
1 3

Eur Biophys J (2018) 47:31–38
https://doi.org/10.1007/s00249-017-1226-6

ORIGINAL ARTICLE

Distribution of dipeptides in different protein structural classes: 
an effort to find new similarities

Mahin Ghadimi1 · Emran Heshmati1 · Khosrow Khalifeh1 

Received: 14 February 2017 / Revised: 15 April 2017 / Accepted: 29 May 2017 / Published online: 13 June 2017 
© European Biophysical Societies’ Association 2017

Introduction

According to Anfinsen’s theory, the primary sequence 
of a protein as an ordered string of amino acids con-
tains all the information required for it to gain its final 
functional three-dimensional structure (Anfinsen 1973). 
In the 45 years since this argument was made, impor-
tant questions have been raised concerning the origin 
and identity of protein fold information (Dill and Mac-
Callum 2012). These questions resulted in significant 
efforts toward elucidation of information hidden in pro-
tein sequences. Statistical analysis of databases con-
taining protein sequences indicates that the 20 naturally 
occurring amino acids do not occur with equal frequency 
(Rani et al. 1995), while in other studies the relative fre-
quency of each amino acid in a group of similar proteins 
has been determined (Schwartz et al. 2001). However, a 
single residue in a sequence has limited information, and 
the context of any residue can play a crucial role in its 
structural and/or functional properties, e.g., because of 
its neighbors (Fu et al. 2014). Hence, finding any regular-
ity in protein sequences including dipeptides is of great 
importance, but in spite of much argument this need 
remains unaddressed (Hermans 2011). The frequency of 
motifs in proteins was first investigated in the context of 
protein primary structure sourced from whole-protein 
sequence databases (Unger and Sussman 1993; Aitken 
1999), while Vonderviszt et al. analyzed the frequency of 
dipeptides in the sequences of known proteins (Vonder-
viszt et al. 1986). However, the total data set in protein 
databases we limited at that time and their input data con-
tained the primary sequence of protein with no reference 
to secondary structures. It has been reported that some 
dipeptides may play a critical role in intracellular pro-
tein stability (Guruprasad et al. 1990), and Reddy et al. 
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have analyzed some representative dipeptides and found 
that stabilizing and destabilizing dipeptides have differ-
ent patterns of interactions (Reddy 1996). Furthermore, 
analyzing three-dimensional structure databases has 
revealed that Cys residue oxidation is affected by neigh-
boring residues (Fiser et al. 1992). By encoding dipeptide 
features and selecting a subset of dipeptide compositions, 
Nakariyakul et al. developed an interaction predictor tool 
and reported that selected dipeptide features have impor-
tant roles in the specificity of protein domain interac-
tions (Nakariyakul and Liu 2011). In other studies, it was 
found by statistical database analysis of the four major 
structural classes of protein including all-alpha, all-beta, 
alpha/beta and alpha + beta proteins that the propensi-
ties of each amino acid for the secondary structure are 
related to the structural class of the protein overall (Cos-
tantini et al. 2006; Ismail and Chowdhury 2010), but this 
analysis concerned the propensities of single amino acids 
rather than dipeptides. The outputs of such studies on the 
single amino acids led to several important assumptions 
in protein science that formed the basis for applications 
such as substitution matrices (Henikoff and Henikoff 
1992) and structural prediction algorithms (Lim 1974). 
However, in the majority of these applications, the direct 
effect of neighbor residues was ignored. For instance, in 
the construction of substitution matrices based on mul-
tiple sequence alignment of protein superfamilies, the 
identity of only a single amino acid in an alignment file is 
considered despite the fact that it seems the conservation 
of a single residue may be affected by adjacent amino 
acids (Anishetty et al. 2002; Betancourt and Skolnick 
2004).

For the reasons discussed, it is important to identify reg-
ular patterns of di- and/or tri-peptides (motifs), which are 
specific for a group of protein families and may have simi-
lar structural and functional consequences to each other. 
To shift the concept of the neighbor effect from sequence-
based information to include a three-dimensional structural 
element, we first investigated the frequency of different 
mono- and dipeptides in defined structural classes of pro-
teins including all-alpha, all-beta, alpha + beta and alpha/
beta proteins. We found that the frequency of dipeptides is 
not the same in different structural classes. Additionally, we 
found that in structurally similar proteins some dipeptides 
are not randomly distributed, and the first or second posi-
tion of these motifs is occupied by specific amino acids. We 
conclude that the microenvironment of an amino acid can 
be considered as an evolutionary driving force in dictating 
the structural properties of a protein, which leads to direc-
tional selection of amino acids for structural and functional 
purposes.

