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Abstract
Sedimentation velocity experiments performed in the analytical ultracentrifuge are modeled using finite-element solutions 
of the Lamm equation. During modeling, three fundamental parameters are optimized: the sedimentation coefficients, the 
diffusion coefficients, and the partial concentrations of all solutes present in a mixture. A general modeling approach consists 
of fitting the partial concentrations of solutes defined in a two-dimensional grid of sedimentation and diffusion coefficient 
combinations that cover the range of possible solutes for a given mixture. An increasing number of grid points increase the 
resolution of the model produced by the subsequent analysis, with denser grids giving rise to a very large system of equa-
tions. Here, we evaluate the efficiency and resolution of several regular grids and show that traditionally defined grids tend 
to provide inadequate coverage in one region of the grid, while at the same time being computationally wasteful in other 
sections of the grid. We describe a rapid and systematic approach for generating efficient two-dimensional analysis grids 
that balance optimal information content and model resolution for a given signal-to-noise ratio with improved calculation 
efficiency. These findings are general and apply to one- and two-dimensional grids, although they no longer represent regular 
grids. We provide a recipe for an improved grid-point spacing in both directions which eliminates unnecessary points, while at 
the same time providing a more uniform resolution that can be scaled based on the stochastic noise in the experimental data.

Keywords Hydrodynamics · Computational biophysics · Analytical ultracentrifugation · Numerical optimization · High-
performance computing

Introduction

Sedimentation velocity (SV) experiments performed in an 
analytical ultracentrifuge provide information about com-
position, size, and anisotropy, and for some experimental 
designs information about density of colloidal molecules 
in solutions. They measure the sedimentation and diffusion 
transport of a colloidal particle in a centrifugal force field, 

and provide the partial concentration of each solute in a 
mixture. The observed signal is typically convoluted with 
systematic and stochastic noise. Where possible, system-
atic noise contributions can be removed mathematically 
(Demeler 2010), leaving only the stochastic noise to the 
residuals of a fit. We have developed a number of optimi-
zation routines to solve the problem of fitting experimental 
data in an unbiased approach, and to extract the sedimen-
tation and diffusion coefficients and partial concentra-
tions of mixtures of analytes (Brookes et al. 2006, 2010; 
Brookes and Demeler 2006, 2007; Demeler et al. 2014; 
Gorbet et al. 2014). For all of these methods, the ability 
to recover these parameters is limited by the magnitude of 
the stochastic noise present in the data. The magnitude of 
the noise determines the minimum amount of signal that 
the fitting method needs to be able to resolve. Any signal 
larger than the noise is not lost in the noise, and the grid 
must, therefore, be able to resolve differences between 
grid points that are equal or a slightly smaller than the 
noise signal. In other words, the underlying model must 
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be able to explain the sedimentation and diffusion trans-
port present in the experimental data with slightly higher 
resolution than the resolution necessary to account for the 
magnitude of the stochastic noise. This transport, when 
performed in a sector-shaped centrifugation cell under 
ideal solution conditions (constant temperature, absence 
of pressure dependence, constant speed, and under dilute 
conditions) is described by the Lamm equation L (Eq. 1) 
(Lamm 1929):

where r is the radial distance from the rotor center, s and 
D are the sedimentation and diffusion coefficients, C is the 
partial concentration of a solute, and ω is the angular veloc-
ity of the rotor. Inspection of Eq. 1 reveals that fitting an 
experimental dataset consists of adjusting the sedimenta-
tion and diffusion coefficient, and finding the appropriate 
concentration C. In the general case, one must allow for the 
presence of multiple solutes Ci, where i indicates the ith spe-
cies in a mixture. For non-interacting mixtures of solutes, 
the general solution for a multi-component mixture with n 
unknown species is given by:

where ci is the partial concentration of the ith solute. In the 
general case, n, ci, and Li are not known and need to be 
determined with a degenerate fitting approach that does not 
impose any user bias or prior knowledge upon the solution. 
Furthermore, a rigorous solution to this problem requires 
that s and D for each solute are allowed to vary indepen-
dently, requiring a two-dimensional fitting approach that 
can account for variable distributions in both sedimenta-
tion and diffusion coefficient. Previously, we proposed a 
two-dimensional spectrum analysis (2DSA) approach to 
solve this problem (Brookes et al. 2006; Brookes and Cao 
2010). 2DSA begins by building a regular two-dimensional 
grid of sedimentation coefficients in one dimension and 
frictional ratios in the second dimension. This results in a 
two-dimensional grid of unique solutes, where each solute 
is defined by a unique combination of sedimentation and 
diffusion coefficients. Next, the finite-element solution for 
the entire experiment is calculated and a full set of scans 
and radial absorbances is simulated for each individual sol-
ute, using the experimental and boundary conditions of the 
actual experiment (rotor speed, buffer conditions, menis-
cus position, and bottom of cell). The simulated data points 
for each unique solute represent a basis vector of a linear 
combination of all solutes represented by the two-dimen-
sional grid. The optimization problem is solved by forming 
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ciLi(s,D),

a linear combination (Eq. 2) of the basis vectors li= Li (s, 
D), representing simulated solutions for each s, D for all n 
solutes defined in the grid. This linear system can be writ-
ten as Ax = b, where A is the matrix of basis vectors li, x 
is the vector of unknown concentrations ci, and b is vec-
tor with experimental data. This problem is solved with the 
non-negatively constrained least-squares algorithm (NNLS) 
(Lawson and Hanson 1974), which results in a vector x con-
taining positive concentrations ci for solutes Ci contributing 
to the NNLS fit and zero for all other solutes not found in the 
experimental data. Clearly, the model resolution obtained 
from the fit will be proportional to the number of solutes 
included in matrix A, with the resolution increasing with 
the size of A. In any case, for a typical experiment A will 
be very large (on the order of several gigabytes). As the 
size of A increases, so does the computational effort and the 
required calculation time. The exact scaling of the computa-
tional effort with resolution is difficult to generalize, since it 
depends on the number of components present in the experi-
mental data, the size of A, the number of parallel proces-
sors available, and the number of partitions employed in the 
2DSA. Therefore, a compromise has to be made between the 
desired resolution and the available computational resources. 
An obvious question, therefore, is: what exactly is the best 
set of grid points to use in a two-dimensional grid to obtain 
a desired model resolution for a given problem? A good 
rule of thumb is to use a grid layout where elimination of 
any grid point in the two-dimensional grid would introduce 
an error slightly less in magnitude than the stochastic noise 
inherent in the experimental data. If the grid-point density 
is high enough to where the removal of a grid point does 
not affect the root-mean-square deviation (RMSD) of the fit 
within the magnitude of the noise, then any solute present 
in the experimental data can be distinguished reliably, and 
the chance for missing a solute is minimized.

According to Eq. 1, each solute measured in an analyti-
cal ultracentrifugation (AUC) experiment gives rise to a sedi-
mentation and diffusion coefficient, and NNLS optimization 
recovers the partial concentration of each solute in the grid 
of solutes (which may be zero). Once sedimentation and dif-
fusion coefficients with non-zero concentrations are deter-
mined, additional properties of the found solutes are available. 
From the diffusion coefficient, we can derive the frictional 
coefficient:

 

where R is the gas constant, T is the temperature in Kelvin, 
and N is Avogadro’s number. If the partial-specific volume, 
�̄� is available, we can derive the molar mass:

(3)f =
RT

ND
,

(4)M =
sNf

1 − �̄�𝜌
,
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where ρ is the density of the solvent. Once molar mass and 
partial specific volume are available, we can assume a hypo-
thetical spherical particle with the same volume as the actual 
solute and calculate the volume V and hydrodynamic radius 
r0 of the spherical particle:

Using the Stokes–Einstein relationship, we can derive the 
frictional coefficient of this hypothetical sphere:

Finally, the frictional ratio, or anisotropy k can be derived:

The latter property describes how non-globular a molecule 
is. For a perfectly spherical molecule f = f0 and k = 1.0, for 
all other molecules k > 1.0.

