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Abstract The cross-bridge working stroke is regarded as

a continuous (without jumps) change of myosin head

internal state under the action of a force exerted within the

nucleotide-binding site. Involvement of a concept of con-

tinuous cross-bridge conformation enables discussion of

the nature of the force propelling muscle, and the Coulomb

repulsion of like-charged adenosine triphosphate (ATP)

fragments ADP2- and Pi
2- can quite naturally be consid-

ered as the source of this force. Two entirely different types

of working stroke termination are considered. Along with

the fluctuation mechanism, which controls the working

stroke duration tw at isometric contraction, another inter-

rupt mechanism is initially taken into account. It is trig-

gered when the lever arm shift amounts to the maximal

value S & 11 nm, the back door opens, and Pi crashes out.

As a result, tw becomes inversely proportional to the

velocity v of sliding filaments tw & S/v for a wide range of

values of v. Principal features of the experimentally

observed dependences of force, efficiency, and rate of heat

production on velocity and ATP concentration can then be

reproduced by fitting a single parameter: the velocity-

independent time span tr between the termination of the last

and beginning of the next working stroke. v becomes the

principal variable of the model, and the muscle force

changes under external load are determined by variations in

v rather than in the tension of filaments. The Boltzmann

equation for an ensemble of cross-bridges is obtained, and

some collective effects are discussed.

Keywords Muscle force � Chemomechanical

transduction � Transient process

Introduction

The conservation law states that the amount of energy

taken by an engine minus losses is equal to the mechanical

work that it performs. This quite trivial conclusion is

equally valid for engines of all types and designs, and

hence, in terms of energy solely, the difference between

them consists only in the magnitude of their efficiency.

Therefore, when investigating a machine of unknown type

that performs mechanical work, of primary importance is

the way the mechanical force is produced and applied to an

object to be moved rather than the energy balance.

The overwhelming majority of human-made devices

that perform mechanical work are driven by solely two

kinds of forces. The first case is the pressure force onto a

certain surface due to fast-moving molecules, and the

second, ponderomotive forces due to the interactions of

electric currents and/or magnetized cores. The former

forces act on the blades of an ancient waterwheel and the

walls of the combustion chamber in the newest jet engine.

The latter forces work in virtually all electrical engines. It

is absolutely evident, however, that the natural engine—

muscle—works owing to forces of another type. Therefore,

the first question to be asked while investigating the

mechanism of muscle performance is: What kind of

interaction is the source of the force generated by myosin

head?
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It is natural to assume that the internal structure of any

well-designed device should first of all correspond to the

physical principle of its operation. In the case of myosin

head, this means that its design must provide maximal

efficiency for simultaneously functioning in two ways.

First, inside it there must be a certain moveable object to

which the mechanical force F arising in the course of ATP

hydrolysis is applied. To move this object over a distance s,

mechanical work Fs is performed and the myosin head

structure must provide minimal losses in the course of

chemomechanical energy transduction. Second, a mecha-

nism must exist that provides application of the oppositely

directed forces ?f and -f to thin and thick filaments and

the performance of work fS upon their relative displace-

ment by distance S. This mechanism must also be effective

to a maximal extent, resulting in a minimal possible value

of the difference Fs - fS. It can be stated for certain that

the existence of such complex internal structure must lead

to the appearance of different interrelations between the

processes occurring at different structural levels, as men-

tioned in the title of this work.

First of all, these are relationships between the

mechanical parameters that feature relative sliding of fila-

ments, e.g., between force and velocity. In conventional

macroscopic studies of muscles it is quite difficult to reveal

relations conditioned by the gears which are built into the

myosin head, since we observe the result of simultaneous

work of a tremendous number of cross-bridges. However,

one can try to pick out the above interrelations from the

background of ‘‘many-particle’’ effects either theoretically

or using experimental results for individual myosin mole-

cules (see, for example, Moffitt et al. 2008; Greenleaf et al.

2007).

Further, with a more or less clear idea on the mechanical

properties of myosin head and its internal structure, it is

possible to assume that the mechanism of force generation

occurs in the course of ATP hydrolysis. This is the main

topic of our work. However, it is clear that, when solving

this problem, it is impossible to take into account all the

known details of myosin subfragment-1 (S1). Instead, the

simplest model that still accounts for the main components

of this structure should be used.

The model

In the last half-century, the vast majority of attempts to

quantitatively describe the process of muscle force gener-

ation have been based on different versions of the classical

Huxley (1957) model. The very general phenomenological

approach used in this model enables the description of a

wide class of phenomena related to myosin-head func-

tioning. This is achieved by fitting functions that define the

probabilities of transitions between the attached and

detached states of a cross-bridge versus its coordinate.

This initial model (Huxley 1957) is a classic example of

black-box models, in this case representing the cross-

bridge as a whole. In the early 1970s, Huxley and Simmons

(1971) and Huxley (2000) made this model more sophis-

ticated. Despite knowing almost nothing about the real

cross-bridge structure, they nevertheless took into consid-

eration some of its discrete internal states. In other words,

they took into account several black boxes corresponding

to different internal states of the cross-bridge rather than a

single black box corresponding to a single internal state.

The consideration of transitions between these states in the

framework of statistical physics enables a formal descrip-

tion of the rapid transient behavior of a cross-bridge (see

the discussion in ‘‘Relation to earlier theories’’).

