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Comprehensive data analyses and comparisons across all our 
data sets have consistently shown five subconducting levels in 
addition to the fully open and closed levels for this channel.
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Introduction

Ion channels are large protein molecules embedded in cell 
membranes across which they selectively control the flow of 
ions, thereby regulating many aspects of cell function  (Aidley 
and Stanfield 1996, p. 3). Conduction of ions occurs through 
an aqueous pore gated by specific stimuli. Simple channels 
have only two levels, open and closed, but complex channels 
may have several conducting levels. E. coli  expresses two 
types of mechanosensitive channel, MscL (large conductance) 
and MscS (small conductance), both multilevel channels that 
control intra-cellular pressure (Hamill and Martinac 2001).

Ion channel currents, recorded using the patch clamp tech-
nique (Hamill et al. 1981), include noise from various sources 
(Benndorf 2009). The current is low-pass filtered, and digitised 
(sampled and quantised), producing a sequence of observations 
that appear to fluctuate randomly between conductance levels.

Hidden Markov models (HMMs) were first applied to 
analysis of (two-level) ion channel data by Chung et al. 
(1990), who assumed state (level)-independent Gaussian 
white noise with known variance. They estimated the mean 
current at each level from a histogram of current ampli-
tudes, and state transition probabilities using the Baum–
Welch algorithm (Baum et al. 1970).

However, noise has been found to be greater in open 
states (Colquhoun and Sigworth 2009; Heinemann and 
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Sigworth 1993). Consequently, Klein et al. (1997) assumed 
state-dependent Gaussian white noise. They were the 
first to use the expectation-maximisation (EM) algo-
rithm (Dempster et al. 1977) for parameter estimation in 
the resulting HMM, obtaining estimates for mean currents, 
transition probabilities and noise variances (for simulated 
data).

While the low-pass filter removes high-frequency noise, 
facilitating detection of channel events (Colquhoun and 
Sigworth 2009, p. 484), it also reduces pulse amplitude and 
duration. This may bias estimates of mean currents, and 
mean time spent at each level as a result of missing (very) 
brief sojourns. Consequently, it is desirable to incorporate 
in the model an adjustment for the low-pass filtering. Fred-
kin and Rice (1992) were the first to use a moving average 
adjustment, applying their model with state-independent 
white noise to two-level data.

Later, Khan (2003) used HMMs with state-dependent 
Gaussian white noise and a moving average adjustment 
for filtering. An EM algorithm was developed in Khan 
(2003) and Khan et al. (2005) to obtain parameter esti-
mates indirectly, using a meta-state (vector) Markov chain 
with a much larger state space than that of the original 
Markov chain. They analysed 10 kHz patch clamp data 
from MscL in E. coli, based on their HMMs (with and 
without adjustment for filtering). Parameter estimates for 
the actual HMM needed to be recovered from those of 
the meta-state HMM. They concluded that higher band-
width data were required to adequately describe channel 
characteristics.

In the present study, parameter estimates for HMMs with 
a moving average adjustment for filtering were obtained 
using an improved EM-based algorithm that depends on 
a generalisation of the Baum forward–backward algo-
rithm (Fredkin and Rice 2001). This algorithm has three 
advantages over that of Khan et al. (2005): it maximises the 
log-likelihood function for the actual HMM with an adjust-
ment for filtering, rather than that for an associated HMM; 
the algorithm is much simpler; and the computational load 
is substantially reduced.

This paper is structured as follows: In “Modelling ion 
channel data” we introduce HMMs for ion channel data 
and briefly describe the EM-based algorithm for parameter 
estimation. The generalisation of Baum’s forward–back-
ward algorithm is developed in “MAFHMM parameter 
estimation”. In “Methods and results” we analyse extensive 
improved bandwidth patch clamp data from MscL. We esti-
mate the number of levels, the conductances, mean dwell 
times and proportion of time spent at each level. Further, 
in “Transition schemes” we infer a transition scheme for 
MscL based on our results. In “Discussion” we compare 
our results with those from previous studies, and finish 
with“Concluding remarks”.

Modelling ion channel data

Standard hidden Markov models

The gating behaviour of a single ion channel is often mod-
elled by a continuous-time homogeneous Markov chain, 
with a finite number of states representing the conforma-
tional states of the channel (Colquhoun and Hawkes 1981; 
Ball and Sansom 1989; Becker et al. 1994; Colquhoun and 
Hawkes 1997). The states are assumed to have distinct con-
ductances. The continuous-time (noisy) channel current is 
modelled as state-dependent Gaussian white noise added 
to the current corresponding to the unobserved (or hidden) 
channel state.