To aid in the interpretation of AUC results, it is fre-
quently more convenient to express the results using 
parameterizations of the sedimentation and diffusion coef-
ficients, and to present the results in terms of more intui-
tive parameters, for example, as functions of molar mass 
and anisotropy or partial-specific volume and molar mass 
instead of sedimentation and diffusion coefficients. As was 
shown in Demeler et al. (2014), it is straightforward to 
express a range of solute properties of interest in terms of 
any combination of another type of grid. In this work, we 
evaluate the resolution, contrast the computational require-
ments of several regular grid layouts, and show that all of 
these regular grids are either computationally wasteful or 
lack the ability to describe an experimental system with 
the desired resolution for each region of the grid equally. 
With the recent introduction of the Beckman Optima AUC 
instrument, a significant enhancement of the data quality 
and signal-to-noise ratio is realized, which suggests that 
commensurate enhancements in the data analysis resolu-
tion are desirable. This raises the question of the exact 
distribution of solutes in Eq. 2 that will provide the opti-
mal compromise between resolution and computational 
requirements. In this manuscript, we present a systematic 
evaluation of the performance of traditionally employed 
regular grids and propose an adaptive grid layout provid-
ing improved solute point positions for s and D, which are 
easily computed and which still can be converted to any 
custom grid application proposed in Demeler et al. (2014). 
The new grid optimizes the retrieval of available informa-
tion while at the same time minimizing the computational 
effort as a function of resolution, performing significantly 
better than any other regular grid layout tested by us.

(5)V =
M�̄�

N
, r0 =

(
3V

4𝜋

)1∕3

(6)f0 = 6��r0

k =
f

f0

Methods

Testing grid performance and simulation

We define grid performance as the reciprocal product of 
the computational effort times the number of grid points 
required to obtain a constant grid resolution. To compare 
grid performance, a resolution metric needs to be estab-
lished. A convenient resolution metric is the signal differ-
ence between the experimental data from two simulated sol-
utes with equal loading concentration (Brookes and Demeler 
2010). Here, the simulations are for two adjacent grid points 
and simulated to match the experimental run conditions. An 
optimal grid layout will feature a resolution and grid spacing 
such that the difference between the Lamm equation solu-
tions from adjacent grid points equals tolerance t, which 
should be slightly less than the RMSD originating from 
stochastic noise in the data. We suggest a constant value e 
which should be half of the expected RMSD. This difference 
needs to be satisfied in both dimensions of the grid:

 

It is important to point out that contributions to the signal 
difference between two points in the grid depend on sev-
eral experimental conditions, including rotor speed, the 
radial range of the fitted data, the interval between scans, 
the partial concentration of a solute, and the duration of the 
experiment, and should be derived from the UltraScan edit 
profile, which sets data range limits. We investigated regular 
grid types parameterized by k vs. s, k vs. M, D vs. s, and a 
new improved k vs. s grid with point spacings based on the 
first derivative of the Lamm equation with respect to s and 
D. In each case, we attempted to cover the same domain in 
s and D, regardless of parameterization. For all grids, the 
number of total grid points, Ngrid, was kept constant at 210 
points to approximate equal computational effort across all 
grids. The total number of grid points was chosen such that 
the grid coverage was visually comparable across all grids. 
Generating grids should be fast and efficient, so numeri-
cal routines that empirically identify grid spacings satisfy-
ing a given resolution, for example through a line search or 
root-finding algorithm, are not desirable due to their large 
computational overhead (data not shown). In contrast, our 
proposed improved grid can be generated quickly and is suit-
able for parallel methods implemented on supercomputers 
(Demeler et al. 2009). To compare the efficiency of all grid 
types, an empirical method using finite-element simulations 
was needed. For this purpose, a new UltraScan module was 
developed, reusing already available data structures and 

