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Abstract
Ion channel data recorded using the patch clamp technique are low-pass filtered to remove high-frequency noise. Almanjahie 
et al. (Eur Biophys J 44:545–556, 2015) based statistical analysis of such data on a hidden Markov model (HMM) with a 
moving average adjustment for the filter but without correlated noise, and used the EM algorithm for parameter estimation. 
In this paper, we extend their model to include correlated noise, using signal processing methods and deconvolution to 
pre-whiten the noise. The resulting data can be modelled as a standard HMM and parameter estimates are again obtained 
using the EM algorithm. We evaluate this approach using simulated data and also apply it to real data obtained from the 
mechanosensitive channel of large conductance (MscL) in Escherichia coli. Estimates of mean conductances are comparable 
to literature values. The key advantages of this method are that it is much simpler and computationally considerably more 
efficient than currently used HMM methods that include filtering and correlated noise.

Keywords  MscL · Patch clamp · Hidden Markov models · Filter approximation · Level-dependent noise · Correlated noise · 
Deconvolution · EM algorithm · Parameter estimation

Introduction

An ion channel is a large protein molecule that regulates cell 
function by controlling the flow of ions across the cell mem-
brane (Aidley and Stanfield 1996, p. 3). Conduction of ions 
occurs through an aqueous pore which opens in response to 
a stimulus specific to the type of channel. Simple channels 
exhibit only two levels, open (conducting) and closed (Hille 
2001, Chapters 4 and 5), but complex channels also have 
subconducting levels (Sukharev et al. 1999).

Mechanosensitive channels are triggered (gated) by 
membrane tension. These channels undergo conformational 

changes when the cell membrane is mechanically stressed 
(Martinac 2011). The most studied mechanosensitive chan-
nels are those of small (MscS) and large (MscL) conduct-
ance in the bacterium Escherichia coli (E. coli); see (Hamill 
and Martinac 2001; Martinac 2011). These two types of 
channel are multi-level and control intracellular pressure. 
In other organisms, mechanosensitive channels mediate the 
senses of touch, hearing, balance and proprioception, the 
latter including the sense of position of body parts in humans 
(Gillespie and Walker 2001; Ernstrom and Chalfie 2002; 
Xiao and Xu 2010).

Ion channel currents are recorded using the patch clamp 
technique (Hamill et al. 1981), and this provides a key 
source of information regarding ion channel activity. 
Currents appear to fluctuate randomly between various 
conducting levels. The noisy current is low-pass filtered 
and then digitised (sampled and quantised) to produce a 
sequence of observed currents in discrete time. Evidence 
indicates that noise in the recordings is not white (Ven-
kataramanan et al. 1998a; Qin et al. 2000b; Fredkin and 
Rice 2001; Colquhoun and Sigworth 2009). For example, 
Schouten (2000, Chapter 4) analysed patch clamp record-
ings of barley leaf protoplasts and concluded, based on 
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plots of autocorrelation functions of the noise at the closed 
level, that the noise in their records was correlated.

Hidden Markov models (HMMs) are widely used for 
describing the gating behaviour of a single ion channel 
and form a basis for statistical analysis of patch clamp 
data (Chung et al. 1990; Khan et al. 2005). Incorporating 
adjustments for filtering and coloured noise complicates 
the application of hidden Markov methodology. However, 
Michalek et al. (1999) found that model parameters and 
the channel gating scheme for Na+ channels were incor-
rectly estimated when correlations in channel noise were 
ignored.

Other models for ion channels have also been pro-
posed, including fractal models (Liebovitch et al. 1987; 
Liebovitch 1989) and defect-diffusion models (Laüger 
1985, 1988; Milhauser et  al. 1988; French and Stock-
bridge 1988). These models differ fundamentally from 
the Markov model in that transition rates are no longer 
constant. The general conclusion from the literature is that 
while non-Markovian models may have some merit, the 
Markovian models so far provide a better fit for the data 
(Colquhoun and Sigworth 2009; Korn and Horn 1988; 
McManus et al. 1988; Sansom et al. 1989; McManus and 
Magleby 1989; Petracchi et al. 1991; Gibb and Colquhoun 
1992). More recently, a non-parametric technique with 
exact missed event correction has been reported (Epstein 
et al. 2016). However, the method is based on the rather 
strong assumption that the filtered and digitised chan-
nel record has perfect resolution. No comparison of this 
method with Markov-based methods has been conducted 
yet.

In their paper, Almanjahie et al. (2015) considered an 
HMM with filtering but uncorrelated noise for ion channel 
data. They used the EM algorithm for parameter estima-
tion, based on an extended forward–backward algorithm 
similar to that of Fredkin and Rice (2001). In this paper, 
we extend that work to an HMM with filtering and cor-
related noise.

The remainder of the paper is organised as follows. In 
“Standard hidden Markov models”, we review the stand-
ard HMM and present some mathematical preliminaries in 
“Some preliminaries”. Extensions of the HMM that include 
filtering and AR models for correlated noise are given in 
“HMMs with filtering and correlated noise”. We then 
introduce our filtered HMM with a moving average (MA) 
model for correlated noise in “Deconvolution approach”, 
using deconvolution (a signal processing method) to pre-
whiten the noise. The pre-processed data can be modelled 
as a standard HMM, and parameters are estimated using 
the EM algorithm. Results of simulation studies to evaluate 
the performance of this approach are discussed in “Simu-
lation study”. In “Application: MscL data”, the method is 
applied to real data obtained from MscL in E. coli. Finally, 

in “Discussion”, we discuss our findings and make conclud-
ing remarks.