However, models of this type are so general that they

can be used for the description of quite different physical

systems with the same number of degrees of freedom in an

almost invariable form. Therefore, a corresponding disad-

vantage of such a framework is the impossibility of

understanding the specificity of the physical processes that

occur in the system under consideration.

What features necessarily have to be taken into account

Of course, the great complexity of the processes condi-

tioning and accompanying protein conformation is unde-

niable. However, we will fail to understand the principle of

myosin motor performance until we are able, in a rough

and simple approximation, to understand the essence of

these processes. Consequently, the approach to this prob-

lem should be based on the desire to model just the pro-

cesses occurring inside the myosin head rather than an

arbitrary system with a given number of different states.

The main features of the S1 structure and the principal

interactions that occur within it should be initially con-

sidered in the model. One can expect that, if this is done

correctly, the model should reproduce the main features of

the system under consideration with a minimum number of

adjustable parameters.

Under the discrete approach used by Huxley and his

followers it is impossible to describe the process of the

continuous change of coordinates of the cross-bridge dur-

ing its transition from one state to another. At the same

time, the stretching of the elastic link between the myosin

head and the thick filament and the emergence of the force

between actin and myosin are just consequences of this

process. Hence, to understand the principle of myosin

motor performance, one has to begin with a correct

description of the process of the cross-bridge working

stroke, taking into account the real internal structure of

myosin head.
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The principal features of this internal structure have

been thoroughly investigated by now, and in some cases,

we understand how the individual structural elements react

upon each other (Rayment 1996; Geeves and Holmes 1999;

Gordon et al. 2000; Cooke 2004). These already known

elements of the structure and the relationships between

them should be initially built into the model, while the rest

can again be considered as a black box. I believe that there

are three principal circumstances that necessarily have to

be taken into account.

Firstly, an S1 conformation is merely a change of its

shape, i.e., displacement of individual, fairly hard (Fin-

kelstein and Ptitsyn 2002) fragments of a large molecule

relative to each other. Consequently, for this displacement

to arise and, moreover, in so doing, for mechanical work to

be performed on external objects, forces must be born

inside protein that put its separate parts into motion. The

forces are born in the course of ATP hydrolysis, and this

allows us to estimate the size of the region where this

occurs. Actually, hydrolysis of a single ATP molecule

results in an energy rise by say

EATP � 8� 10�20 J � 20 kBT; ð1Þ

where kB is the Boltzmann constant, and T is the absolute

temperature, whose value in muscle experiments is about

300 K (see the discussion of the magnitude of EATP in

Woledge et al. 1985, section 4.3.1.3). If this energy were

uniformly distributed over all 3N degrees of freedom of the

S1 fragment, consisting of N & 10,000 atoms, it would

exert a vanishing effect equivalent to a temperature

increase of the order of DT � 2EATP= 3NkBð Þ � 0:4 K.

Therefore, we have to assume that the process of trans-

duction of chemical energy of the ATP molecule to

mechanical energy should occur in the ATP binding site

within a region that contains only a few atoms, i.e., within a

region with representative size of the order of 1 nm or less.

Moreover, the amount of ATP energy released must even-

tually be transferred to the single degree of freedom associ-

ated with the switch-2 movement (see, for example, Geeves

and Holmes 1999, Fig. 6). At the expense of just this energy,

the mechanical work is performed thereafter by lever arm

rotation. Consequently, it is natural to assume that it is just the

force arising in this active site that propels adjacent ‘‘hard’’

(Finkelstein and Ptitsyn 2002) protein structures (c-phos-

phate-binding pocket, switch-2, converter domain, etc.), thus

causing the conformation of cross-bridge as a whole.

Secondly, I proceed from an assumption that a cross-

bridge can exert a force on the actin filament only while

both hydrolysis products ADP and Pi remain within the

ATP binding site. If the cross-bridge is attached to a

moving actin filament, the lever arm gradually rotates

together with switch-2 until the displacement reaches its

maximum value S � 11 nm, the back door opens, and Pi

fetches away. Bearing in mind the power generation pro-

cess described below in ‘‘Coulomb interaction as the

source of muscle force’’, I consider it necessary that the

interruption of the working stroke immediately after the Pi

release be initially built into the model. The hypothesis that

the working stroke is interrupted at the opening of the back

door can hardly be considered an obvious assertion because

the cross-bridge remains attached to the actin filament for

some time after the Pi and then ADP release (see, for

example, Cooke and Bialek 1979). Nevertheless, this is the

most important of the assumptions underlying the model,

and only a direct experiment can unequivocally confirm or

disprove it (see, for example, Dantzig et al. 1999).

Thirdly, the finiteness of the cross-bridge lifetime in the

isometric contraction state means that there must be

another mechanism of working stroke interruption, being

independent of the filament sliding. Therefore, one would

expect that it has a fluctuation nature. Such mechanism

does not differ from its analog considered in Huxley’s

(1957) model, and it should be taken into account together

with the mechanism of stochastic cross-bridge attachment

to actin.