(7)
L(si+1,Di) − L(si,Di) = t

L(si,Di+1) − L(si,Di) = t

with t = RMSD − e
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processing methods in the UltraScan C++ class library. 
RMSD values were determined by subtracting two finite-
element solutions representing adjacent grid points from 
each other as follows: scans for each component were simu-
lated with equal time increments and over the experimen-
tal duration. Only points having less than one-half of the 
plateau concentration were included in the calculation, and 
any scans where the midpoint of the boundary was to the 
right of the bottom b of the cell with meniscus m according 
to b = mes�

2t were excluded from the RMSD calculations. 
Any points located to the left of a point 0.025 cm to the 
right of the meniscus were also excluded from the RMSD 
computation. This approach assured that steep gradients 
in the back-diffusion region are excluded from the fitting 
range due to refractive artifacts in this region, and because 
absorbance values at the bottom of the cell tend to exceed 
the dynamic range of the detector. The simulated time of the 
experiment was 6.8 h and was chosen such that the midpoint 
of the boundary from the average sedimentation coefficient 
of the grid’s s-value range would cross the bottom of the cell 
according to Eq. 14. For each experiment, 100 equidistant 
scans in time were simulated. All finite-element simula-
tions were performed for a 40,000 rpm rotor speed, using 
200 simulation points for ASTFEM grid. For sedimentation 
coefficients larger than the mean sedimentation coefficient, 
sedimentation time was shortened such that the RMSD cal-
culation ignored scans after the faster of the two components 
pelleted. This prevented calculated RMSD values from being 
underestimated due to the inclusion of baseline values from 
pelleted solute states. For all grids, we used a sedimentation 
coefficient range from s1 = 1.1 × 10− 13 s to s2 = 9.9 × 10− 13 s, 
and a frictional ratio range from k1 = 1.2 to k2 = 3.8. These 
ranges were chosen to prevent the program from simulat-
ing unreasonable frictional coefficients below 1.0 during 
RMSD isobar calculations. To measure grid resolution, 
RMSD isobars were calculated around each grid point by 
measuring the RMSD difference along the polar coordinate 
lines from zero to 2π in two-degree increments with each 
grid point at its center, producing 180 RMSD points around 
each grid point. The required length of the polar coordinate 
line was determined by testing the RMSD at points from 
the four corners of the grid. We found that constant mul-
tipliers proportional to the regular s · k grid spacing were 
more than sufficient to capture all RMSD isobars of interest. 
Furthermore, the chosen constant scaling also ensured that 
all RMSD values along the polar coordinate line allowed 
for a linear extrapolation (data not shown). This approach 
was repeated by iterating over all other solute points in a 
test grid projected on to the s · k plane. Linear interpolations 
between 0 and 0.5% RMSD were used to generate RMSD 
error ellipsoid isobars (see Fig. 1). Equations for the linear 
approximations needed for the generation of the ellipsoid 
isobars were then stored in an output file to allow ellipsoids 

for different RMSD values to be generated without simulat-
ing every grid point and its associated sample points again.