Standard hidden Markov models

We model the gating behaviour of a single ion channel by 
a continuous time, regular, homogeneous Markov chain 
with a finite number of states that correspond to the con-
formational states of the channel (Colquhoun and Hawkes 
1997, 1981), which we assume (for the moment) have dis-
tinct conductances. Let Xt denote the state of the channel 
at time t ≥ 0 , S = {0, 1,… ,N − 1} the state space and Q 
the intensity matrix for the process {Xt ∶ t ≥ 0} . Further, 
let � = (�0,�1,… ,�N−1) and � = (�0, �1,… , �N−1) , where 
�i and �i are, respectively, the mean current and the noise 
standard deviation corresponding to state i.

In practice, the noisy current is low-pass filtered and 
sampled, but for the moment we ignore the effect of the 
filtering. Then X = (X1,X2,… ,XT ) is a (segment of a) dis-
crete-time, homogeneous, irreducible Markov chain with 
a finite state space S = {0, 1,… ,N − 1} , N × N  transition 
probability matrix P = [pij] , and initial state distribution 
� = (�0,�1,… ,�N−1) where �i = ℙ(X1 = i) , i ∈ S . The sam-
pled current at time t can be represented as

where �1, �2,… , �T are independent and identically distrib-
uted (iid) N(0, 1) random variables, assumed also to be inde-
pendent of X . Given X , the random variables Y1, Y2,… , YT 
are conditionally independent. Moreover, the distribution 
of Yt conditional on X depends only on Xt and, by Eq. (2.1),

Set Y = (Y1, Y2,… , YT ) . The joint distribution of (X,Y) , i.e. 
probability mass function for X and (conditional) probability 
density function for Y given X , is

x ∈ ST , y ∈ ℝ
T , where fxt is the N(�xt

, �2
xt
) probability den-

sity function. We call the representation in (2.2) a standard 
HMM.

Denote the model parameters by the vector 
� = (�,P,�,�) . As in Khan et al. (2005) and Almanja-
hie et al. (2015), the EM algorithm (Dempster et al. 1977) 
can be used for parameter estimation. In the following 
i, j = 0, 1,… ,N − 1 represent the states of the Markov chain. 
Let the index m = 0 indicate initial parameter values. Then 
at iteration m = 1, 2,… of the EM algorithm, the updating 
formulae for �i , pij , �i and �i are

(2.1)Yt = �Xt
+ �Xt

�t, t = 1, 2,… , T ,

(Yt ∣ Xt = xt) ∼ N(�xt
, �2

xt
), t = 1, 2,… , T .

(2.2)ℙ(x, y) = �x1

T∏

t=2

pxt−1,xt

T∏

t=1

fxt (yt),
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where

and

t = 1, 2,… , T − 1 . The �m
t
(i) and �m

t
(i, j) can be computed 

recursively (Khan et al. 2005; Almanjahie et al. 2015) using 
Baum’s forward and backward algorithms (Baum et al. 1970; 
Devijver 1985). Iterations continue until some stopping cri-
terion, such as a pre-set tolerance, is satisfied.

Some preliminaries

The notation

represents a discrete time sequence, where the index can be a 
subset of the integers. When the limits of the index are clear 
from the context we will omit them.

A discrete time system is a function T that maps an input 
sequence {xk ∶ k ∈ ℤ} to an output sequence {yk ∶ k ∈ ℤ} 
given by

A system is stable if for every bounded input sequence 
{xk}, the output {yk} is bounded. The system is linear if for 
sequences {uk} and {vk},

and is time invariant if the input–output relationship does not 
change over time, that is, for each j ∈ ℤ , T

(
{xk−j}

)
= {yk−j} . 

Henceforth we consider only linear time-invariant (LTI) 
systems.

(2.3)�m+1
i

= �m
1
(i),

(2.4)pm+1
ij

=

∑T−1

t=1
�m
t
(i, j)

∑T−1

t=1

∑N−1

j=0
�mt (i, j)

,

(2.5)�m+1
i

=

∑T

t=1
�m
t
(i)yt

∑T

t=1
�mt (i)

,

(2.6)�m+1
i

=

�∑T

t=1
�m
t
(i)(yt − �m+1

i
)2

∑T

t=1
�mt (i)

� 1

2

,

(2.7)�m
t
(i) = ℙ(Xt = i ∣ y,�m), t = 1, 2,… , T ,

(2.8)�m
t
(i, j) = ℙ(Xt = i,Xt+1 = j ∣ y,�m),

{
xk
}∞

k=−∞
=
(
… , x−1, x0, x1, x2,…

)

(3.1){yk} = T
(
{xk}

)
, k ∈ ℤ.

T
(
{auk + bvk}

)
= aT

(
{uk}

)
+ bT

(
{vk}

)
, a, b ∈ ℝ,

The impulse response {hk} of a discrete LTI system is 
the output of the system when the input is an impulse {�k} , 
where {�k} is the Kronecker delta defined as

The system is called finite (duration) impulse response (FIR) 
if its impulse response is a sequence of finite length.

