and far walls. They observed that far from walls the beds 
move in helical trajectories, meaning that their kinemat-
ics is related to near-constant forces and torques. Near 
wall motion is more stochastic. As Fig. 7a shows, MTB 
trajectories are well fitted with two helical trajectories, 
meaning that they must be swimming in a far-wall regime. 
Khalil et al. (2017) study the movement of Magnetospiril-
lum gryphiswaldense near and far the glass surface, and 
observed that drag forces and torques increase near to the 
glass surface, decreasing the velocity and angular veloc-
ity of the bacteria. However, wall effects must be inde-
pendent of the magnetic field. In that regard, the decrease 
in the trajectory frequencies f1 and f2 (Table 1) when the 
magnetic field increases must be related to the interac-
tion of the bacteria with the magnetic field and not with 
the glass surface. The component with lower frequency 
is not predicted by the model proposed by Nogueira and 
Lins de Barros (1995) (see Fig. 5). Our theoretical results 
predict a helical trajectory with only one frequency ω1, but 
our experimental results show that it is not the case. The 
experimental results show that the model of Nogueira and 
Lins de Barros (1995) is incomplete, because it is unable 
to predict the oscillations with lower frequencies and only 
predicts the oscillations with higher frequencies. That can 
be observed also in Fig. 8 of Cui et al. (2012) and Figs. 3 
and 7 of Nogueira and Lins de Barros (1995) where simi-
lar models were used and the fit to experimental results 
only reproduce the higher frequencies. However, Yang 
et al. (2012) analyzed numerically the movement of ovoid 
MTB with two lateral flagellar bundle and observed that 
in some conditions for higher fields (2.5 mT), the MTB 
trajectory is composed of two superimposed helixes, and 
they justified the large one with low frequency as being 
produced by the noncoincidence between the translation 
and rotating axes, mainly because the magnetosome chain 
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axis does not overlap with the flagella propulsion axis, 
assuming an inclination angle for the magnetosome chain. 
That noncoincidence is also predicted by the simple model 

of Nogueira and Lins de Barros (1995), as can be observed 
in Fig. 5a, producing also a decrease in the velocity until 
the angle θE starts to approach to the stability (Fig. 4a). 

Fig. 7   Example of an MTB trajectory for a magnetic field of 4.6 Oe. 
a The trajectory as seen in a video of 640 × 460 pixels. The insert 
shows a zoom of the same trajectory. b The vertical coordinate of the 
trajectory as function of time. c The horizontal coordinate of the tra-
jectory as function of time. As the magnetic field is oriented in the 
horizontal direction the horizontal coordinated is similar to a straight 

line, as must be for a helix whose axis is oriented to the magnetic 
field. However, observe that there are present small oscillations over 
the straight line. d The vertical coordinate corrected after the rotation 
in the angle θm as explained in the text. This correction permits the 
correct FFT analysis. e FFT of the curve shown in d. It is observed 
the presence of two frequencies: one at 1.3 Hz and another at 14 Hz
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Yang et al. (2012) shows that while the velocity decreases, 
the low-frequency helix increases its radius, and that is 
observed in Table 1 for the low-frequency radius R1. That 
can be an indication that the magnetosome chains in the 
analyzed uncultured MTB have some inclination relative 
to the flagellar bundles.

Discussion

The observation of the motion of micro-organisms using 
optical microscopes produces 2D images that had been iden-
tified as the projections of helical trajectories in the focal 
plane (Fenchel 2001; Keim et al. 2018). Here for the first 
time is shown that, from first principles, the MTB trajec-
tory in the low Reynolds number regime corresponds with 
a cylindrical helix, whose axis is perfectly aligned to the 
magnetic field, and at the same time, the bacterial magnetic 
moment is not aligned to the magnetic field but precesses 
around it with angular velocity equal to the trajectory angu-
lar velocity ω1. Our simulation shows that the MTB trajec-
tory has a stable regime after some time, being characterized 
for a constant value of the Euler angle θ and for linear func-
tions of time for angles ϕ and ψ. Equation (18) represents 
the coordinates of the trajectory in the stable regime. The 
angular velocity of the trajectory is identified as ω1 that is 
the solution of Eq. (15a). That equation can be transformed 
into the following algebraic equation:

whose solution for ω1
2 is:

As can be seen, ω1 is function of the magnetic torque, 
body torque, flagellum torque, and the flagellum angular 
velocity. Equation (28) shows that ω1 has real and imagi-
nary solutions. Only the real solutions produce oscillatory 
solutions in Eqs. (18).

(27)�4
1
+ (�2 − (� − �)2 − �2)�2

1
− �2(� − �)2 = 0,

(28)
�2

1
= − (1∕2)(�2 − (� − �)2 − �2) ± [(1∕4)(�2

− (� − �)2 − �2)2 + �2(� − �)2]1∕2.

From Eq. (18c) is identified the axial velocity as follows:

As � sin(�E) = � sin(�0) , the last equation can be written 
as follows:

As can be seen in Figs. 4a and 5a, θE is function of β and 
Vz has a minimum for certain value of β. The minimum 
occurs, because the angle θE increase from an initial value 
to π rads, and in that process cos(�E) and sin2(�E) decrease 
and increase, respectively, to later invert their tendencies. A 
closer analysis shows that the minimum in Vz corresponds 
with the minimum of −d�E∕dB (insert Fig.  4a). Equa-
tion (30) also shows that Vz increases or decreases depend-
ing on the dominance of F3 over F12.