Improved grid generation

Our improved grid is based on the rate of change of the con-
centration as a function of s and D. This can be represented 
by the derivative of the Lamm equation with respect to s and 
D. Since an analytical solution to this problem is not readily 
available, and numerical solutions require computationally 
demanding algorithms, we chose to use the Faxén approxi-
mation to the Lamm equation (Faxén 1929). Starting with 
the Lamm equation (Eq. 1), we first introduce dimensionless 
variables x, τ, and ε:

where m and b are the meniscus and the bottom of the cell, 
respectively. Then the Lamm equation can be transformed 
to:

It is evident that the solution C depends on parameter ε only. 
When ε ≪ 1, and x near one, the solution to the Lamm equa-
tion can be approximated by the Faxén solution:

(8)x =
(
r

m
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(10)C(x, �) =
1

2
e−�[1 −�(�)],

Fig. 1  RMSD error isobars for 
a solute point (black) in the 
2DSA grid
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where

is the error function, and

Taking the partial derivative with respect to ε yields:

To evaluate the magnitude of �C
��

 , we need to specify a mean-
ingful time interval. We note that a typical experiment will 
be finished when the midpoint of the solute’s boundary 
reaches the bottom of the cell, which occurs at:

Therefore, we use the time interval [0, t*] to evaluate the 
magnitude of �C

��
 . More precisely, we introduce the norm 

of �C
��

 in the domain 0 ≤ � ≤ �∗ = 2s�2t∗ = 2 ln (b∕m) and 
1 ≤ x ≤ x∗ = (b∕m)2 as follows:

For fixed values of m, b, and rotor speed ω, this norm is 
dependent on ε only. Unfortunately, there is no explicit for-
mula for the norm as a function of ε. A numerical evaluation 
of the norm suggests that for typical ranges of s, D, and ω, 
�C

��
 is approximately proportional to ε− 3/4. See Fig. 2 for a 

log–log plot of ‖‖‖
�C

��

‖‖‖ as a function of ε in the case of m = 6.5, 

b = 7.2, and ω = 60,000 rpm.
A careful study shows that ε is inversely proportional to the 

3/2th power of the product s ⋅ k , more precisely

Let μ = (s · k)− 1, then we have ε = O (μ3/2), and thus:

Using the chain rule for differentiation
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which implies that:

Since ‖‖‖
�C

��

‖‖‖ is approximately constant along a curve 

s ⋅ k = const, when designing an s–k grid system, the grid 
points  can be  p icked a long var ious  cur ves 
s ⋅ k = �−1

j
, j = 1, 2,… ,N, where the values of �j , j = 1, 

2,…,N, are selected so that the RMSD error isobars are 
approximately uniformly distributed. We observed that when 
�
−1∕4

j
 is evenly spaced, the distribution of the RMSD error 

isobars is the closest to uniformity. Thus, we select �j values 
accordingly for the grid generation. A detailed description 
of the creation of the s–k grid system follows.

Suppose in a 2DSA analysis, the sedimentation coef-
ficient s is between limits s1 and s2 and the frictional ratio 
k is between k1 and k2, then the range for � = (s ⋅ k)−1 is 
between �1 = (s1 ⋅ k1)

−1 and �2 = (s2 ⋅ k2)
−1 . Let, N be the 

number of partitions we would like to place in between μ1 
and μ2. Then an equidistribution of μ− 1/4 can be achieved 
approximately using the dividing points:

To generate the improved grid, we calculate all 
yj = 1∕(�j ⋅ s1) where �−1

j
≥ s1 ⋅ k2 and all xi,j = 1∕(�i ⋅ yj) , 

satisfying s1 ≤ xi,j ≤ s2 . Then the grids on the s–k plane is 
the collection of all points (xi,j, yj), satisfying s1 ≤ xi,j ≤ s2 
and �j ≤ s1 ⋅ k2.

(19)
‖‖‖‖
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��

‖‖‖‖ = O (�−5∕8)

(20)�j =

[(
1 −

j

N

)
⋅ �

−1∕4

1
+

j

N
⋅ �

−1∕4

2

]−4
, 0 ≤ j ≤ N

Fig. 2  A plot of the norm of �C
��

 as a function of ε in the case of 
m = 6.5, b = 7.2, and ω = 60,000 rpm



842 European Biophysics Journal (2018) 47:837–844

1 3

Adjusting the resolution of the improved 
grid

The resolution of the improved grid is proportional to 
the total number of grid points, Ngrid. It can be controlled 
by adjusting N, the number of partitions between μ1 and 
μ2. An estimate of Ngrid can be obtained as follows: first, 
ensuring �j ≤ 1∕(s1 ⋅ k2) , we have 0 ≤ j ≤ Ja with:

For each j ≤ Ja , to ensure that s1 ≤ xi,j ≤ s2 , we have:

Consequently, the total number of grid points, Ngrid, is 
given by:

A plot of Ngrid vs. N is displayed in Fig. 3. Furthermore, 
a least-squares fit shows that Ngrid is approximately a quad-
ratic function of the number of partitions as given by:

A comparison of the estimated total number of grid 
points using the above formula is also shown in Fig. 3, 
which indicates a good match of Eq. 23 with the prediction 
by Eq. 24. Therefore, in practice, to generate an improved 
grid containing Ngrid points we can select N =

√
e ⋅ Ngrid 

(21)Ja = N ⋅

[
1 −

(
�1

s1 ⋅ k2

)1∕4
]/[

1 −

(
�1

�2

)1∕4
]

(22)j ≤ i ≤ N ⋅

[
1 −

(
�1
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)1∕4
]/[

1 −

(
�1
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)1∕4
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(23)

Ngrid =

Ja∑
j=0

([
1 −

(
�1

s2 ⋅ yj

)1∕4
]/[

1 −

(
�1

�2

)1∕4
]
− j

)

(24)Ngrid ≈ N2∕e

as the number of partitions to produce the improved grid, 
where e ≈ 2.718 is Euler’s number.

Results

One of the best metrics for grid performance is the RMSD 
distance between adjacent grid points. When the grid points 
are identical, the RMSD difference between these points is 
zero; furthermore, the two grid points move apart along 
either the s or D direction, the larger the RMSD difference 
will become between finite-element solutions for these grid 
points. The comparison cannot just be made in one dimen-
sion, because both s and D contribute to this RMSD differ-
ence. As shown in Fig. 1, a constant level of RMSD differ-
ence around a grid point is best described by an ellipsoid, 
which varies in aspect ratio and orientation, depending on 
the position of the grid point in the two-dimensional grid 
space. Ideally, the RMSD difference between adjacent grid 
points should be slightly less than the RMSD level encoun-
tered in the stochastic noise in the data to assure all solute 
concentrations that exceed the noise level can be detected. 
To this end, we plotted the location and RMSD ellipsoids 
for five different RMSD levels (0.001–0.005), corresponding 
roughly to the noise level ranges observed in commercially 
available analytical ultracentrifuges, for a fixed number of 
grid points and several regular grid types, as well as for the 
improved grid based on the Faxén solution. Regular grid 
types offer the advantage of being intuitive in terms of the 
variable that they represent (for example, frictional ratio and 
molar mass) and can be quickly generated. They avoid the 
computational overhead of numerically optimized grids that 
will result in equi-distant RMSD grid points. Furthermore, 
such optimized grids are difficult to generate in more than 
one dimension. On the other hand, the computational over-
head for the improved grid (Eqs. 8–24) is trivial and well 
suited for methods such as the 2DSA or genetic algorithms 
(Brookes and Demeler 2006, 2007), where hundreds of grids 
need to be computed. We investigated regular grids where s 
and D values were based on s vs. k, M vs. k, and s vs. D on a 
range consistent with a sedimentation coefficient range for s 
from 1 to 10 × 10−13 s, and a frictional ratio range for k from 
1 to 4. Our comparison of the performance of the improved 
grid with different regular grids revealed significant differ-
ences when error distances between adjacent grid points 
were evaluated. These differences are clearly seen when 
their RMSD error isobars are visually compared (Fig. 4). 
We observe the following characteristics for each grid: the 
conventionally used s vs. k grid (Fig. 4a) suffers from low 
resolution in s for the left half of the grid, but performs 
well for s in the right half of the grid. For k, the resolution 
increasingly suffers in the upper left quadrant of the grid 
and is computationally very wasteful in the right half of 