Finally, I would like to note that, in order to understand

the nature of the processes occurring inside the myosin

motor, one necessarily has to go beyond the framework of

standard chemical thermodynamics. In this case the forces

which change the cross-bridge configuration in the course

of the working stroke are of our main interest, rather than

the calculation of thermodynamic characteristics of con-

tracting muscle. So, now the myosin head is no longer a

member of a large ensemble and should be treated as a

separate system evolving under the action of internal and

random external forces (allowing for the effects of thermal

motion). Since we are dealing with a device that contains a

few atoms and that, in each working cycle, captures and

splits a single ATP molecule, to describe the problem we

should write the Hamiltonian of the system and investigate

the temporal evolution of its density matrix. It is clear,

however, that this is a problem of incredible complexity

and its solution is currently impossible. So we have to use

as radical simplifications as possible to facilitate the task.

First of all, to describe the myosin head conformation

we have to use classical rather than quantum mechanics

and neglect the influence of random external forces on the

process. Consequently, in the simplest version of the

analysis of myosin head performance as presented in this

section, a simple mechanical model is employed which

does not account for the action of thermal fluctuations in

the course of the working stroke. This is a rough approx-

imation, of course, but we need something to start with,

and moreover, it does not ignore random external forces. It

is not too difficult to take into account the effect of these
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forces on the attachment and detachment processes, and the

problems related to the role of thermal motion will be

considered in ‘‘Fluctuations at low-velocity contraction’’.

The simple mechanical model of S1 structure

Hereinafter, I use the following model directly based on a

description of the cross-bridge operation as presented by

Geeves and Holmes (1999, page 703): ‘‘Opening the switch-

2 region destroys the c-phosphate-binding pocket and …
would appear to facilitate c-phosphate release (a ‘‘back door

enzyme’’). …. The movement of the switch-2 in the closed

form has other more far-ranging consequences, namely the

rotation of the converter domain through about 60�. …. The

end of the lever arm has moved through 11 nm along

the actin helix axis between open and closed, which is about

the expected magnitude of the power stroke. This large

change is driven through molecular cogs and gears by a

small (0.5 nm) change in the active site. Therefore, it now

seems rather likely that the myosin power stroke works by

switching between these two conformations.’’

The above-described internal structure of myosin head is

reproduced in the model quite accurately (Fig. 1), the only

difference consisting in the change in the cause–effect

connection between the back door opening and the myosin

head conformation. I proceed from the presumption that the

‘‘small change in the active site’’ arising from the appear-

ance of the force within the c-phosphate-binding pocket

can be modeled as a shift of some kind of a piston analo-

gous to the one shown in Fig. 1. The lever shown in this

figure models all the intermediate molecular structures that

transmit the force to the actin filament. Omitting for the

time being the question of how this gear works, I merely

assume that it operates according to the golden rule of

mechanics. So, I want to emphasize again two basic pro-

visions of the kinematic scheme: (1) opening the back door

means pushing out the piston from the cylinder, and (2) the

conformation of the cross-bridge arises under pressure

from the moving door, rather than the back door opening

due to the cross-bridge conformation.

The force and work

We shall proceed from the following relationship, valid for

any mechanical system:

F xð Þ ¼ �oE xð Þ=ox; ð2Þ

where E is the potential energy of a system which depends on

the generalized coordinate x, and F is the corresponding

generalized force which performs work upon changing x. In

our case x is naturally taken as a coordinate for switch-2,

which changes as the cleavage advances. The value x = 0

(switch-2 in the closed form) corresponds to the initial

moment of the ATP cleavage, while x = D corresponds to

interruption of the working stroke (switch-2 in the open

form). It is worth mentioning that this choice of the point of

origin differs from the one used in Huxley’s (1957) model,

while E still means the potential energy of an ATP molecule

or, maybe, of some complex of the ATP molecule and

proximal structures within the ATP binding site. There are no

restrictions on the shape of the E(x) dependence in the model.

In the course of numerical calculations, any suitable form of

E(x), or equivalently, F(x), can initially be postulated; for

example, one can use the dependence T2(y) obtained in the

experiments by Huxley and Simmons (1971) or Ford et al.

(1977) to obtain the function F(x). Alternatively, E(x) can be

fitted to provide the best agreement between the theory and

some other experimental data available.

In this paper we investigate the effect of the internal

structure of the S1 fragment on the physical characteristics

of muscle. It is useful therefore to simplify the consider-

ation, suppressing if possible the influence of other factors.

So, in what follows we consider mainly the simplest linear

dependence

E xð Þ ¼ E0 � Fx; F ¼ const. ð3Þ

Otherwise, a dependence of F on x would lead to

changes in the shape of the curves in Fig. 4 at low speeds,

Fig. 1 Key scheme of an engine moving a rope (actin filament) at

velocity v. In the initial position (dashed lines) switch-2 is closed—

the piston depicting it is slid into the cylinder depicting the active site.