Let {uk ∶ k ∈ ℤ} and {xk ∶ k ∈ ℤ} be discrete time 
sequences. The convolution of {uk} and {xk} , denoted 
{xk} ∗ {uk} , is defined as

see Proakis and Manolakis (1996, p. 76–82). Note the con-
volution yields a sequence. It follows that for any sequence 
{xk},

so {�k} is the identity for convolution.
An LTI system can be completely characterised by its 

impulse response {hk} , as formalised in the following result 
(Proakis and Manolakis 1996, p.76).

Theorem 1  The output {yk} of an LTI system is related to 
the input {xk} by

where {hk} is the system impulse response.

In particular, since {hk} is the impulse response,

a result that also follows from (3.3).

The z‑transform

The z transform (Adsad and Dekate 2015; Proakis and 
Manolakis 1996, p. 169) of the sequence 

{
xk
}
 is given by

The region of convergence (ROC) of X(z), denoted RX , is the 
subset of the complex plane for which the sum converges. In 
simple cases, the z transform can be written in closed form.

�k =

{
1, k = 0,

0, k ≠ 0.

(3.2)

{xk} ∗ {uk} =

{
∞∑

j=−∞

xj uk−j

}

=

{
∞∑

j=−∞

uj xk−j

}
= {uk} ∗ {xk};

(3.3){xk} ∗ {�k} = {xk} = {�k} ∗ {xk},

(3.4){yk} = {hk} ∗ {xk},

(3.5){hk} = {hk} ∗ {�k},

X(z) =

∞∑

k=−∞

xkz
−k.
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Note that if we substitute z = sT , then the z-transform is 
equivalent to the Laplace transform of a continuous time sig-
nal sampled at frequency f = 1∕T (Adsad and Dekate 2015).

The next theorem relates convolution to the z transform.

Theorem 2   Let {uk} and {xk}, k ∈ ℤ , be discrete time 
sequences and put

Then the z transform Y(z) of {yk} is

where U(z) and X(z) are the z transforms of {uk} and {xk}, 
respectively.

Theorem 2 implies that convolution in the discrete time 
domain is equivalent to multiplication in the z-domain. 
Applying the result to (3.4) gives

The function H(z) is the z transform of the system impulse 
response and is called the transfer function of the system. It 
can be shown that an LTI system is stable if and only if the 
ROC of H(z) includes the unit circle (Proakis and Manolakis 
1996, p. 209).

Deconvolution

Deconvolution is the process of determining the input 
sequence given an output sequence and the system impulse 
response. This requires finding a discrete time sequence {bk} 
that when convolved with the known output {yk} yields the 
input sequence {xk} . By (3.4), it follows that

By (3.3), the sequence {bk} must satisfy

that is, {bk} is the inverse of {hk} under convolution. Solving 
(3.10) for {bk} given {hk} in the time domain is usually dif-
ficult (Proakis and Manolakis 1996, p. 356). However, (3.8) 
can be rewritten as

where F(z) = 1∕H(z) is the reciprocal of the transfer func-
tion. Thus, deconvolution in the time domain is equivalent 
to division in the z domain. It follows from (3.9), (3.11) 
and Theorem 2 that F(z) is the z transform of {bk} , that is, 
F(z) =

∑
k bkz

−k.
Note that in general the inverse {bk} may be of infinite 

length. In practice, this requires the sequence to be truncated 

(3.6){yk} = {uk} ∗ {xk}.

(3.7)Y(z) = U(z) X(z),

(3.8)Y(z) = H(z) X(z).

(3.9){bk} ∗ {yk} = {bk} ∗ {hk} ∗ {xk} = {xk}.

(3.10){bk} ∗ {hk} = {�k},

(3.11)X(z) =
Y(z)

H(z)
= F(z) Y(z),

(Mourjopoulos 1994). We will consider a truncation to be 
adequate if it satisfies the (Euclidean) norm-based criterion

for some pre-set value of � (Proakis and Manolakis 
1996, §8.5.2).

HMMs with filtering and correlated noise

Correlation in the noise is due to the low-pass filter and 
perhaps channel gating characteristics. Various models that 
include correlated noise have been proposed in the literature.

Venkataramanan et al. (1998a, b) developed a model 
incorporating correlated background noise and state-depend-
ent ‘excess’ noise. They modelled background correlated 
noise {nt} as an autoregressive (AR) process of order p. 
Their model can be written for t = 1, 2,… , T  as 

Each of the sequences {�t} and {�t} was assumed to be iid 
normally distributed, with variances 1 and �2

�
, respectively, 

and �1, �2,… , �p are the coefficients specifying the AR(p) 
model for {nt}.

Venkataramanan et al. (1998a, b) estimated the coeffi-
cients of the AR process as follows. First, the autocorrela-
tion function of noise was estimated from long stretches of 
noise at the closed level. Then the coefficients in Eq. (4.1b) 
were estimated by using the Levinson–Durbin algorithm to 
solve the Yule–Walker equations for the autocorrelations of 
{nt} , a standard time series approach (Brockwell and Davis 
2006, Chapter 8). They then preprocessed the data using a 
pre-whitening filter of length k to remove the correlation in 
the noise, the parameters of this filter being obtained from 
the inverse of the AR filter transfer function. Since the signal 
�Xt

 also passes through the pre-whitening filter, the observed 
current Yt at time t now depends on the Markov chain states 
at k time points. This collection (vector) of the k Markov 
chain states is referred to as a meta-state (Venkataramanan 
et al. 1998a). To calculate the likelihood of the model for 
this preprocessed data, Venkataramanan et  al. (1998a) 
considered a vector Markov chain over the 

(
M = Nk

)
meta-

states. They developed a modified Baum–Welch algorithm 
(Baum et al. 1970; Baum and Eagon 1967), involving some 
approximations, to estimate the parameters in their HMM 
(Venkataramanan et al. 1998a, b). However, the modified 
Baum–Welch algorithm does not guarantee that the likeli-
hood is non-decreasing after each iteration, and does not 

(3.12)∣∣ {bk} ∗ {hk} − {𝛿k} ∣∣< 𝜀

(4.1a)Yt = �Xt
+ nt + �Xt

�t,

(4.1b)nt =

p∑

j=1

�jnt−j + �t, p ≤ t.
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necessarily produce maximum likelihood estimates (Venka-
taramanan et al. 1998b, p. 1926).