Initially we ignore the effect of filtering. Let Xt be the 
state of the channel at sampling time t, t = 1, 2, . . . , T.  
Then X = (X1,X2, . . . ,XT ) is a discrete-time, homo-
geneous Markov chain, assumed to be irreducible, with 
finite state space S = {0, 1, . . . ,N − 1}, N × N transi-
tion probability matrix P = [pij] and initial distribution 
π = (π0,π1, . . . ,πN−1). Denote by µi and σi, respectively, 
the mean current and noise standard deviation corresponding 
to state i of the channel, i = 0, 1, . . . ,N − 1. Let ǫ1, ǫ2, . . . , ǫT 
be independent and identically distributed standard normal 
random variables, also assumed to be independent of X. The 
observed sample current at time t is given by

Given X, the random variables Y1, Y2, . . . ,YT are condition-
ally independent. Moreover, for t = 1, 2, . . . , T the distribu-
tion of Yt conditional on X depends only on Xt and, from (1),

a normal distribution with mean µxt and variance σ 2
xt

. Put 
Y = (Y1, Y2, . . . , YT ). The distribution of (X,Y) is called a 
(standard) HMM and its joint distribution, i.e. probability 
mass function for X and probability density function (pdf) 
for Y, is given by

where x = (x1, x2, . . . , xT ) ∈ ST, y ∈ R
T and fxt is the 

N(µxt , σ
2
xt
) pdf. Then the likelihood of the observed data is 

given by the marginal pdf of Y,

where the sum is over all possible vectors x.
Let φ = (π ,P,µ, σ ) denote the parameters in (3), 

where µ and σ are the vectors of mean currents and noise 
standard deviations, respectively. Maximum-likelihood 

(1)Yt = µXt + σXtǫt , t = 1, 2, . . . , T .

(2)(Yt | Xt = xt) ∼ N(µxt , σ
2
xt
),

(3)P(x, y) = πx1

T
∏

t=2

pxt−1,xt

T
∏

t=1

fxt (yt),

(4)g(y) =
∑

all x

P(x, y), y ∈ R
T ,
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parameter estimation is complicated if based on (4) (Rabiner 
1989, p. 21). The underlying Markov chain X is unobserved, 
so (3) may be described as the complete data likelihood and 
(4) as the incomplete data likelihood (Dempster et al. 1977). 
The EM algorithm maximises the incomplete (observed) 
data likelihood indirectly, by proceeding iteratively using the 
complete data log-likelihood. For other approaches, see Qin 
et al. (2000a, b), de Gunst et al. (2001) and Turner (2008).

In the following, i, j = 0, 1, . . . ,N − 1 represent the states 
of the Markov chain and m indexes iterations of the EM 
algorithm, with m = 0 indicating initial values. At iteration 
m ≥ 1 of the EM algorithm, the updating formulae for πi, pij, 
µi and σi are (Klein et al. 1997; Khan et al. 2005)

where for t = 1, 2, . . . , T

and for t = 1, 2, . . . , T − 1

Iterations continue until some stopping criterion is satisfied.
The γm

t (i) and γm
t (i, j) above can be computed using 

Baum’s forward–backward algorithm (Baum et al. 1970). 
The forward and backward probabilities are, respectively,

t = T − 1, T − 2, . . . , 1, and βT (i) = 1. These tend to zero 
geometrically with t, so scaled versions are needed. As in 
Devijver (1985), for t = 1, 2, . . . , T  and i = 0, 1, . . . ,N − 1,  
define

and β̄T (i) = 1. For i = 0, 1, . . . ,N − 1, the recursions for 
computing ᾱt(i) and β̄t(i) are

(5)πm+1
i = γm

1 (i),

(6)pm+1
ij =

∑T−1
t=1 γm

t (i, j)
∑T−1

t=1

∑N−1
j=0 γm

t (i, j)
,

(7)µm+1
i =

∑T
t=1 γ

m
t (i)yt

∑T
t=1 γ

m
t (i)

,

(8)σm+1
i =

{

∑T
t=1 γ

m
t (i)(yt − µm+1

i )2

∑T
t=1 γ

m
t (i)

}
1
2

,

(9)γm
t (i) = P(Xt = i | y,φm),

(10)γm
t (i, j) = P(Xt = i,Xt+1 = j | y,φm).

αt(i) = P(y1, . . . , yt ,Xt = i), t = 1, 2, . . . , T ,

βt(i) = P(yt+1, . . . , yT | Xt = i),

ᾱt(i) = P(Xt = i | y1, y2, . . . , yt),

β̄t(i) = βt(i)/P(yt+1, yt+2, . . . , yT | y1, . . . , yt),

(11)
ᾱt+1(i) =

1

ct+1

N−1
∑

j=0

ᾱt(j)pjifi(yt+1)

for t = 1, 2, . . . , T − 1, and

for t = T − 1, T − 2, . . . , 1, where c1 = P(y1) and 
ct+1 = P(yt+1 | y1, y2, . . . , yt). From (11), since 
∑N−1

i=0 ᾱt(i) = 1, the scale factors are

for t = 1, 2, . . . , T − 1. Then, as in Khan et al. (2005), for 
i, j = 0, 1, . . . ,N,

for t = 1, 2, . . . , T − 1, and for t = 1, 2, . . . , T

γm
t (i) = ᾱm

t (i)β̄
m
t (i).