Materials and methods

Data

All structures were selected from the Protein Data Bank 
(Berman 2000) under the advanced search menu. The struc-
ture of all selected proteins was resolved by X-ray crystal-
lography with a resolution better than 3.0 Å. All structures 
with ligands and more than 30% identity have been omit-
ted. Structural classes were filtered in the search menu 
using both the ScopTree and CathTree options. Based on 
these criteria, we found that there were 499, 587, 626 and 
670 structures for all-alpha, all-beta, alpha + beta and 
alpha/beta protein classes, respectively, at the end of 2015. 
Among them, 125 structures were sampled randomly for 
each structural class. Note that any structure that has unu-
sual, unknown or missing amino acids was discarded. Thus, 
our data set consists of 400 protein structures containing 
152,474 residues. All structures were converted from PDB 
to DSSP file format using the Linux-based mkDSSP pro-
gram (Kabsch and Sander 1983; Joosten et al. 2011). They 
were then analyzed by PARS software (Fathinavid et al. 
http://www.znu.ac.ir/members/newpage/702) to calculate 
the frequency of any of the 20 residues (or monopeptides) 
and 400 dipeptides. The output was further analyzed by 
MS-Excel software. All analysis was performed separately 
for each structural class as well as for the total data set.

Normalized frequency distribution

Based on the results of the PARS software, the total num-
ber of monopeptides and dipeptides for any structural class 
as well as for the total data set was calculated. As proposed 
by Vonderviszt et al., the normalized frequency distribution 
for any dipeptide (Sij) formed by the ith and jth monopep-
tides in the first and second positions, respectively, was cal-
culated by the following equation (Vonderviszt et al. 1986):

where Oij and Eij are the observed and expected values of 
occurrence of dipeptide ij in the data set, respectively. The 
values of Eij for each dipeptide in each respective data set 
(total or any structural class) were calculated by Eq. 2:

Here, Pi and Pj are the relative frequencies of individual 
amino acids in the first and second positions of a given 
dipeptide, and N is the total number of dipeptides in the 
corresponding data set. The values of Pi and Pj are pro-
vided in different columns of Table 1.

(1)Sij =
Oij

Eij

(2)Eij = Pi × Pj × N

http://www.znu.ac.ir/members/newpage/702
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Based on these criteria, an Sij = 1.0 means a completely 
random association of an ij pair in the primary sequence, 
while values 1.5× greater than unity (1.5) and 1.5× less 
than unity (0.67) are regarded as non-random distribu-
tions indicating preferential association and avoidance in 
the primary structure, respectively. So, 1.5 times greater 
and less than 1.0 have been written in red and blue font, 
respectively.

Cross‑correlation coefficient

Cross-correlation coefficients were extracted from the Sij 
matrices by determining the correlation row-wise and col-
umn-wise for the ith and jth positions, respectively.

The cross-correlation coefficient can be used to reveal 
similarities among preferred sequential environments of 
various amino acids and also to determine the tendency 
of each residue to localize in the first or second position 
of an ij pair. In our correlation coefficient analysis and for 
prevention of any statistical fluctuations, P values less than 
0.01 were considered statistically significant. Values of 
±0.1 would correspond to perfect correlation between two 
number series, while 0.0 means no correlation.

Results and discussion

The sampling and choice of data set are very important 
because proteins that belong to the same family may have 
similar evolutionarily conservative dipeptides which could 
bias our analysis. Hence, stringent search criteria were used 
so that the selected proteins have only a maximum value of 
30% sequence identity. It is also notable that several pro-
teins may contain highly homologous domains or repetitive 
sequences, leading to the problem of redundancy. We mini-
mized this effect by using the largest available data set. It 
should be noted that the observed and expected frequencies 
(Oij and Eij) are not listed, and only the Sij and correlation 
coefficient values are addressed directly here.