Schouten (2000, Chapter 5) and De Gunst et al. (2001) 
used the model in Eq. (4.1), but also incorporated a Gaussian 
MA filter with length 2r + 1 as an adjustment for the effect 
of the low-pass filter. Specifically, for max(r, p) ≤ t ≤ T − r , 

where {�t} and {�t} are as in Eq. (4.1) and the filter weights 
�s , s = −r,… , r , are determined from filter characteristics 
as described in Colquhoun and Sigworth (2009, Appendix 3, 
p. 576); see also Table 4.1 in Schouten (2000). They too 
estimated the order of the AR process from long stretches of 
the noise at the closed level, but used Markov Chain Monte 
Carlo (MCMC) methods based on a meta-state approach 
to estimate the AR coefficients �j , j = 1, 2,… , p , and the 
HMM parameters.

Fredkin and Rice (2001) modelled the effect of the low-
pass filter by a finite (duration) impulse response (FIR) filter 
and the state-independent correlated noise by an AR model. 
They pre-whitened the noise and developed an approxima-
tion to simplify likelihood computations, but did not report 
an application of their method to real data.

Qin et al. (2000b) extended the model of Fredkin and 
Rice (2001) to allow for state-dependent correlated noise. 
They modelled the effect of the low-pass filter by an FIR fil-
ter with coefficients hs , s = 0,… , r − 1 , and used AR models 
for the state-dependent correlated noise {n(Xt)

t } , i.e. a sepa-
rate model for each level. To simplify the computations they 
assumed that the AR models at all channel levels had the 
same order. Their model can be written as 

 for max(r, p) ≤ t ≤ T .
Rewriting Eq. (4.3b) gives

(4.2a)Yt =

r∑

s=−r

�s�Xt−s
+ nt + �Xt

�t,

(4.2b)nt =

p∑

j=1

�jnt−j + �t,

(4.3a)Yt =

r−1∑

s=0

hs�Xt−s
+ n

(Xt)

t ,

(4.3b)n
(Xt)

t =

p∑

j=1

�
(Xt)

j
n
(Xt)

t−j
+ �Xt

�t

p∑

j=0

�
(Xt)

j
n
(Xt)

t−j
=�Xt

�t,

where �(Xt)

0
= 1 and �(Xt)

j
= −�

(Xt)

j
 , j = 1, 2,… , p . This equa-

tion can be written as

where ∗ indicates convolution. Taking z transforms and using 
Theorem 2 give

whence

where K(X)(z) is the transfer function of the AR filter. Then 
taking the z transform of the model in Eq. (4.3a) and using 
Eq. (4.4) yield

where H(z) is the transfer function of the FIR filter.
Pre-whitening is equivalent to multiplying both sides of 

(4.5) by K(X)(z) , yielding

Rewriting Eq. (4.6) in the time domain gives

where k = r + p and c(Xt)

j
 is the convolution of {hs} and 

{�
(Xt)

�
} . Hence, as in equation 4 of Qin et al. (2000b),

Finally, based on a meta-state approach, Qin et al. (2000b) 
obtained parameter estimates by direct optimisation using 
quasi-Newton methods.

For an HMM with state-dependent Gaussian white 
noise, Khan et al. (2005) used a (Gaussian) MA adjustment 
for filtering. They considered the following model. For 
t = r + 1, r + 2,… , T − r,

where the filter weights �s , s = −r,… , r are determined as 
for Eq. (4.2). Parameters were estimated by the EM algo-
rithm based on a meta-state process.

Almanjahie et  al. (2015) employed the model of 
Eq. (4.9), which they called a moving average filtered HMM 
(MAFHMM), and obtained parameter estimates using an 

{�
(Xt)

t } ∗ {n
(Xt)

t } = {�Xt
�t},

K(X)(z)N(X)(z) = (�X�)(z),

(4.4)N(X)(z) = (�X�)(z)∕K
(X)(z),

(4.5)Y(z) = H(z)�X(z) + (�X�)(z)∕K
(X)(z),

(4.6)
K(X)(z)Y(z) = K(X)(z)H(z)�X(z)

+ (�X�)(z).

(4.7)
p∑

j=0

�
(Xt)

j
Yt−j =

k∑

j=0

c
(Xt)

j
�Xt−j

+ �Xt
�t,

(4.8)Yt =

k∑

j=0

c
(Xt)

j
�Xt−j

−

p∑

j=1

�
(Xt)

j
Yt−j + �Xt

�t.