HMM with adjustment for filtering

We now assume that the mean current is filtered, but 
not the noise. (Models in which the noise also is fil-
tered are more complicated and will be dealt with else-
where.) The Bessel filter used in patch clamp experi-
ments is well approximated by a Gaussian digital 
filter (Colquhoun and Sigworth 2009; Schouten 2000). 
This is a symmetric moving average (MA) filter with 
length r and weights ηs, s = −r, . . . , r, and is easily 
incorporated into the model.

Let Xt+r
t−r = (Xt−r , . . . ,Xt , . . . ,Xt+r), and similarly for 

xt+r
t−r. As in Khan (2003), the filtered mean channel current 
It at times t = r + 1, r + 2, . . . , T − r is given by

The values of r and ηs are determined by the ratio of the 
sampling and the filter cut-off frequencies (Table 4.1, 
Schouten 2000; Colquhoun and Sigworth 2009, p. 577). 
Similarly to (1), the digitised current at time t is

We refer to this model as a moving average filtered 
hidden Markov model (MAFHMM). The key differ-
ence between (1) and (14) is that the mean current now 
depends also on the underlying Markov chain states at r 
past and r future time points. Khan et al. (2005) viewed 
these states as a (2r + 1)-vector of meta-states (Fred-
kin and Rice 1992; Venkataramanan et al. 1998). For a 
Markov chain with N states, the total number of meta-
states is M = N2r+1.

(12)β̄t(i) =
1

ct+1

N−1
∑

j=0

pijfj(yt+1)β̄t+1(j)

ct+1 =
N−1
∑

i,j=0

ᾱt(j)pjifi(yt+1)

γm
t (i, j) = ᾱm

t (i)pijf
m
j (yt+1)β̄

m
t+1(j)/ct+1

(13)It =

r
∑

s=−r

ηsµXt−s .

(14)Yt = It + σXtǫt , t = r + 1, r + 2, . . . , T − r.
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MAFHMM parameter estimation

Improved algorithm

For simplicity we consider only r = 1. The general case 
is straightforward but notationally complex. In the MAF-
HMM the mean current depends on the Markov chain 
states at times t − 1, t and t + 1, so

for t = 2, 3, . . . , T − 1. Extending the notation of (3), the 
corresponding pdf is fxt−1,xt ,xt+1

(yt). The joint distribution 
for X and Y is

for x ∈ ST and y ∈ R
(T−2).

Key to our present approach to estimating the MAF-
HMM parameters is an algorithm for computing the condi-
tional probabilities for X given Y, due to Fredkin and Rice 
(2001), based on a generalisation of Baum’s algorithm. 
They used the algorithm for approximating the likelihood 
for simulated data, but not for maximum-likelihood estima-
tion. Our contributions lie in a more detailed exposition and 
application of the algorithm to analysis of real data.

Throughout the rest of this section, indices 
i, j, k, ℓ = 0, 1, . . . ,N − 1 denote Markov chain states. 
Since the (filtered) current depends on three consecu-
tive states of the underlying Markov chain, we generalise 
Baum’s forward and backward probabilities to

for t = 2, 3, . . . , T − 1, and

for t = T − 2, T − 3, . . . , 2, and βT−1(i, j, k)=1. Similarly 
to (11) and (12), the scaled versions of these probabilities 
are defined as

and β̄T−1(i, j, k)=1. The recursions for computing ᾱt(i, j, k) 
and β̄t(i, j, k) are

(15)(Yt | X
t+1
t−1 = xt+1

t−1) ∼ N(It , σ
2
xt
)

(16)P(x, y) = πx1

T
∏

t=2

pxt−1,xt

T−1
∏

t=2

fxt−1,xt ,xt+1
(yt)

(17)αt(i, j, k) = P(y2, . . . , yt ,X
t+1
t−1 = (i, j, k))

(18)βt(i, j, k) = P(yt+1, . . . , yT−1 | X
t+1
t−1 = (i, j, k))

(19)ᾱt(i, j, k) = P(Xt+1
t−1 = (i, j, k) | y2, . . . , yt),

(20)β̄t(i, j, k) =
βt(i, j, k)

P(yt+1, . . . , yT−1 | y2, . . . , yt)

(21)
ᾱt+1(i, j, k) =

1

ct+1

N−1
∑

ℓ=0

ᾱt(ℓ, i, j)pjkfi,j,k(yt+1)

for t = 2, 3, . . . , T − 2, and

for t = T − 2, T − 3, . . . , 2, where c2 = P(y2) and

Then for t = 2, 3, . . . , T − 1, the distribution of 
{Xt−1,Xt ,Xt+1} given the observed data y2, . . . , yT−1 can be 
computed as