The relative frequencies of all 20 monopeptides in the 
total data set and for all structural classes are provided in 
Table 1. These data show high correlation (CC = 0.97) 
with the result of the study by Xia and Xie in which more 
than 7343 protein sequences were analyzed (Xia and Xie 
2002). The data in Table 1 indicate that the frequency dis-
tribution of all amino acids for different structural classes 
of proteins is not the same. Furthermore, our calculated and 
expected frequencies of dipeptides show good correlation 
(CC = 0.94 and 0.96) with the report provided by Shen 
et al. (2006).

In the next step of analysis, the normalized frequency 
distribution of dipeptides (Sij) for the total data set as well 
as all-alpha, all-beta, alpha + beta and alpha/beta struc-
tural classes were calculated (Fig. 1). Quantitative data 
are provided as Tables 2–6 in the supplementary material. 
The values of Sij are in the range of 0.13 (indicating avoid-
ance)–3.97 (indicating favorable association). Since Sij is 
equal to the ratio of observed to expected values of dipep-
tides, an Sij ≥ 1.5 indicates the tendency of a given dipep-
tide to occur more than 1.49× relative to expected values 
and is considered a boundary for a high tendency for asso-
ciation. Similarly, the values of Sij ≤ 0.67 are considered as 
a measure of the avoidance. These critical values are shown 
in the red- and blue-colored spectrum in Fig. 1 and corre-
sponding tables in the supplementary data.

As shown in Fig. 1a, in the all-alpha structural class, 
there are 19 dipeptides with extremely high Sij including 
Cys-Cys, Met-Cys, Trp-Cys, His-Phe, Cys-His, His-His, 
Arg-His, His-Met, Ser-Met, Met-Asn, His-Pro, Pro-Pro, 
Trp-Pro, Tyr-Pro, Cys-Arg, Ala-Trp, Ser-Trp, Trp-Trp and 
Asp-Tyr, while 29 dipeptides including Cys-Ala, His-Cys, 
Asn-Cys, His-Asp, Met-Gly, His-His, Asn-His, Thr-His, 
Trp-His, Cys-Ile, Trp-Ile, HisLys, Pro-Lys, Cys-Leu, Cys-
Met, Gly-Met, Pro-Met, Ala-Asn, Ala-Pro, Glu-Pro, His-
Arg, Arg-Ser, Cys-Trp, Ile-Trp, Leu-Trp, Met-Trp, Tyr-Trp, 
Ala-Tyr and Trp-Tyr have extremely low Sij values. These 

Table 1  Relative abundance (%) of monopeptides in the total data 
set and different structural classes

Monopep-
tide

All-alpha All-beta Alpha + beta Alpha/beta Total

A 9.62 6.98 8.28 9.07 8.51

C 1.28 1.25 1.21 1.23 1.24

D 5.49 6.00 5.92 5.80 5.81

E 8.15 6.41 7.27 7.03 7.20

F 4.06 4.14 3.70 3.62 3.86

G 5.26 7.77 7.51 7.48 7.05

H 2.35 2.03 2.46 2.09 2.23

I 5.48 6.04 5.79 6.53 5.99

K 6.67 5.56 5.90 5.90 5.99

L 11.08 8.27 8.71 10.35 9.62

M 1.95 1.54 1.75 1.41 1.65

N 3.80 4.74 4.25 3.79 4.13

P 3.84 4.91 4.47 4.49 4.43

Q 4.85 3.63 3.55 3.67 3.90

R 5.69 5.14 5.70 5.02 5.37

S 5.56 6.37 5.56 5.70 5.79

T 4.65 6.72 5.52 5.19 5.51

V 6.13 7.49 7.50 7.76 7.26

W 1.03 1.46 1.34 1.11 1.23

Y 3.04 3.56 3.63 2.74 3.22
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data together demonstrate that Cys, His and Trp are the 
most selective amino acids in their sequential association; 
a number of 12 Cys-containing, 14 His-containing and 13 
Trp-containing dipeptides are characterized by extremely 
high or low Sij values. In contrast, Gln and Val appear to be 
virtually neutral showing a nearly random association with 
other amino acids in the all-alpha class. Other amino acids 
have a moderate tendency to be selective. Additionally, 
there are four Ala-containing dipeptides with extremely 
low Sij values and only one with an extremely high Sij. 