(4.9)Yt =

r∑

s=−r

�s�Xt−s
+ �Xt

�t,
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EM-based algorithm. A key aspect of that work was the 
development of a generalised Baum’s forward–backward 
algorithm, similar to that of Fredkin and Rice (2001), which 
greatly reduced the computational demand. Nonetheless, 
estimation of model parameters is still effectively based on 
a meta-state model; see Almanjahie et al. (2015) for details. 
As a result, computational requirements were much greater 
than for the standard HMM.

A common feature of each of the above models is that they 
are based on meta-state processes. Note also that the vector 
Markov chain based on the meta-states has a much expanded 
state space. For example, consider a Markov chain with five 
states. If a 3-tuple of states is considered, there are 53 = 125 
possible meta-states. Consequently, maximising the log-likeli-
hood and estimating parameters for these models considerably 
increases the computational demand.

Deconvolution approach

In Eq. (4.9), only the current is considered to be filtered. 
However, in practice, during data collection it is the noisy 
current that is low-pass filtered, so the filter also affects the 
state-dependent noise. Thus, a more appropriate model for the 
recorded current is

where t = 1, 2,… , T  , and the value of r and the fil-
ter weights �s are determined as for Eq.  (4.2). Note 
that the Markov chain has been relabelled here, so 
X = (X−r+1,X−r+2,… ,X1,X2,… ,XT+r) . The second term 
in Eq.  (5.1) now represents correlated state-dependent 
noise. Furthermore, in Eq. (5.1) the mean current and the 
state-dependent noise at time t both depend on the underly-
ing Markov chain states at the present time t as well as the 
immediate r past and r future time points.

Our justification for this choice of model is as follows. In 
reported studies for the models in Eq. (4.1) and Eq. (4.2), 
either �2

�
 is larger than each �2

i
 ( i = 0,… ,N − 1 ) by at least 

an order of magnitude, or vice versa; see Table 3 in De Gunst 
et al. (2001). Since only one of these noise terms denominates 
in the model, we absorb all noise sources into the filtered state-
dependent noise.

Each sum on the right hand side of Eq. (5.1) is a convolu-
tion, so this equation can be written in the time domain as

Taking the z transform in Eq. (5.2) and using linearity gives

(5.1)Yt =

r∑

s=−r

�s�Xt−s
+

r∑

s=−r

�s�Xt−s
�t−s,

(5.2)
{Yt} = {�t} ∗ {�Xt

} + {�t} ∗ {�Xt
�t}

= {�t} ∗ {�Xt
+ �Xt

�t}.

(5.3)Y(z) =H(z)
[
�X(z) + (�X�)(z)

]
,

where H(z) =
∑r

s=−r
�sz

−s is the transfer function of the 
MA filter. Let F(z) = 1∕H(z) =

∑
t btz

−t . This inverse exists 
under certain conditions, for example if the series converges 
in a region of the complex plane including the unit circle; 
see the example in “Implementing MAD” and the appendix 
in Mourjopoulos (1994). Multiplying both sides of Eq. (5.3) 
by F(z) yields

In the time domain, Eq. (5.4) becomes

Note that {bt} ∗ {�t} = {�t} . Thus, Eq. (5.5) is simply the 
convolution of {bt} with Eq. (5.2).

Putting {Y̆t} = {bt} ∗ {Yt} in Eq. (5.5) gives

This final model is a standard HMM for Y̆ , so Baum’s for-
ward and backward algorithms and the EM algorithm can 
be used for parameter estimation. We call this method 
Moving average with deconvolution (MAD). Khan’s algo-
rithm (Khan 2003) can be used for computing the standard 
errors of the parameter estimates.

Simulation study

The data simulation mimicked the data generation process 
for ion channels. We began by simulating a continuous time 
Markov chain, which was then sampled to produce a discrete 
time Markov chain that represented the sequence of states of 
the channel. Each state was mapped to a mean current, follow-
ing which noise was added.

Almanjahie et al. (2015) had shown that MscL in E. coli 
has five subconductance levels in addition to the closed and 
fully open levels. They had also estimated the mean current 
and noise standard deviation at each level. For our simula-
tions, we chose an intensity matrix Q which gave mean dwell 
times reflecting those estimated for MscL, but was otherwise 
arbitrary. A seven-state continuous time Markov chain with 
state space S = {0, 1,… , 6} was generated. The resulting con-
tinuous time Markov chain was sampled at 50 kHz, giving a 
discrete time Markov chain.

Currents were set to 0, 15, 30, 45, 65, 85 and 105, and 
state-dependent Gaussian white noise was added to these cur-
rents at each sampling point. The noise standard deviation at 
level 0 was set to 3, increasing in steps of 0.5 to 6 at the fully 
open level. The resulting noisy current was digitally filtered at 
25 kHz to produce a data set containing 100,000 points.

(5.4)F(z)Y(z) =�X(z) + (�X�)(z).

(5.5){bt} ∗ {Yt} ={�Xt
} + {�Xt

�t}.

(5.6)Y̆t = 𝜇Xt
+ 𝜎Xt

𝜀t, t = 1, 2,… , T .
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Implementing MAD

For our simulated data set, the ratio of the sampling frequency 
fs and the filter cutoff frequency fc is 2. From Colquhoun and 
Sigworth (2009, Appendix, 3, p. 576) or Schouten (2000, 
Table 4.1), this corresponds to a filter of length 3 ( r = 1 ) with 
coefficients �0 = 0.93 and �−1 = �1 = 0.035 . The reciprocal of 
the transfer function of the corresponding MA filter is

where 0.0377 is obtained from 1  /  26.53. The func-
tion given by Eq.  (6.1) is well defined in the region 
0.0377 < |z| < 26.53 , which includes the unit circle |z| = 1 . 
Therefore, the corresponding system is stable (Proakis and 
Manolakis 1996, p. 209; see also appendix in Mourjopoulos 
1994), so an inverse filter {bt} can be constructed.