This is the moment of the working stroke beginning: lever arm 2 is

attached to the rope, and the distance between the centers of the

spherules q1 and q2, depicting ADP and Pi, respectively, is equal to R
(x = 0). Then, the repulsive force displaces the piston, and the

distance between q1 and q2 increases up to R ? D (x = D) while the

corresponding rope displacement is S = kD. The working stroke is

terminated now: switch-2 is opened (the back door opens—the piston

is pushed out of the cylinder), and lever arm 2 detaches from the rope

after ADP and Pi fetched away. The ratio of the lever arms is equal to

k = (lever arm 2):(lever arm 1), and at any point v ¼ kdx=dt
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and, taking into account the results of Ritchie and Wilkie

(1958) and Edman (1979), this problem requires separate

detailed consideration (see also ‘‘Force, work, and efficiency

for a single cross-bridge’’). Besides, the usage of the

simplest linear dependences for E(x) and some other

functions allows the majority of formulas to be obtained in

analytical form. This significantly facilitates the analysis of

the results of further numerical calculations. This, however,

in no way reduces the generality of the complete system of

equations describing the model. Similarly, rough estimations

of various parameters that are given in the text, which

employ the experimental data for particular muscles, do not

imply the need to use just these values in the model.

The work

Work sð Þ ¼
Zs=k

0

F xð Þ dx � EATP � E s=k
� �

ð4Þ

is evidently performed by the system in Fig. 1 in the course

of the rope displacement by a distance s. According to

the above quotation from Geeves and Holmes (1999), the

change of the switch-2 coordinate after the completion of the

working stroke is equal to Dx ¼ D � 0:5 nm. We denote

the working stroke duration as tw, and the displacement of

the actin (rope) during this time period, S, as

S ¼ kD; k � 22: ð5Þ

Consequently, the maximal work performed by the system

in the course of the working stroke is equal to Work(S).

Depending on the efficiency of the chemomechanical

transduction process, which is approximately equal to 1/2,

this work is about half the energy of hydrolysis, i.e.,

Work(S) & EATP/2. The residual energy must be dissipated

as heat

Q ¼ E Dð Þ; ð6Þ

i.e. in particular, it is spent to thermalize ADP and Pi when

they are fetched away from the active site (see ‘‘Efficiency

and heat production’’ for further detail). Correspondingly,

the efficiency of the single myosin head with no account of

friction depends only on S and is equal to

g0 Sð Þ �Work Sð Þ=EATP
: ð7Þ

Using the lever (Fig. 1), the work Work(S) should be

converted into work corresponding to the displacement of the

rope. The average force fh i applied to the rope by the lever is

equal to the work performed divided by the rope displacement.

The force averaged over the working stroke is equal to

fh iws�Work Sð Þ=S � 0:5EATP=kD � 3:6 pN: ð8Þ

This value does not depend on the velocity v of

filaments sliding past one another (in the model, the rope

velocity relative to the cylinder) and fits well with the usual

evaluation of the force per cross-bridge in the course of

isometric contraction (4 pN; see Woledge et al. 1985,

p. 20).

Actually, to find the experimentally measurable average

force that a single cross-bridge exerts on the actin filament,

one has to determine the force fh i vð Þ averaged over the

period of the back and forth motion of the cross-bridge T(v)

(in what follows, T without the multiplier kB means the

period rather than temperature). As long as v does not

change, one can easily find the working stroke duration

[see also (40), ‘‘Force, work, and efficiency for a single

cross-bridge’’] as

tw vð Þ ¼ S=v: ð9Þ

Now, to obtain the complete duration of the cross-bridge

turnover it is necessary to merely add another parameter,

namely the recovery time tr, i.e., the time span between the

completion of the previous and the beginning of the next

working stroke. Naturally, this time depends basically on

the kinetics of the chemical reactions and to a much lesser

degree on the velocity of the sliding filament. Therefore,

we assume tr to be independent of v and obtain the

following expression for the time of cross-bridge turnover:

T vð Þ � tr þ tw vð Þ ¼ tr þ S=v: ð10Þ

This equation obviously contradicts experimental fact:

in the case of isometric contraction the average duration

of cross-bridge turnover T(v ? 0) : T0 & 450 ms

(Woledge et al. 1985, p. 25). The reason is that the

formulas discussed in this section should be replaced at

low speeds by others (see ‘‘Fluctuations at low-velocity

contraction’’).

The force fh i vð Þ is somewhat less than fh iws, since it

performs the same work Work(S) but over a longer time

T(v) [ tw, i.e. in the course of actin displacement over a

longer distance vT(v) [ S. In addition, unlike fh iws; this

force is a function of v:

fh i vð Þ ¼Work Sð Þ
vT vð Þ ¼ fh iws

tw vð Þ
tr þ tw vð Þ ¼

fh iws

1þ vtr=S
: ð11Þ

When fh iws¼ const., the dependence on the velocity is

solely through the ratio tw vð Þ=T vð Þ. As regards the ensem-

ble, this ratio represents the fraction of cross-bridges

attached to actin at any moment, and this is another pos-

sible interpretation of the physical meaning of (11). Any-

way, for isovelocity contraction we obtain the hyperbola

(11) shifted along the v-axis, which is fundamental for the

future consideration.

It should be noted that a model based on similar

assumptions was already proposed more than 30 years ago

by Cooke and Bialek (1979). The authors of the model
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experimentally investigated the dependence of isometric

force and force–velocity curves on ATP concentration and

tried to describe the results in the framework of Huxley’s

(1957) model. They concluded that ‘‘the data is best fit by

models in which head attachment occurs rapidly at the

beginning of a power stroke, head detachment occurs

rapidly at the end of the power stroke, and the force pro-

duced by a myosin head in a power stroke is independent of

velocity’’ (Cooke and Bialek 1979, Abstract). As a result,

in the course of any working stroke, the overwhelming

majority of cross-bridges perform the same work, and

hence some formulas obtained by Cooke and Bialek are

similar to the corresponding formulas in this paper (com-

pare, for example, Eq. 11 herein with Eq. 7 from Cooke

and Bialek 1979). Nevertheless, all the results obtained in

these approaches are by no means identical, and the rea-

sons why they differ are analyzed further, when needed.