This means that the selectivity of Ala is toward association 
rather than avoidance. It was also found that Ala is more 
selective when it localizes in the first position of an ij-pair.

Sij values for the all-beta structural class are provided in 
Fig. 1b showing 11 dipeptides have extremely high Sij val-
ues (Asp-Cys, His-His, Trp-His, Met-Met, Trp-Asn, Cys-
Pro, Cys-Arg, His-Pro, Cys-Thr, Cys-Trp, Tyr-Tyr), while 
16 dipeptides have extremely low Sij values (Cys-Ala, 
Met-Cys, Pro-Cys, CysE, ThrE, Trp-Phe, Cys-Gly, Phe-
His, Lys-His, Phe-Ile, Met-Ile, HisMet, Gln-Asn, Trp-Pro, 

Fig. 1  Graphical representation 
of the normalized frequency 
distribution matrix, Sij, of the 
dipeptide fragment for all-alpha 
(a), all-beta (b), alpha + beta 
(c), alpha/beta (d) class and our 
total data set (e). Each panel 
contains the first position of 
a dipeptide (i-position) in the 
horizontal line, while that of the 
second position (j-position) is 
shown in the vertical line. For 
better clarification in finding 
the differences between specific 
cells, the numerical values are 
also provided in the supplemen-
tary material 1
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Cys-Val, Met-Trp). These data demonstrate that Cys is 
relatively selective in its sequential association; 11 Cys-
containing dipeptides are characterized by extremely high 
or low Sij values. Leu and Ser appear to be virtually neu-
tral, while others have a moderate tendency to be selective. 
As for Ala in the all-alpha structures, Cys is more selective 
when located in the ith position of a dipeptide in the all-
beta structural class.

Analyzing the data for the alpha + beta structural class 
(Fig. 1c) shows that there are 11 dipeptides with extremely 
high Sij values (Ala-Cys, Phe-Cys, Gly-Cys, Ser-Cys, 
Trp-Cys, Asp-Phe, Cys-His, His-His, Trp-His, ThrP and 
Gln-Gln) and 31 dipeptides with extremely low Sij values 
(Cys-Glu, Cys-Leu, Asp-Ser, Glu-Cys, Glu-Met, Glu-Gln, 
PheMet,Gly-Pro, His-Cys, His-Glu, His-Lys, His-Asn, 
Ile-Trp, Lys-Cys, Lys-Trp, Leu-Phe, Leu-Trp, Met-Cys, 
Met-Phe, Met-Gln, Met-Val, Pro-Lys, Gln-Cys, Gln-Pro, 
Arg-Cys, Val-Cys, Val-Gln, Trp-Phe, Trp-Gly, Trp-Met and 
Tyr-Trp). In this structural class, Cys is the most highly 
selective residue; in total, nine and six Cys-containing 
dipeptides have extremely low or high Sij, respectively. We 
also found that five, four and seven dipeptides contain Glu, 
Lys and Met, respectively, with extremely low Sij values. 
However, these residues have no significant values of Sij 
for association. So, the selectivity of these amino acids is 
toward avoidance for pairing with other amino acids in the 
alpha + beta structural class.

In Fig. 1d, the Sij values for the alpha/beta structural 
class are shown. According to these data, there are 14 
dipeptides with high Sij values (His-Cys, Trp-Cys, His-Phe, 
Asn-Phe, His-His, His-Met, Met-Met, His-Pro, Trp-Gln, 
Asn-Trp, Ser-Trp, Thr-Trp, Trp-Trp and Tyr-Trp) and 30 
dipeptides with low Sij values (His-Trp, Ile-Trp, Leu-Trp, 
Met-Trp, Gln-Trp, Val-Trp, Cys-Ala, His-Ala, Glu-Cys, 
Met-Cys, Val-Cys, His-Asp, HisE, Lys-Phe, Met-Phe, Trp-
Gly, Asp-His, Met-His, Met-Ile, Tyr-Ile, Cys-Ile, HisLys, 
TrpLys, CysMet, Ile-Met, Tyr-Met, Glu-Pro, Gln-Arg, Cys-
Thr and Gln-Thr) revealing the selectivity for Trp, His and 
Met. Indeed, 15 Trp-containing, 13 His-containing and 11 
Met-containing dipeptides have extremely high or low Sij 
values. Also these data show that His prefers to locate in 
the ith position, while the preference of Trp is for the jth 
position.