From (6.1), a (Laurent) series expansion yields

(6.1)
F(z) =

1

0.035z1 + 0.93 + 0.035z−1

= 1.0782

[
−

1

1 + 26.53z−1
+

1

1 + 0.0377z−1

]
,

(6.2)

F(z) = −
1.0782

26.53
z[1 − z∕26.53 + z2∕26.532 −⋯]

+ 1.0782[1 − 0.0377z−1 + (0.0377)2z−2

− (0.0377)3z−3 +⋯]

=⋯ + 0 − 0.0001z3 + 0.0015z2 − 0.0406z

+ 1.0782 − 0.0406z−1 + 0.0015z−2

− 0.0001z−3 +⋯ .

We obtain bt as the coefficient of z−t in Eq.  (6.2), for 
t = 0,± 1,± 2,… . Note that, here and in general, the inverse 
filter {bt} is of infinite length and needs to be truncated. We 
consider a truncation {b�

t
} of {bt} that satisfies (Proakis and 

Manolakis 1996, §8.5.2)

The corresponding truncated discrete time inverse MA filter 
is

where the number in bold indicates the entry corresponding 
to t = 0 . In this case,

to within four decimal places for each entry.

Results

The simulated data set was analysed using MAD, MAF-
HMM and standard HMM. The results are summarised in 
Table 1, which shows the estimates of mean current and 
noise standard deviation for each level, together with the 
corresponding standard errors (determined by Khan’s 
algorithm, Khan 2003) and (individual) 95% confidence 
intervals.

(6.3)||{b�
t
} ∗ {𝜂t} − {𝛿t}|| < 0.001.

(6.4)
{b�

t
} ={− 0.0001, 0.0015,− 0.0406, 1.0782,

− 0.0406, 0.0015,− 0.0001},

(6.5){b�
t
} ∗ {�t} ={�t}

Table 1   Analysis of simulated data based on HMM and MAD

Given are estimated mean currents, noise standard deviations, standard errors (SE) and 95% confidence intervals (CI
i
)

Level �
i

HMM MAFHMM MAD

i 𝜇̂
i

SE 95% CI
i

𝜇̂
i

SE 95% CI
i

𝜇̂
i

SE 95% CI
i

0 0 00.00 0.009 − 0.001, 0.001      00.00 0.015 − 0.001, 0.001      00.00 0.009 − 0.001, 0.001     
1 15 14.82 0.161 14.50, 15.14 14.98 0.262 14.47,15.49 14.83 0.168 14.50, 15.16
2 30 30.18 0.183 29.82, 30.53 30.18 0.317 29.56, 30.80 30.17 0.191 29.80, 30.54
3 45 45.15 0.192 44.77, 45.53 45.07 0.569 43.95, 46.19 45.07 0.195 44.69, 45.45
4 65 65.17 0.132 64.91, 65.43 65.08 0.357 64.38, 65.78 65.04 0.117 64.81, 65.26
5 85 85.98 0.214 84.56, 86.40 84.99 0.684 83.65, 86.33 84.96 0.271 84.43, 85.49
6 105 104.83 0.077 104.68, 105.98 104.92 0.094 104.53, 105.31 104.98 0.082 104.82, 105.14

Level �
i

HMM MAFHMM MAD

i 𝜎̂
i

SE 95% CI
i

𝜎̂
i

SE 95% CI
i

𝜎̂
i

SE 95% CI
i

0 3.0 2.79 0.007 2.77, 2.80 2.80 0.102 2.60, 3.01 2.99 0.007 2.97, 3.00
1 3.5 3.34 0.053 3.24, 3.44 3.33 0.268 2.80, 3.86 3.46 0.059 3.34, 3.58
2 4.0 3.76 0.027 3.71, 3.81 3.70 0.550 2.62, 4.77 3.95 0.029 3.89, 4.01
3 4.5 4.18 0.043 4.10, 4.26 4.27 0.224 3.83, 4.70 4.42 0.055 4.31, 4.53
4 5.0 4.67 0.123 4.43, 4.91 4.64 0.198 4.25, 5.03 4.91 0.049 4.81, 5.01
5 5.5 5.38 0.282 4.83, 5.93 5.23 0.331 4.59, 5.89 5.53 0.209 5.12, 5.93
6 6.0 5.52 0.056 5.41, 5.63 5.51 0.094 5.34, 5.70 5.93 0.059 5.81, 6.05
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All three methods give good estimates of the mean cur-
rent at each level, but MAFHMM gave the largest standard 
errors. However, MAD provides much better estimates of 
noise standard deviations, and again MAFHMM produced 
the largest standard errors.

For HMM, MAFHMM and MAD, data were idealised as 
described in Almanjahie et al. (2015) and Khan et al. (2005). 
The idealised and simulated Markov chains were compared 
to identify any discrepancies or idealisation errors between 
them. MAD made 90 such errors, compared to 150 for HMM 
and 119 for MAFHMM out of a total of 100,000 points.