Hill’s force–velocity curve

Now, to obtain the standard Hill force–velocity curve

P

P0

¼ 1� v=vmax

1þ P0=a

� �
v=vmax

; ð12Þ

it is merely necessary to shift the hyperbola (11) along the

P-axis, taking into account the ‘‘hindering force’’ Fh. This

is the only parameter we use to describe all the elements of

the myosin head structure that are not explicitly considered

in the model (a new black box).

Since we want the hyperbola (11) to move without

changing its shape [so that Hill’s law (12) is successfully

approximated], the choice of the dependence Fh(v) is

greatly narrowed; we can add either a linear-in-v term to

the numerator of (11) or a constant to the whole expres-

sion. If the hindering force operates inside the myosin

head, it must operate only in the course of the working

stroke. Consequently, in this case Fh(v) should be inclu-

ded in the numerator of (11) and therefore be proportional

to velocity:

Fh ¼ cv ) P vð Þ ¼Work Sð Þ � FhS

vT vð Þ ¼ fh iws�cv

1þ vtr=S
;

P0 ¼ fh iws; vmax ¼
P0

c
; a ¼ c

S

tr

:

ð13Þ

here, P is the average force per single cross-bridge, applied

to an actin filament and performing useful work.

Second, the hindering force operating continuously out-

side a cross-bridge should be added to the entire expression

(11) and therefore must be independent of velocity:

Fh ¼ const ) P vð Þ ¼ fh iws

1þ vtr=S
� Fh

P0 ¼ fh iws�Fh; vmax ¼
P0S

trFh

; a ¼ Fh:

ð14Þ

The elucidation of these and some other (not yet

discussed) notations and parameters used in the model can

be found in Table I in the Electronic Supplementary

Material.

In both cases (13) and (14) the average force P applied to

the actin filament vanishes when the work performed by the

hindering force during the period becomes equal to Work(S).

The same condition determines the value of vmax in the

model by Cooke and Bialek (see Eqs. 8 and 11 in Cooke and

Bialek 1979). However, there are also significant differ-

ences. In the cases (13) and (14) Fh acts exactly similar in all

the cross-bridges, and its value does not change during the

working stroke or the total cycle. However, in the model of

Cooke and Bialek (1979) the hindering force acts only in a

few cross-bridges which did not detach in a timely fashion

by ATP binding. These cross-bridges must be mechanically

dissociated from actin at the very end of the working stroke

by the movement of the filaments. Therefore, the hindering

force has a clear physical meaning in a model such as the

latter, which is a great advantage. It is not difficult to use in

the model considered here the Fh(v) dependence obtained in

Cooke and Bialek (1979) (see the expression for fu preced-

ing Eq. 11). However, the real nature of the hindering force

can be ascertained only by further experimental research. At

least, until this problem be solved, the model in which Hill’s

equation (12) is obtained in analytical form may be

preferable.

Recovery stroke

The recovery time tr determines the part of the period T(v)

(10) of the cross-bridge back and forth motion that does not

depend on the velocity v. This is why in the denominators

of the two formulas (13) and (14) the term vtr=S plays

exactly the same role as the term P0=a

� �
v=vmax

in the Hill

equation (12). It is precisely these terms in the denomi-

nators that determine the degree of deviation of the

hyperbolic dependence (12) from the linear one appearing

in the numerator. Hence, one can now obtain for both cases

(13) and (14) the same simple equality bounding the

parameters vmax, tr, and P0=a:

tr ¼
P0

a

S

vmax

: ð15Þ

Inasmuch as this formula appears immediately after

rewriting Eq. (11) using the notations of Eq. (12) it does

not depend on the nature of the hindering force and allows
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better understanding of the physical meaning of Hill’s

parameter P0=a. Indeed, we have two basic parameters of

myosin under consideration—S and vmax—with dimensions

of length and velocity, respectively. It is just these

parameters that define a characteristic length and

characteristic velocity of the system. Obviously, the ratio

of these parameters determines the characteristic time
S=vmax

. Thus, it follows from (15) that Hill’s parameter P0=a
determines the relation between tr and this characteristic

time, or, if you will, between the characteristic length S and

the value of vmaxtr.

Now tr appears to be an unambiguous parameter which

imposes the shape of the force–velocity curve (change of

vmax simply corresponding to a scaling). Therefore, tr
becomes the principal fitting parameter of the model, and it

makes sense to carefully analyze the conclusions that fol-

low from formula (15).

We begin with the estimation of the order of magni-

tude of tr directly from this formula. For muscles of

various types, the magnitude of the ratio S/vmax amounts

to a few milliseconds at low (about 10 �C) temperature,

and an order of magnitude smaller at a temperature of

about 30–40 �C (see Table 2.II in Woledge et al. 1985).