Interestingly, in the total data set (Fig. 1e), there are 
only five dipeptides, including Cys-Cys, Cys-Trp, His-His, 
His-Trp and His-Pro, which have extremely high Sij values, 
while six of them, including Cys-Ala, Glu-Cys, Trp-Gly, 
His-Lys, Ile-Trp and Met-Trp, have extremely low values 
of Sij.

The mean values of Sij for homo-dipeptides for all-
alpha, all-beta, alpha + beta, alpha/beta and the total data 
set were 1.29, 1.08, 1.04, 1.22 and 1.21, respectively. This 
finding indicates that homo-peptides have a nearly random 

distribution. However, we found that some of them, includ-
ing His-His, Pro-Pro, Gln-Gln, Met-Met and Cys-Cys, 
show some degree of frequency significance, which is in 
good agreement with the available data (Xia and Xie 2002). 
However, Xia and Xie reported that asymmetry between 
dipeptides is not significant, that is, the frequency of ij is 
nearly equal to that of ji, while as can be seen in Fig. 1, 
nearly all dipeptides show asymmetry in their amino acid 
positions.

Comparing our results with other work, particularly 
that of Vonderviszt et al. (1986), shows that cysteine is a 
specific amino acid in its selectivity for pairing with other 
amino acids. However, we observed similar behavior for 
other residues in the context of protein structural classes. 
Since cysteine is observed as a special residue in associa-
tion or avoidance propensity, it appears that this observa-
tion may be related to its oxidation state in the structures of 
proteins, which needs a separate detailed structural study.

The above-mentioned results indicate that some amino 
acids have Sij values representing their occurrence far from 
randomness and that they are sensitive to pairing with or 
avoidance of other amino acids. We also show that posi-
tioning in the first or second position of a dipeptide may 
act as a determinant structural factor for the selection of a 
given amino acid. The preferences of residues for the first 
or second positions will be further discussed below. It was 
also found that dipeptides with association or avoidance 
far from random distribution are not the same for different 
structural classes. This indicates that dipeptide selectivity is 
determined mainly by structural factors rather than simply 
primary sequence. Since the differences of these structural 
classes originate from their secondary structures, it may be 
concluded that the effective parameters for different sec-
ondary structures play critical roles in this selectivity.

Other factors in our data are related to the difference in 
the number of avoided and associated dipeptides. While 
in the total data set this difference is not significant, using 
structural class as input data, the number of avoided dipep-
tides increases compared with associated ones. This fact 
demonstrates that the unique identity of a single residue is 
reflected in its pairing characteristics.

For a better understanding of the first step in our anal-
ysis, we extended the study by calculating the correlation 
coefficient between each row- and column-wise pair of Sij 
matrices as provided in Fig. 2 and Tables 7–11 in the sup-
plementary data. The point of this analysis was to deter-
mine the similarity of the different residues localizing 
in the first or second positions of a given dipeptide. The 
row- and column-wise correlation coefficients were used to 
determine how similar the different residues in the first and 
second positions of a dipeptide were, respectively. Colored 
font values in the corresponding tables indicate signifi-
cant low or high correlation between two amino acids that 
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might be substituted for each other, meaning significant 
dissimilarity or similarity between two given amino acids. 
Note that the data in Fig. 2 should be analyzed by consider-
ing the values above and below the diagonal line. In this 
analysis, the values above the diagonal line refer to the ith 
position and those in the lower part to the jth position of a 
dipeptide.

The upper part of the data in Fig. 2a for the all-alpha 
structural class show that Leu & Asp, Met & Asp, Trp & 
Asp and Ser & Leu residues have significantly low corre-
lation coefficients, which means that substitution of these 

amino acids for each other in the ith position of a dipep-
tide is avoided. On the other hand, Arg & Cys has a sig-
nificantly high correlation coefficient meaning a similar-
ity between these two amino acids for localizing in the ith 
position.