The mean dwell times and the number of points at each 
level as computed from the idealisations are presented in 
Table 2. For each level, this table shows the following mean 
dwell times: theoretical or true ( �i , computed as −1∕qii , for 
each i, where qii is the i th diagonal entry of the Q used in 
the simulation), simulated ( ̄𝜏i , computed as the mean dwell 
time in each state of the sampled simulated Markov chain) 
and estimated ( ̂𝜏i ). The mean dwell times estimated by the 
methods were comparable, and similar to the corresponding 
theoretical and simulated values.

Fifty such simulation studies were conducted and gave 
results similar to the above.

Algorithm complexity

Computation of the likelihood is dominated by the number 
of arithmetic operations required for calculating the forward 

and backward probabilities. For an N-state Markov chain 
of length T, the forward probabilities require O(N2T) cal-
culations; see Rabiner (1989). If a moving average filter of 
total length 2r + 1 is included, the number of calculations 
required when using the metastate approach is O(M2T) , 
where M = N2r+1 (Khan et al. 2005). The generalised for-
ward–backward algorithm used in MAFHMM (Almanjahie 
et al. 2015) requires O(MNT) calculations.

As an example, when N = 7 and T = 100,000 , the num-
ber of calculations required for each type of algorithm are 
summarised in Table 3. Note that MAD is equivalent to the 
standard HMM. For large data sets (typical of ion channel 
records), the run-time savings for MAD can be considerable.

Application: MscL data

Extensive high bandwidth patch clamp data were obtained 
in the laboratory of Professor Boris Martinac (Head of 
Mechanosensory Biophysics Laboratory, Victor Chang 
Cardiac Research Institute) from MscL in the bacterium 
E. coli. The data were recorded by the same researcher in the 
same laboratory during the same afternoon under identical 
environmental conditions, with applied voltage +100 mV, 
bandwidths 25 kHz and 50 kHz and digitally sampled at 
75 kHz and 150 kHz, respectively. Four recordings at each 
bandwidth were obtained, each containing between 5 and 30 

Table 2   Analysis of simulated 
data based on HMM and MAD

Comparison of mean dwell times: theoretical ( �
i
 ), simulated ( ̄𝜏

i
 ) and estimated (𝜏

i
)

Level Mean dwell time (ms) Number of points

�
i

𝜏
i 𝜏

i

i HMM MAFHMM MAD Simulation HMM MAFHMM MAD

0 12.048 12.699 12.879 12.525 12.612 91,435 91,438 91,426 91,437
1 0.037 0.049 0.051 0.050 0.050 452 450 455 451
2 0.037 0.048 0.050 0.049 0.049 523 515 518 521
3 0.040 0.053 0.054 0.054 0.053 581 587 582 581
4 0.047 0.063 0.064 0.064 0.064 886 884 886 883
5 0.038 0.053 0.054 0.053 0.054 760 760 747 758
6 0.339 0.399 0.418 0.407 0.408 5363 5366 5376 5367

Table 3   Algorithm complexity Algorithm Order Number of computations Ratio to 
standard 
HMM

Typical run times
N = 7, M = N

3 = 343,T = 100,000

Standard HMM O(N2
T) 4,900,000 1 33 s

Metastate based O(M2
T) 11,764,900,000 2401 22 h

MAFHMM O(NMT) 240,100,000 49 34 min 53 s
MAD O(N2

T) 4,900,000 1 33 s
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million data values. Further details of the experiment can be 
found in Almanjahie et al. (2015).

The data were screened and eight data sets (four at each 
bandwidth) each containing about 200,000 values were 
selected for analysis. Preliminary exploration and analysis 
(see Almanjahie et al. 2015) revealed that the noise standard 
deviations at the intermediate levels were larger than those 
at the closed and fully open levels. Following Khan et al. 
(2005), constraints were placed so the noise standard devia-
tions at intermediate levels were equally spaced between 
those for the closed and fully open levels. Based on com-
prehensive analysis of the data using HMM and MAFHMM 
(moving average filtered HMM), Almanjahie et al. (2015) 
concluded that MscL in E. coli  had five subconducting lev-
els along with the fully open and closed levels. The main 
purpose in this section is to compare the performance of 
MAD with that of HMM and MAFHMM.

For the MscL data, the ratio fs∕fc = 3 corresponds to 
a filter of length 3 ( r = 1 ) with coefficients �0 = 0.84 and 
�−1 = �1 = 0.080 as in   Colquhoun and Sigworth (2009, 
Appendix, 3, p. 576) or Schouten (2000, Table 4.1). For 
MAD, the norm-based criterion Eq. (3.12) with � = 0.001 
yields the corresponding truncated discrete time inverse MA 
filter as

In this case {b�
t
} ∗ {�t} = {�t} to within 3 decimal places 

for each entry.

{b�
t
} = {− 0.0011, 0.0112,− 0.1164, 1.2125,

− 0.1164, 0.0112,− 0.0011}.