In contrast, as can be seen from the same table, the ratio

P0/a amounts to a few units at all temperatures. There-

fore, with decreasing temperature, tr should increase

from a few units to a few tens of milliseconds. This

conclusion seems quite reasonable, although I am not

aware of experimental data which could definitely con-

firm or refute it.

Next, we obtained formula (15) using only the principles

of the model and the laws of mechanics. In reality, how-

ever, biochemical events occur alternately with mechanical

ones, and a particular stage of the biochemical cycle per-

mits the next stage of the mechanical cycle and vice versa

(see Huxley 1980). Therefore, it is hardly possible to assert

a priori that the relationship (15) between vmax and tr
should be completely universal. Nevertheless, if the model

adequately describes the cross-bridge operation, this for-

mula should correctly reproduce the influence of bio-

chemical processes on the change of tr (see also ‘‘Force,

work, and efficiency for a single cross-bridge’’).

In the course of the recovery stroke, a number of pro-

cesses of both (biochemical and mechanical) types take

place. We confine our discussion to only three of them: (1)

the ADP release process, whose duration we denote by

t-ADP, (2) the ATP binding process (duration tATP), and (3)

the detachment and the new myosin head attachment to

actin filament (duration tda). Ignoring the probability of

counterreactions, one can write

tr ¼ t�ADP þ tATP þ tda;

t�ADP ¼
1

k�ADP

; tATP ¼
1

kATP � ATP½ � ;
ð16Þ

and tda does not depend on the ATP concentration [ATP].

Now we obtain from (15)

vmax ¼
P0S

a

k�ADPkATP � ATP½ �
k�ADP þ kATP � ATP½ � þ tdak�ADPkATP � ATP½ � :

ð17Þ

Assuming that the ATP binding and myosin head

detachment and new attachment processes are fast, i.e.,

t�ADP � tATP and tda; ð18Þ

we obtain from (17) that

vmax

k�ADP

� P0

a
S: ð19Þ

This implies that, at constant P0=a, the speed vmax is

directly proportional to k�ADP. This fact is well known

experimentally (see, for example, Fig. 4 in Siemankowski

et al. (1985), where kmin $ vmax=S, k�AD $ k�ADP). In

view of Eq. (15), such a connection seems quite natural for

a system in which the ADP release turns out to be the rate-

limiting step, so that tr � t�ADP. It should be emphasized

that this conclusion is by no means grounded on the strain

sensitivity of the rate of ADP release, since in this model

the strain disappears after Pi release.

By the way, formula (15) describes a more general

regularity: vmax is proportional to the rate constant of just

the slowest process occurring in the course of the recovery

stroke. If the ATP concentration decreases, the time tATP

increases and can exceed the time t-ADP (see 16). In this

case, it is easy to obtain also the standard (see, for example,

Fig. 5 in Cooke and Bialek 1979) hyperbolic dependence

of the speed of unloaded contraction Vmax on [ATP]. Since

t-ADP does not explicitly depend on the ATP concentration

and at high [ATP] the inequality (18) holds true, we can put

tr � tr ATP½ � ! 1ð Þ � k�1
�ADP and assume that the value of

tda=tr is negligible. Then we obtain

Vmax ATP½ �ð Þ � vmax

trkATP � ATP½ �
1þ trkATP � ATP½ � ;

vmax � Vmax ATP½ � ! 1ð Þ:
ð20Þ

The coefficient preceding [ATP] is equal to trkATP here,

and hence, Vmax reaches half its asymptotic value vmax if

ATP½ �jVmax¼vmax=2
� trkATPð Þ�1; ð21Þ

(compare with Eq. 48).
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Efficiency and heat production

We define the efficiency g as the ratio of the useful

mechanical work performed per cross-bridge turnover to

the ATP cleavage energy EATP. From (13) and (14) we

obtain for the case v = const.

g vð Þ � P vð ÞvT vð Þ
EATP

¼ P0S

EATP

1� v=vmax

� �
: ð22Þ

This definition of efficiency, being standard for a usual

mechanical system, is not completely correct for the

description of the cleavage of a single molecule within an

atomic-size system. In fact, it is impossible to totally

convert the EATP energy to mechanical work since the

temperature of the sarcomere as a whole is constant.

Actually, if we do not take into account the internal and

rotatory degrees of freedom, their total number is equal to

3 for the ATP molecule and 3 ? 3 for its fragments ADP

and Pi. Hence, energy of no less than 3=2kBT must be spent

to accelerate them to thermal velocities (thermalize). This

energy dissipated to heat by no means can be converted

to work, although one cannot assert that it is lost

irreversibly. I suggest that the kinetic energy of ADP

and Pi takes a noticeable part in the course of ATP

synthesis during metabolic processes. Thus, at least part

of the heat should be used again. This reasoning is in

agreement with the arguments of Wilkie (1974), who

suggested that one should calculate the ratio of useful

work to the free rather than total energy, as in (22).

Nevertheless, knowing that this is a mere renormalization

of the efficiency value and the heat loss is barely about

10 % of the total hydrolysis energy, we can neglect these

corrections to a first approximation.