Fig. 3  Total number of grid points Ngrid vs. the number of partitions 
N using Eq. 23 and approximately Eq. 24
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the grid, where adjacent grid points overlap strongly in the 
k dimension. By far, the worst-performing grid is a regular 
grid based on molar mass M and frictional ratio k (Fig. 4b). 
Drastic loss of resolution in the lower left quadrant of the 
grid in both dimensions is accompanied by significant over-
lap in both dimensions in the entire right half of the grid, and 
especially strong in the center for k. A regular grid based on 
s vs. D (Fig. 4c) performs reasonably well for s throughout 
the s domain, with a slight loss in resolution in the upper left 
quadrant of the grid for k, similar to the error seen in the s 
vs. k grid (Fig. 4a). In the right half of the grid, significant 
overlaps are seen in the lower k regions of the grid, indicat-
ing significant computational inefficiencies. The most evenly 
distributed RMSD error over the entire grid is evident from 
the improved grid based on the Faxén solution (Fig. 4d).

Remarkably, the improved grid provides excellent cov-
erage for the lower left quadrant [see Fig. 5 for a magni-
fied view of the lower left quadrant for a 0.0005 (red) and 
0.001 (blue) RMSD error level], demonstrating no overlap 
and nearly touching isobars. Similarly, overlaps in the right 
half of the grid are essentially absent, though spacing in 
the s range suggests slight resolution loss in the upper right 
quadrant of the grid. It should be noted that diffusion reso-
lution is very low in the upper right quadrant since solutes 
in this portion of the grid have a small diffusion coefficient 
to begin with, and then they are sedimenting rapidly, leav-
ing little time for diffusion, which decreases diffusion signal 

and explains lower resolution in D. Consequently, isobars 
are very elongated in the k direction, and white space at the 
upper right quadrant is caused by missing solute points that 
would be centered at frictional ratios > 4 which were not 
considered in this simulation. The same effect is very clear 
also in Fig. 4c, where large regions were not simulated since 

Fig. 4  RMSD error isobars for an equal number of grid points from 
three regular grids a s vs. k, b M vs. k, c s vs. D, and d improved grid 
based on the Faxén solution. Here, increasing white space between 

the outermost error isobar indicates reduced resolution, while over-
laps between adjacent red isobars indicate wasteful inefficiencies. Ide-
ally, red isobars should touch, but not overlap

Fig. 5  Detail of lower left corner of improved grid based on the 
Faxén solution, demonstrating excellent coverage without over-
laps and without resolution gaps (simulated resolution in blue: 
RMSD = 0.001)
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they fell outside of the range of 1 ≥ k ≥ 4, and solute regions 
outside of this range would be required to fill these white 
spaces. The current grid generation function for UltraScan’s 
2DSA produces a regularly spaced grid of solute points 
in terms of sedimentation coefficient and frictional ratio. 
Although this method can effectively analyze AUC experi-
mental data, it does not necessarily do so in the most com-
putationally efficient way. When using a regular s · k grid, 
there are often cases in which groups of two solute points on 
the grid are sufficiently similar in terms of their simulated 
behavior that when the stochastic noise of the experimental 
data is taken into account; the two are functionally iden-
tical. This is problematic because it requires the program 
to unnecessarily simulate a solute, a cost that can become 
significant for large grids with many redundant simulations.

Summary

We have presented a novel method for a computationally 
efficient s · k grid that substantially improves resolution for 
a given number of simulation points in a two-dimensional 
grid used for fitting sedimentation velocity experiments, 
while simultaneously minimizing computational effort and 
required memory. This innovation will reduce needed com-
puter time on national supercomputing infrastructures such 
as XSEDE and PRACE, and improve resolution when fitting 
sedimentation velocity data.
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