Similarly to the unfiltered case, we use the EM algorithm to 
derive an iterative scheme for estimating the parameter vec-
tor φ. For t = 2, 3, . . . , T − 1 put

and for t = 1, 2, . . . , T − 2,

and Γ m
T−1(i, j) =

∑N−1
k=0 Γ m

T−1(k, i, j). Finally, for 
t = 1, 2, . . . , T − 1

and Γ m
T (i) =

∑N−1
j=0 Γ m

T−1(j, i).
The resulting EM-based updating formulae for the 

MAFHMM are

where Aℓ = ηc⊤ℓ  and Bℓ = ηD(1⊤ − c⊤ℓ ). Here, 
η = (η−1, η0, η1) and 1 = (1, 1, 1) are row vec-
tors, D = diag(µi,µj,µk) is a diagonal matrix, and 

(22)β̄t(i, j, k) =
1

ct+1

N−1
∑

ℓ=0

pkℓfj,k,ℓ(yt+1)β̄t+1(j, k, ℓ)

ct+1 = P(yt+1 | y2, . . . , yt)

=

N−1
∑

i,j,k,ℓ=0

ᾱt(ℓ, i, j)pjkfi,j,k(yt+1).

P(Xt+1
t−1 = (i, j, k) | y)

= ᾱt(i, j, k)β̄t(i, j, k).

(23)
Γ m
t (i, j, k) = P(Xt+1

t−1 = (i, j, k) | y,φm)

= ᾱt(i, j, k)β̄t(i, j, k),

(24)

Γ m
t (i, j) = P(Xt = i,Xt+1 = j | y,φm)

=

N−1
∑

k=0

Γ m
t+1(i, j, k),

(25)Γ m
t (i) = P(Xt = i | y,φm) =

N−1
∑

j=0

Γ m
t (i, j),

(26)πm+1
i = Γ m

1 (i),

(27)pm+1
ij =

∑T−1
t=1 Γ m

t (i, j)
∑T−1

t=1

∑N−1
j=0 Γ m

t (i, j)
,

(28)µm+1
ℓ =

∑T−1
t=2

∑N−1
i,j,k=0 A

ℓ(yt − Bℓ)Γ m
t (i, j, k)/σ 2

j
∑T−1

t=2

∑N−1
i,j,k=0(A

ℓ)2Γ m
t (i, j, k)/σ 2

j

,
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cℓ = (1{i=ℓ}, 1{j=ℓ}, 1{k=ℓ}) is a row vector where each entry 
of cℓ is an indicator function. Finally,

The updating formulae for the initial distribution and tran-
sition probabilities have similar forms to those in the stand-
ard model, and those for the means and variances are again 
weighted averages (Khan et al. 2005).

Algorithm complexity

Computing the likelihood is dominated by the calculations 
for the forward and backward probabilities. For an HMM 
of length T with N states, the forward probabilities require 
O(N2T) calculations (Rabiner 1989). For an MAFHMM 
with MA filter of length 2r + 1, the number of calcula-
tions required when using the associated HMM is O(M2T),  
where M = N2r+1. The improved algorithm requires 
O(MNT) calculations.

For example, for N = 5 and T = 100,000, the stand-
ard HMM requires on the order of 2,500,000 calculations, 
while the meta-state approach with an MA filter with r = 1 
requires 1,562,500,000. In contrast, the improved algorithm 
requires on the order of 62,500,000 calculations.

Data idealisation

Data idealisation is the process of obtaining the (estimated) 
mean current corresponding to the channel state at each 
sampling point. For each t = 1, 2, . . . , T , the idealised cur-
rent is ŷ = µx̂t, where x̂t is the idealised state of the under-
lying Markov chain.

In the standard HMM, for t = 1, 2, . . . , T , x̂t is obtained 
from the mode of the conditional distribution of Xt 
given y, i.e. as the value of i for which P(Xt = i | y,φ) 
is maximum (Fredkin and Rice 1992). In the MAF-
HMM, for t = 2, 3, . . . , T − 1, x̂t is determined from 
the mode of the distribution of {Xt−1,Xt ,Xt+1} given 
the observed data y, i.e. as the value of j for which 
P(Xt−1 = i,Xt = j,Xt+1 = k | y,φ) is maximum.

Standard errors

Standard errors for parameter estimates can be obtained 
from the inverse of the observed information matrix 
(OIM). A general approach to computing the OIM within 
the EM iterations was discussed by Louis (1982), which 
requires the calculation of conditional expectations, but 
this is computationally intractable for HMMs. Khan (2003) 
developed a general recursive algorithm which com-
putes the exact OIM for EM-based maximum-likelihood 

(29)σm+1
j =

√

√

√

√

∑T−1
t=2

∑N−1
i,k=0

(

yt − Im+1
i,j,k

)2
Γ m
t (i, j, k)

∑T−1
t=2 Γ m

t (j)
.

parameter estimates without requiring the computation of 
any expectations.