Examining the values of the column-wise correlation 
coefficient (below of the diagonal line in Fig. 2a) shows that 
Ile & Ala, Leu & Ser and Ala & Tyr have significantly low 
correlation coefficients indicating dissimilarity between 
Ile and Ala for positioning in the jth position, while Pro 
& Ala, Phe & Val and Met & Val have significantly high 

Fig. 2  Graphical representation 
of correlation coefficients of 
dipeptide fragment for all-alpha 
(a), all-beta (b), alpha + beta 
(c), alpha/beta (d) class and 
our total data set (e). Data are 
analyzed by considering the 
values in upper and lower part 
of the diagonal line. The values 
in the upper part refer to the 
ith position and those of the 
lower part are related to the 
jth position of a dipeptide. For 
better clarification in finding 
the differences between specific 
cells, the numerical values are 
also provided in supplementary 
material 2
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correlation coefficients, meaning a similarity between Pro 
and Ala for localizing in the jth position of a dipeptide.

A similar procedure was also used for analyzing the 
other structural classes. Figure 2b contains the correlation 
coefficient values for the all-beta structural class and shows 
significant dissimilarity for Ile & Asp, Leu & Asp, Pro & 
Asp, Trp & Glu, Asn & Phe, Arg & Gly, Ser & Gly, Gln & 
Leu and Trp & Val. Furthermore, significant similarity for 
Lys & Glu, Met & Glu, Asn & His, Leu & Ile, Trp & Pro, 
Thr & Ser and Trp & Ser was observed for localizing in the 
ith position. A significant dissimilarity for Glu & Cys, Gln 
& Gly and Thr & Leu together with significant similarity 
for the Lys & Glu pair in the jth position was also observed.

For the alpha + beta structural class (Fig. 2c), dissimi-
larity was observed for Cys & Ala, Phe & Asp, Met & Asp 
and pairs in the ith position and for Asn & Leu, Arg & Ala, 
Ser & Gln, Ser & Lys and Ser & Met in the jth position. 
Likewise, similarity for Asn & Cys and Trp & Phe can be 
seen in the jth position.

In Fig. 2d the correlation coefficient values are provided 
for the alpha/beta structural class, showing significant dis-
similarity for Gly & Ala, Val & Cys, Met & Asp, Phe & 
Glu, Thr & Gln, Ser & Phe and Val & Glu and significant 
similarity for Glu & Leu to localize in the ith position. On 
the other hand, these data show a significant dissimilarity 
for Arg & Leu, Ser & Met, Thr & Leu, Val & Ser together 
with Trp & Val and significant similarity for Trp & Ser for 
positioning at the jth position.

Previous reports emphasized that some residues in hel-
ices (known as helix formers) tend to be similar and can 
be substituted with each other (Xia and Xie 2002) but this 
insight is not confirmed by our results.

Although we examined the frequency of dipeptides in 
different structural classes of proteins, each structural class 
has a different content of secondary structural elements, and 
more studies, including determining the similarity index for 
any dipeptide in the context of every secondary structure, 
is needed. Generally, for both the ith and jth positions, the 
number of dissimilar amino acids is significantly greater 
than that of similar ones. As mentioned above, this fact may 
originate from the unique properties of amino acids, which 
lead to more sensitivity in selecting their neighbors.

Unexpectedly, it can be seen that a number of different 
amino acids have a similar behavior in localizing at the 
same position of a dipeptide, and they can be substituted 
with each other. As we know, amino acids are classified 
based on physico-chemical properties such as hydropho-
bicity, polarity, size and so on. Our data indicate that upon 
pairing of amino acids, the characteristics of the individual 
amino acids matter less than those of the pair such that 
pairs with quite different physico-chemical properties can 
confer similar features on equivalent positions in protein 
structures.

It thus seems that the role of each residue in the context 
of the secondary structure is not the same when considered 
alone and in pairs. With respect to the local steric interac-
tions in dipeptides based on their side-chain dihedral angle 
distributions (Jacobson et al. 2002), their Sij values could 
be studied further to determine how they correlate with the 
allowed conformations of the dipeptides using, e.g., hard 
sphere models (Zhou et al. 2012, 2014).

The significance of this work includes analysis of the 
frequency of dipeptides in every structural class of proteins. 
We find that determining the tendency of different dipep-
tides to be found in different defined secondary structural 
elements could help researchers in an improved under-
standing of information stored in the sequences of proteins.
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