One can easily see that the dependence g(v) (22) is

linear in v. The velocity dependence of efficiency is

traceable solely to the presence of ‘‘friction’’, and this

dependence is linear in v because in both cases (13) and

(14) the friction losses (the work performed by the force Fh

per cycle) increase in proportion to v. However, just as for

Eq. (10), Eq. (22) is in sharp contradiction to experiment

since g(v) must fall to zero at v ? 0. The reason is the

same—the formulas of this section cannot be used at

v ? 0.

The part of the energy released in the course of ATP

hydrolysis which was not converted to mechanical work

eventually dissipates to heat. Hence, the rates of

work (WR) and heat production (HR) and their sum

(heat ? work rate, HWR) are defined by the equations

HR vð Þ � EATP

T vð Þ 1� g vð Þ½ �

¼ P0vmaxð ÞEATP

P0S

1� g vð Þ
1þ P0=a

� �
v=vmax

v=vmax
;

WR vð Þ � EATP

T vð Þ g vð Þ ¼ P0vmaxð Þ
v=vmax 1� v=vmax

� �
1þ P0=a

� �
v=vmax

;

HWR vð Þ �WR vð Þ þ HR vð Þ ð23Þ

(the value P0vmax is a convenient unit for power and

therefore is factorized). Again, these formulas, as for (10)

and (22), do not work at v ? 0. However, we know that

work is not done for v = 0 and so

HR v! 0ð Þ � HR0 ¼ EATP=T0
: ð24Þ

Conversely, in the case of contraction at maximal

velocity we obtain from (23) and both (13) and (14) that

HR vmaxð Þ ¼ EATP

tr þ S=vmax

¼ P0vmaxð Þ EATP

P0S 1þ P0=a

� � : ð25Þ

The straight line SL(v) connecting the initial 0;HR0ð Þ
and the final vmax;HR vmaxð Þð Þ points of the curve HR(v) is

determined by an equation of the form

SL vð Þ ¼ HR0 þ P0vmaxð Þ � q � a

P0

� �
v=vmax

;

q ¼ EATP

P0S

tr

T vmaxð Þ � 1� T vmaxð Þ=T0

h i
:

ð26Þ

According to the above estimations, the ratio T vmaxð Þ=T0
¼

HWR v ¼ 0ð Þ=HWR vmaxð Þ should be about 1/10 or less, so

that it can be neglected as compared with 1. Then, the not too

rough approximation q � g 0ð Þ 1þ S= vmaxtrð Þ
� �h i�1

can be

used. Since T vmaxð Þ is only slightly greater than tr, the q

value in (26) must be about unity and the slope of SL(v)/P0

is about (a/P0) [compare with Hill’s (1938) assumption].

Next, the second derivative of HR(v) is proportional to

HR00 vð Þ	 g 0ð Þ
1� g 0ð Þ �

vmaxtr
S

;

and therefore the function is a convex curve (i.e.,

HR00 vð Þ\0), if g(0) (see 22) is not too large. Consequently,

the function HR(v) (23) beyond the low-velocity region is

similar to the standard experimental curves (see Fig. 4.13

in Woledge et al. 1985).
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For purely illustrative purposes, Fig. 2 shows the

dependence of the efficiency (22) and of the rates of heat,

work, and (heat ? work) production on the contraction

velocity. The following parameter values were chosen:

S ¼ 11 nm; P0 ¼ 4 pN; vmax ¼ 1:5 lm s�1;
T0 ¼ 450 ms; a=P0 ¼ 0:2;

ð27Þ

(see also (1)), and the values

g0 ¼ 0:55; c ¼ 2:67� 10�6 kg s�1; tr ¼ 37 ms;
q � 1:37

ð28Þ

or

g0 ¼ 0:66; Fh ¼ 0:8 pN; tr ¼ 37 ms; q � 1:37

ð29Þ

were obtained from (27) and (13) or (14), respectively.

In the low-velocity region, the difference between the

curves shown in Fig. 2 and experimental ones is not fun-

damentally important. The problem is solved in the next

section (compare Fig. 2 and Fig. 4). However, there also

arises a problem in the high-speed region v � vmax. In

accordance with some data (see, for example, Hill 1964),

the rate of (heat ? work) production might decrease when

v approaches vmax. Naturally, it is impossible to explain this

fact in a model in which the cross-bridge cycle duration

decreases monotonically with increasing velocity of mus-

cle contraction. This circumstance forced Huxley (1973) to

make his model additionally complicated.

One of the main purposes of this work is the creation of

an extremely simple model with a minimal number of

parameters but which is still capable of explaining the basic

laws governing the process of muscle contraction. It seems

to me that, although ATP hydrolysis by the actomyosin

complex appears to be the unique source of energy for the

work which a muscle performs, it is not the unique source

of heat. In fact, heat fluxes of various capacity and char-

acter arise in the course of any chemical reactions in

muscle. In particular, a significant amount of heat is

released during the operation of calcium pumps (see

Woledge et al. 1985, p. 25), and there are no grounds to

think that the intensity of these processes does not depend

on the speed of muscle contraction. There are some

uncertainties concerning the heat fluxes connected with

metabolic processes. Their velocity should by no means

necessarily be proportional to the muscle contraction

velocity (i.e., the rate of growth of the concentration of

ATP hydrolysis products). In such a situation, reliable

experimental estimation of just the amount of heat released

during ATP hydrolysis by actomyosin complex seems

more urgent than the introduction of amendments to the

model of this process. Frustra fit per plura quod potest fieri

per pauciora.