In the present study, standard errors for parameter esti-
mates (under both HMM and MAFHMM) have been com-
puted using Khan’s algorithm.

Methods and results

Experimental techniques

6×His-tagged MscL proteins were purified, and the 6×His 
tag was removed by thrombin according to a published pro-
cedure (Häse et al. 1995). Purified MscL was reconstituted 
into liposomes mixed with 100 % soybean azolectin using 
a dehydration/rehydration (D/R) reconstitution method 
(Delcour et al. 1989; Martinac et al. 2010). Mixed lipids 
were dissolved in chloroform and dried under nitrogen to 
make a thinner lipid film, and D/R buffer [200 mM KCl, 5  
mM 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid 
(HEPES), adjusted to pH 7.2 with KOH] was added before 
vortexing and sonication for 10 min. MscL was added at 
protein-to-lipid ratio of 1:1000 (w/w) and incubated at 4 °C 
for 1 h. Detergent was removed with the addition of Bio-
beads (BioRad, Hercules, CA), followed by incubation at 
4 °C for further 3 h. The proteoliposomes were collected by 
ultracentrifugation and resuspended in 30 μL D/R buffer. 
Aliquots of proteoliposomes were spotted onto cover 
slips and dehydrated overnight under vacuum at 4 °C. The 
dried proteoliposomes were rehydrated at 4 °C with D/R 
buffer and subsequently used for electrophysiological 
experiments.

The MscL channel activity was recorded from proteoli-
posomes using the patch clamp technique at applied volt-
age +100 mV. The bath and pipette recording solution 
used in liposome experiments was the same, consisting of 
200 mM KCl, 40 mM MgCl2 and 5 mM HEPES (pH 7.2 
adjusted with KOH). Negative pressure (suction) activat-
ing MscL was applied to the patch pipette using a syringe, 
monitored with a pressure gauge (PM 015R, World Preci-
sion Instruments, Sarasota, FL). The single-channel current 
was amplified with an Axopatch 200B amplifier (Molecu-
lar Devices, Sunnyvale, CA), filtered at 25 and 50 kHz, 
digitized at 75 and 150 kHz, respectively, with a Digi-
data 1440A interface using pCLAMP 10 acquisition soft-
ware (Molecular Devices, Sunnyvale, CA) and stored in a 
computer.

Data exploration

Four data sets at each bandwidth (25 and 50 kHz) were 
selected for analysis, each containing about 200,000 points. 
Figures 1 and 2 show segments; the higher bandwidth data 
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have higher noise amplitude (about double at the closed 
level). Besides the closed and fully open levels, identified 
reasonably well by eye, both records show subconducting 
levels. Identifying subconducting levels is important, but 
requires more sophisticated approaches. We base our analy-
sis on HMMs.

Preliminary assessment of noise

The number of levels N was allowed to vary from 2 to 
9, and for each N we fitted an HMM using (5)–(8). We 
restricted the maximum number of levels to 9, based on 
previous results (Sukharev et al. 2001; Khan 2003) and 
exploratory analysis of the present data. The fully open 
channel currents were 315–320 pA. The estimated noise 

standard deviations at the closed and fully open levels were 
about 5 and 11 pA, respectively, for the 25 kHz data, and 
about 9 and 12.5 pA, respectively, for the 50 kHz data. 
However, consistent with the findings of Khan et al. (2005), 
at the subconducting levels the estimated noise standard 
deviations were larger, 16–27 pA.

Previous studies (Blatz and Magleby 1986; Milne 
et al. 1989; Colquhoun and Sigworth 2009; Khan et al. 
2005) suggested that the low-pass filter slows transi-
tions between levels. Consequently, some data points 
in the digitised record are displaced in amplitude, caus-
ing the estimated noise standard deviations at the sub-
conducting levels to be inflated by the contribution from 
these points. Further, the idealised record revealed that, 
as a result of over-estimation of noise variances, some 

Fig. 1  25 kHz data sampled 
at 75 kHz (sampling period 
0.0133 ms, 1500 points). Bro-
ken horizontal lines show levels 
estimated using HMM with 
N = 7. (Portion A shown at 
higher time resolution in Fig. 6)

Fig. 2  50 kHz data sampled 
at 150 kHz (sampling period 
0.0066 ms, 3000 points); other 
details as in Fig. 1
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points at subconducting levels were clearly misclassi-
fied. Consequently, the estimated noise standard devia-
tions need to be constrained. A simple and computation-
ally efficient approach is to constrain the noise standard 
deviations at the intermediate levels to be equally spaced 
between those at the fully open and closed levels, as in 
Khan et al. (2005). This resolved the misclassification 
problem.