As θE is function of β is difficult to calculate the value of 
β where dVz∕d�= 0 . Interestingly, the coefficient of sin2(�E) 
in Eq. (29) can be rewritten as V12 ⋅ �∕� = (mB)∕(6��R2) . 
Therefore, in Vz, the term cos(�E) depends directly on 
the longitudinal flagellar force F3 and inversely on the 
fluid viscosity η and on the micro-organism radius R (as 
V3 = F3∕6��R ), and the term sin2(�E) depends directly on 
the magnetic energy mB and inversely on the fluid viscos-
ity η and on the micro-organism square radius R2. The 
dependence on R makes the coefficient of sin2(�E) be lower 
than that of cos(�E) and even low values for the magnetic 
moment can make the coefficient of sin2(�E) to be neg-
ligible. Numerical simulations done with F3 = 100·F12 
show that the minimum in velocity goes a magnetic field 
of about 5 Oe and is practically negligible when com-
pared to the velocity for higher magnetic fields (data not 
shown). Perhaps that is the reason why in the measure-
ment of MTB velocity Kalmijn (1981) did not observe 
that decrease: F3 ≫ F12. The present study does not reject 
the fact that MTB velocity decreases as the magnetic field 
increases when the magnetic moment has an inclination 
relative to the flagellum (Pan et al. 2009; Yang et al. 2012). 
Our results reinforce the fact that the velocity decreases 

(29)Vz = V3 cos(�E) + V12 sin(�E) sin(�0).

(30)Vz = V3 cos(�E) + V12(�∕�) sin
2(�E).

Table 1   Experimental 
parameters for the trajectories of 
uncultured MTB from Ubatiba 
River, Marica, Rio de Janeiro, 
Brazil

The horizontal and vertical coordinates were rotated by the angle θm and fitted to the Eqs. 26a and 26b. The 
parameters obtained were: the axial velocity Vz (μm/s), the low frequency F1 (Hz), and its corresponding 
radius R1 (μm), and the high frequency F2 (Hz) and its corresponding radius R2 (μm). Each column shows 
the mean value and the standard error of mean. MF magnetic field. N sample size. In the columns, different 
letters mean significant statistical difference. The statistical test was the parametric ANOVA with Kruskal–
Wallis post-test

MF (Oe) Vz (μm/s) R1 (μm) F1 (Hz) R2 (μm) F2 (Hz) N

2.1 76 ± 5a 1.0 ± 0.1a 3.8 ± 0.8a 0.9 ± 0.1a 16.2 ± 1.2a 30
2.9 78 ± 5a 1.5 ± 0.2ab 3.6 ± 0.7ab 0.8 ± 0.1a 12.9 ± 1.5ab 30
3.8 66 ± 4a 1.6 ± 0.2ab 2.9 ± 0.6ab 0.9 ± 0.1a 12.4 ± 1.4ab 30
4.6 63 ± 5a 1.9 ± 0.2b 2.2 ± 0.3b 1.0 ± 0.1a 10.1 ± 1.3b 30
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because of the noncoincidence between the translation and 
rotating axes during the MTB motion (see Fig. 4).

The analytical solution obtained in the present paper 
shows a helical trajectory with only one angular velocity, 
because � �

= −�2 = −� , but Eqs. 11 and 12 show that if 
�2 ≠ � , then the trajectory must present two frequencies: 
ω1 and ω − ω2. � �

= −� , because it represents a rotation 
around the e3 axis and the flagella is rotating around the 
same axis. Perhaps, different conditions in the model can 
be able to produce ω2 ≠ ω as a magnetosome chain posi-
tioned in the cellular wall and not in the center, or even a 
non-homogeneous mass distribution locating the center of 
mass not in the geometrical center (as suggested for sperm 
by Su et al. 2013), or a more than one flagellar bundle 
rotating in the MTB body (as done by Yang et al. 2012).

Conclusions

The present research shows new characteristics for MTB 
motion trajectories obtained from numerical solutions to 
the motion equations based on the simple model of Nogue-
ira and Lins de Barros (1995). An analytical solution for 
MTB trajectories was obtained based on the numerical 
solutions, showing for the first time that the trajectories 
are in fact cylindrical helixes with axis parallel to the 
magnetic field. The numerical and analytical solution also 
shows that the magnetic moment is not fully oriented to 
the magnetic field, but precesses around it with the same 
angular velocity of the trajectory. The parameters of the 
helix where obtained for the general case and in the par-
ticular case of null magnetic field and very high magnetic 
fields. On the other hand, trajectories for uncultured MTB 
were registered and analyzed. They are the mixture of two 
oscillating functions with different frequencies. The sim-
ple model used in the present study showed to be incom-
plete, because it is unable to explain the low frequencies 
observed in the trajectories of uncultured MTB. The tra-
jectory composed by two oscillating functions must be 
the result of the forces and torques acting on the bacteria, 
perhaps associated with an inclination between the magne-
tosome chain and the applied magnetic field, as showed by 
Yang et al. (2012). New modification to the simple model 
of Nogueira and Lins de Barros (1995) must be done in 
the future by the consideration of a center-of-mass located 
out of the geometrical center, a magnetosome chain with 
an inclination relative to the flagellum or positioned in the 
cellular wall, two flagellar bundles oscillating with differ-
ent frequencies, and different expressions for the flagellar 
force.
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