Statistical analysis

With the number of levels set at N = 7 (Almanjahie et al. 
2015) and state-dependent noise constrained as described 
above, the eight data sets were analysed using HMM, 
MAFHMM and MAD. Equations  (2.3)–(2.6) were used 
for parameter estimation in HMM, and also MAD (for 
the preprocessed data). Parameter estimates for MAF-
HMM, derived in Almanjahie et al. (2015), are given for 
comparison. Estimated mean currents were offset to give 

Table 4   Estimated MscL 
intermediate level conductances 
(% max) for the four data sets 
at each bandwidth, based on 
HMM (H), MAFHMM (M) 
and MAD (D). Also given, for 
each bandwidth are sample 
means ( ̄x ) and sample standard 
deviations (s) of the four 
estimates of mean conductances 
for each level

Level Estimated intermediate conductances (% max)

i 25 kHz 50 kHz

1 2 3 4 x̄ s 1 2 3 4 x̄ s

(H) 1 10.6 10.4 10.0 9.9 10 0.3 11.5 15.4 11.0 11.7 12 2.0
2 26.7 27.4 26.8 26.8 27 0.3 27.9 34.5 28.3 28.3 30 3.2
3 46.7 49.3 48.5 46.9 48 1.3 48.3 54.2 50.6 47.1 50 3.1
4 65.0 70.2 68.1 66.4 67 2.2 65.9 70.6 68.9 68.5 68 1.9
5 81.4 91.1 86.2 86.3 86 4.0 86.3 88.8 86.0 88.5 87 1.5

(M) 1 8.8 8.6 9.4 9.3 9 0.4 11.5 14.5 10.6 11.8 12 1.7
2 23.5 25.9 25.8 26.3 25 1.3 28.3 33.9 28.2 28.3 29 2.8
3 42.7 47.0 46.7 47.1 46 2.1 48.6 54.0 50.6 47.4 50 2.9
4 63.1 69.1 66.4 66.8 66 2.5 66.4 70.5 67.0 68.3 68 1.8
5 81.1 90.6 85.4 86.8 86 3.9 86.6 88.7 86.0 88.3 87 1.3

(D) 1 8.4 8.4 8.8 8.3 8 0.2 11.9 15.5 11.1 11.8 12 2.0
2 22.3 25.3 24.8 24.6 24 1.3 28.4 34.6 28.7 28.6 30 3.0
3 41.0 46.4 45.8 45.6 45 2.5 48.6 54.3 50.8 47.4 50 3.0
4 61.4 68.3 66.0 65.5 65 2.8 66.1 70.4 69.0 68.4 68 1.8
5 79.7 88.9 84.8 85.3 85 3.8 86.2 88.6 86.0 88.1 87 1.3
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Fig. 1   Plots of estimated conductances (% max) for MscL based on 
HMM (open circles), MAFHMM (filled circles) and MAD (open dia-
monds). Bandwidths 25 kHz or 50 kHz as indicated
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𝜇̌i = 𝜇̂i − 𝜇̂0 , i = 0, 1,… , 6 , so that the mean current at the 
closed level was zero.

Results

Table 4 shows estimated intermediate conductance values 
for MscL. For each level the estimated conductance (% max) 
is the corresponding mean current as a percentage of that at 
the fully open level. (Conductance values for the closed and 
fully open levels are 0 and 100,  respectively.) Also given 
for each bandwidth are the mean ( ̄x ) and standard devia-
tion (s) of the four estimates of mean conductances at each 
level. Figure 1 is a plot of the conductance values for the 
eight data sets.

For the 25 kHz data, the estimated intermediate conduct-
ance at each level is highest for HMM. However, for the 50 
kHz data there is little difference in the conductance esti-
mates obtained by the three approaches.

Discussion

We have incorporated correlated noise in an HMM for ion 
channel data and used deconvolution to pre-whiten the noise, 
resulting in a standard HMM for the preprocessed data. 
Parameter estimates were obtained by the EM algorithm. 
The method performed well in simulation studies.

We applied this methodology to MscL data from E. coli, 
giving the results in Table 4 and Fig. 1. The estimates of 
channel conductances are comparable to those of other 
researchers (Sukharev et al. 1999, 2001; Petrov et al. 2011), 
as can be seen from Table 3 and Figure 8 in Almanjahie 
et al. (2015).

We have also computed standard errors and confidence 
intervals for parameter estimates for the simulated data sets; 
these are not routinely produced by channel researchers, but 
are an important adjunct as they quantify precision of the 
estimates.

An important point to note is that the model in Eq. (5.6) 
is an HMM for the preprocessed data. Since the preprocess-
ing depends on an approximation to the inverse filter, the 
parameter estimates and standard errors for Eq. (5.6) do not 
coincide exactly with those for Eq. (5.1). However, in prac-
tice this approximation should have minimal effect when the 
truncation error is small.

Almanjahie et al. (2015) determined transition schemes 
for MscL in E. coli  based on HMM and MAFHMM analy-
ses of the eight data sets. Compared to that for the 50 kHz 
data, their scheme for the 25 kHz data had one extra tran-
sition. Based on MAD analysis for all eight data sets, we 
produced transition schemes for this channel and these coin-
cided exactly with that for the 50 kHz data in Almanjahie 
et al. (2015); they also reported that at the closed level the 

channel has two states. However, for the purpose of estimat-
ing mean channel conductance, this has no effect.

Overall, the key contributions of this paper are the devel-
opment of a filtered HMM incorporating correlated noise 
and a meta-state-free algorithm for parameter estimation; 
statistical analysis of extensive high bandwidth data; and 
highlighting the importance of bandwidth for estimating 
channel characteristics. The new algorithm is simple and 
greatly reduces computation time and memory requirements. 
These advantages are important for processing the very large 
data sets that are made possible by high bandwidth record-
ings as a result of improvements in technology and experi-
mental technique. Enhancements in technology coupled 
with corresponding advances in computational techniques 
are instrumental in furthering our understanding of the struc-
ture of ion channels.
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