Statistical analysis

We used HMMs and MAFHMMs to further analyse these 
records with the main aims of estimating the number of 
levels and the corresponding conductances. Key results will 
be summarised for all data sets, but details will be shown 
for just three selected data sets: (a) at bandwidth 25 kHz 
and (b) and (c) at 50 kHz.

Estimating the number of levels

Extensive analyses were carried out for all eight data sets, 
using HMMs with the number of levels N allowed to vary 
between 2 and 9 and noise standard deviations constrained as 
described in “Preliminary assessment of noise”. We selected 
the value of N based on the two goodness-of-fit criteria 
described in Khan et al. (2005). Figure 3 depicts the root mean 
square error (RMSE) for the three selected data sets, where

As N increases, the RMSE decreases, but only slightly for 
N > 7. Similar behaviour was observed for the second cri-
terion, the negative maximised log-likelihood. The above 
analyses were repeated using MAFHMMs, with µx̂t in the 

RMSE =

{

1

T

T
∑

t=1

(yt − µx̂t )
2

}1/2

.

expression for RMSE replaced by Ît =
∑1

s=−1 ηsµx̂t−s
 and 

the average taken over a sequence of length T − 2.
Furthermore, comparing high time resolution plots of 

observed data with corresponding idealisations revealed 
evidence of over-fitting for N > 7, with additional lev-
els being fitted within what appeared to be baseline noise. 
Hence we selected N = 7.

Further results

Summarised in Table 1 are the results for each data set based 
on models with N = 7. Currents were offset after analysis so 
that the estimated mean current at the closed level was zero, 
that is µ̌i = µ̂i − µ̂0, i = 0, 1, . . . , 6. At each level, channel 
conductances (% max) were estimated by the mean current as a 
percentage of that at the fully open level. Corresponding stand-
ard errors were computed by using Khan’s (2003) algorithm.

Idealised records were used to determine the mean dwell 
times and corresponding standard errors, and the propor-
tion of time at each level. Estimated conductances and mean 
dwell times are presented graphically in Figs. 4 and 5.

For the 25 kHz data, estimated subconductances were 
lower with filtering than without by as much as 4 % (see 
also Fig. 4). Also, as shown in Fig. 6, some points were ide-
alised differently by the MAFHMM, most noticeably at the 
intermediate levels (for example between times 863.6 and 
864.2). For each of the 50 kHz data sets, estimated subcon-
ductances were similar for HMM and MAFHMM. Adjust-
ment for filtering resulted in minor differences in the esti-
mated occupancy probabilities (p̂i).

For the 50 kHz data sets, corresponding estimated sub-
conductances were higher than for the 25 kHz data. For 
HMM analysis, the differences were 1–8 % of the fully 
open level (with the largest difference at level 2) and for the 
MAFHMM they were 3–11 % (with the largest at level 3). 
For the two 50 kHz data sets, corresponding subconduct-
ances were different by 3–7 % for the HMM and 2–6 % for 
the MAFHMM. To indicate the statistical variability, esti-
mated subconductances for all eight data sets are shown in 
Table 2, along with corresponding (sample) mean conduct-
ance (x̄) and standard deviation (s) for each level.

Figure 5 shows that estimated mean dwell times (τ̂i) at 
corresponding intermediate levels were lower with filtering 
than without. This is also true for the closed and fully open 
levels (not shown in Fig. 5 due to the different scale). Com-
parison across the data sets indicated that the estimated 
mean dwell times at corresponding conductance levels 
were higher without filtering for the 25 kHz data set, but 
were similar for the two 50 kHz data sets.

Dwell time histograms at each level for the 50 kHz data 
set (c) showed a preponderance of short dwell times and a 
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long tail. Sukharev et al. (2001) and Perozo et al. (2002) 
have suggested the existence of two conformational states 
at level 0. To seek evidence for this, we fitted a mixture of 
exponential distributions (Colquhoun and Sigworth 2009) 
to the dwell times at each level. Using the Bayesian infor-
mation criterion (BIC), for each of the eight data sets the 
best estimate for the number of components in the mix-
ture at level 0 was two. This is consistent with the gating 
scheme proposed by Sukharev et al. (2001). Similar analy-
ses for other levels indicated only one component for each.

Transition schemes

For the 50 kHz data sets the transition scheme for MAF-
HMM based on estimated transition matrices and ideali-
sations is shown in Fig. 7. We have adopted the notation 
SC1, . . . , SC5 of Cox et al. (2013) to indicate subconducting 
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Fig. 4  Estimated conductances (% max) based on HMM (open 
marker) and MAFHMM (solid marker) for data sets (a), (b) and (c)

Table 1  Results from HMM and MAFHMM analyses with N = 7: 
data recorded at (a) 25 kHz and sampled at 75 kHz (200,000 points, 
sampling period 0.0133 ms); (b) and (c) 50 kHz and sampled at 

150 kHz (190,000 points and 200,000 points, respectively, sampling 
period 0.0066 ms)

Level Current (pA) Number of points Occupancy prob. Dwell time (ms)

HMM MAFHMM HMM MAFHMM HMM MAFHMM HMM MAFHMM

i µ̌i SE % max µ̌i SE % max p̂i p̂i τ̂i SE τ̂i SE

(a)

 6 315.5 0.658 100 316.3 0.661 100 3230 3208 0.0162 0.0160 0.339 0.0275 0.277 0.0209

 5 256.8 0.591 81.4 256.6 0.286 81.1 607 660 0.0030 0.0033 0.038 0.0039 0.033 0.0029

 4 205.2 0.738 65.0 199.6 0.652 63.1 502 531 0.0025 0.0027 0.047 0.0038 0.037 0.0024

 3 147.3 0.641 46.7 135.1 0.338 42.7 335 352 0.0018 0.0018 0.040 0.0039 0.031 0.0022

 2 84.2 0.672 26.7 74.2 0.483 23.5 445 482 0.0022 0.0024 0.037 0.0034 0.031 0.0018

 1 33.3 0.003 10.6 27.8 0.436 8.8 819 835 0.0041 0.0042 0.037 0.0020 0.033 0.0017

 0 0.0 0.012 0.0 0.0 0.017 0.0 194,047 193,932 0.9702 0.9697 12.745 1.0478 11.291 0.8999

(b)

 6 317.8 0.096 100 317.1 0.109 100 16,860 16,808 0.0887 0.0885 0.238 0.0109 0.223 0.0097

 5 274.2 0.405 86.3 274.7 0.188 86.6 1992 2026 0.0105 0.0107 0.020 0.0009 0.019 0.0009

 4 209.5 0.136 65.9 210.5 0.595 66.4 1832 1824 0.0096 0.0096 0.027 0.0012 0.024 0.0011

 3 153.6 0.743 48.3 154.2 0.596 48.6 1505 1508 0.0079 0.0079 0.026 0.0014 0.022 0.0011

 2 88.5 0.132 27.9 89.8 0.881 28.3 1235 1252 0.0065 0.0066 0.020 0.0009 0.018 0.0008

 1 36.6 0.507 11.5 36.4 0.361 11.5 2080 2087 0.0110 0.0110 0.023 0.0009 0.021 0.0008

 0 0.0 0.025 0.0 0.0 0.035 0.0 164,496 164,495 0.8657 0.8658 3.089 0.1727 3.080 0.1748

(c)

 6 319.7 0.093 100 319.9 0.093 100 19,273 19,275 0.0964 0.0964 0.209 0.0091 0.205 0.0087

 5 283.9 0.480 88.8 283.7 0.348 88.7 2737 2720 0.0137 0.0136 0.023 0.0008 0.022 0.0008

 4 225.8 0.552 70.6 225.4 0.700 70.5 1080 1096 0.0054 0.0055 0.022 0.0011 0.019 0.0009

 3 173.4 0.045 54.2 172.7 0.070 54.0 675 694 0.0034 0.0035 0.021 0.0013 0.018 0.0011

 2 110.4 0.247 34.5 108.4 0.271 33.9 677 679 0.0034 0.0034 0.025 0.0018 0.022 0.0014

 1 49.1 0.967 15.4 46.5 0.146 14.5 604 616 0.0030 0.0031 0.023 0.0015 0.022 0.0014

 0 0.0 0.022 0.0 0.0 0.027 0.0 174,954 174,920 0.8748 0.8746 12.541 1.8317 11.899 1.6965
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levels. Observe that (direct) transitions from the closed 
level C are only to SC1 and SC2, and the fully open level 
can be reached only from SC4 and SC5. Each state com-
municates directly with up to two states above it or below 
it. This scheme is consistent with the linear structure for 
MscL proposed by Sukharev et al. (2001).

A transition scheme (not shown here) for the 25 kHz 
data was also constructed, based on MAFHMM analyses. 
That scheme contained a (two-way) transition between 
SC2 and SC5 not present in Fig. 7. There are two possi-
ble explanations for this. Firstly, the 25 and 50 kHz data 
were different, so it is possible that these transitions were 
not present in the 50 kHz data. Secondly, it may be that 
the lower cut-off frequency of the 25 kHz data caused sub-
stantial delays in the rise time of the signal, as a result of 
which some points were sampled while in transition. This 
would cause the analysis to detect transitions that in fact 
do not exist.

Fig. 5  Estimated mean dwell times based on HMM (open marker) 
and MAFHMM (solid marker) for data sets (a), (b) and  (c) (disc, 
square and diamond, respectively)

Fig. 6  Idealisation of portion A 
(Fig. 1) based on (a) standard 
HMM and (b) MAFHMM
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Discussion

Conductances from previous studies (Sukharev et al. 1999, 
2001; Khan et al. 2005; Petrov et al. 2011), together with 
those from our present study, are summarised in Table 3 
and plotted in Fig. 8. Subconductances show some varia-
tion between studies. Sukharev et al. (1999) reported five 
levels for MscL. In a later investigation, based on higher 
bandwidth data, Sukharev et al. (2001) claimed seven lev-
els for this channel. Khan et al. (2005) found five levels 
using 10 kHz data and suggested that additional levels 
might be found in data showing more activity in the sub-
conducting levels. Recently, Petrov et al. (2011) reported 
six levels.

Sukharev et al. (2001) analysed two different data sets 
recorded at applied voltages of −50 and −20 mV, respec-
tively. They found five levels for the −50 mV data and six 

levels for the −20 mV data. By merging the results from 
these two analyses, they concluded that the MscL had 
seven levels. They also suggested that the 9 and 56 % levels 
(respectively, SC1 and SC3 in Fig. 8) were missing in the 
earlier investigation due to very low activity at subconduct-
ing levels. Petrov et al. (2011) used high hydrostatic pres-
sure in their experiment to increase channel activity and 
determined the levels from amplitude histograms rather 
than a model-based analysis. Note the gap between their 
first and second subconducting levels in Fig. 8.

Chiang et al. (2004) and Shapovalov and Lester (2004), 
based on different approaches, suggested that MscL in 
E. coli may have many energetic (conformational) states, 
corresponding to positions of side chains in the channel pro-
tein. However, not all of these may be important for channel 
opening, and HMM techniques detect conducting states that 
may correspond to ensembles of these molecular positions.

Based on extensive analysis of eight data sets, our esti-
mate of the number of levels is seven. All our data were 
recorded under identical experimental conditions, during 
the same afternoon, with applied voltage +100 mV. (The 
higher voltage increases signal-to-noise ratio, facilitating 
detection of subconducting levels.)

Understanding MscL gating behaviour requires knowl-
edge of both the number of subconducting levels and the 
number of conformations at each level (Sukharev et al. 
1999, 2001). Sukharev et al. (2001) proposed that the mem-
brane tension stretches from the closed conformation (C) to 
a closed–expanded (CE) conformation before the first inter-
mediate level (SC1) occurs, indicating more than one con-
formational state at the closed level. This notion is further 
supported by the results of electron paramagnetic resonance 

Table 2  Estimated 
subconductances (% max) based 
on MAFHMM analyses of four 
data sets at each bandwidth

Also given for each level is the mean (x̄) and standard deviation (s)

Conductances (% max)

Level 25 kHz

1 2 3 4 x̄ s

1 8.8 8.6 9.4 9.3 9 0.4

2 23.5 25.9 25.8 26.3 25 1.3

3 42.7 47.0 46.7 47.1 46 2.1

4 63.1 69.1 66.4 66.8 66 2.5

5 81.1 90.6 85.4 86.8 86 3.9

Level 50 kHz

1 2 3 4 x̄ s

1 11.5 14.5 10.6 11.8 12 1.7

2 28.3 33.9 28.2 28.3 29 2.8

3 48.6 54.0 50.6 47.4 50 2.9

4 66.4 70.5 67.0 68.3 68 1.8

5 86.6 88.7 86.0 88.3 87 1.3

SC1 3

C FO

SC 5SC

SC4SC2

Fig. 7  Transition scheme for 50 kHz data sets, based on MAFHMM 
analysis
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(EPR) spectroscopic study showing that a reduction in 
bilayer thickness, which results from stretching the mem-
brane during MscL activation by membrane tension, may 
stabilise at least one additional closed conformation of the 
channel (Perozo et al. 2002). Statistical analyses by Khan 
(2003, p. 113) showed the existence of three conformational 
states at the closed level. Based on our present data, we 
found that the closed level had two conformational states.

In Table 1 the mean dwell times for the subconducting 
levels were about 2.6 sampling periods for the 25 kHz data 
and about 3.7 sampling periods for the 50 kHz data. How-
ever, the minimum dwell time at intermediate levels for 
the 50 kHz data sets was equal to one sampling period, a 
phenomenon also reported by Khan et al. (2005). Hence, 

even with our higher bandwidth data, the phenomenon of 
missed brief events reported by Khan et al. (2005) has not 
been eliminated.

Concluding remarks

The current study presents the most extensive statistical 
analysis of MscL data reported in the literature to date. Our 
major findings are that MscL in E. coli has seven levels, 
with two conformational states at the closed level. This 
is the first study reporting seven levels in one recording, 
based on HMM analysis. In addition, our data are consist-
ent with two conformational states at the closed level, pro-
viding further empirical evidence for the proposed gating 
scheme of Sukharev et al. (2001).

We expect our improvements to the HMM-based statisti-
cal modelling and EM-based computational algorithms to 
play an important role in analysing future higher bandwidth 
experimental data.
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