Fluctuations at low-velocity contraction

The above-considered mechanism of the working stroke

interruption can hardly account for the reason for cross-

bridge detachment from a thin filament in the case of iso-

metric contraction. Under this mechanism, the cross-bridge

attached to actin at the moment t = 0 with coordinate

x = 0 can detach from it only at x = D, no matter how

much time t it takes until this moment. In fact, upon iso-

metric contraction, the cross-bridges do not change their

coordinates, rather remaining attached to actin only for a

limited time, on average, equal to T0. Taking account of the

fact that we are dealing with objects with characteristic size

of about a few nanometers, the assumption about the

leading role of thermal fluctuations seems dominant in this

case. These fluctuations can manifest themselves in our

description as a random force large enough to pass switch-

2 from the ‘‘closed’’ to ‘‘open’’ state. Besides, one cannot

exclude that some other fluctuation mechanism is essential

in the cross-bridge detachment process. Anyhow, by

analogy with Huxley’s (1957) model, we have to introduce

a probabilistic description for these effects.

Probability function for a single cross-bridge

Considering the evolution of a cross-bridge which is

attached to actin at the moment t = 0 with coordinate

x = 0, we must introduce a function W(x,t)—the proba-

bility for the cross-bridge, being still attached to the actin

Fig. 2 Dependence of the rates of heat (HR), work (WR), and

heat ? work output (HWR) on the relative contraction velocity v/vmax

(see 23) in the framework of the simple mechanical model. The

corresponding parameter values are listed in (27) and (28) or (29).

Inset dependence of the cross-bridge efficiency (22) on v. Note the

values of the functions HR(v), HWR(v), and g(v) at v = 0 (compare

with Fig. 4)
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filament, to reach the state with coordinate x at the moment

t. This probability satisfies a general equation

d

dt
W x; tð Þ � o

ot
þ dx

dt

o

ox

� �
W x; tð Þ; W 0; 0ð Þ ¼ 1: ð30Þ

The specific form of the partial derivatives with respect

to time and coordinate depends on which processes are

responsible for changing the state of the cross-bridge.

To describe our mechanism of back door opening, the

partial derivative with respect to x should be of the form

o

ox
W x; tð Þ ¼ �d x� Dð ÞW D; tð Þ: ð31Þ

In this case, the state of the cross-bridge does not change

at any x \ D and the cross-bridge necessarily detaches

from actin; i.e., W vanishes as soon as x increases up to D.

To describe the action on a cross-bridge of random

forces, the partial derivative with respect to t should be of

the form of the equation of radioactive decay

o

ot
W x; tð Þ ¼ �W x; tð Þ

sw xð Þ : ð32Þ

Here, sw(x) is the lifetime of the working stroke of the

cross-bridge residing in the state with coordinate x. To

determine this value experimentally, it is necessary to shift

quite a number of cross-bridges after attachment to actin to

the state with coordinate x and to measure the average time

prior to their detachment. Consequently, the function

sw(x) can be determined from experiments of the type

described by Huxley and Simmons (1971), Ford et al.

(1977), Piazzesi and Lombardi (1995), and Piazzesi et al.

(2002), although I know nothing about such studies.

Being controlled by the fluctuations of the force applied

to the back door, the lifetime sw(x) should be smaller, the

closer x is to D. Indeed, the closer the piston is to the exit

from the cylinder (Fig. 1), the easier it is to knock it out

with one blow. We suppose here that

sw xð Þ ¼ s 0ð Þ
w exp �jxð Þ; ð33Þ

where s 0ð Þ
w and j are the model parameters [compare with

g(x) in Duke (2000, Eq. 9)]. The choice of the function

type in (33) is convenient since, on the one hand, it

enables the form of the sw(x) dependence to be changed

over a wide range and, on the other hand, the

W(x,t) dependence with this choice can be found analyt-

ically, at least in the case of isovelocity contraction.

However, in the case of numerical calculations, this form

of the sw(x) dependence is not compulsory; see the text

relating to (3).

Thus, we obtain the following equation for W(x,t):

d

dt
W x; tð Þ ¼ � 1

sw xð Þ þ d x� Dð Þ dx

dt

� 	
W x; tð Þ;

W 0; 0ð Þ ¼ 1:

ð34Þ

It depends on coordinate x and on the time span t

between hydrolysis onset (coordinate x = 0) and the

moment under consideration (coordinate x). To solve

(34), these two variables should be linked by a functional

dependence x(t) which determines the law of motion

(the type of muscle contraction). In other words, the time

span t obviously must depend on the velocity of sliding

filaments v tð Þ ¼ kdx=dt; because the relative displacement

of filaments is k times as large as the displacement of

switch-2 (x) owing to the lever arm (Fig. 1). Below

we consider only the simplest case of isovelocity

contraction in which the relationship between x, v, and t

takes the form

t ¼ kx=v; v ¼ const: ð35Þ

The characteristic scale of measurement for this time is

set by the value

s 0ð Þ
w ¼ T0 � tr; ð36Þ

which is on the order of a few tenths of a second. This is

the average duration of the working stroke at isometric

contraction, and the cross-bridge certainly detaches from

actin under the action of fluctuations before its coordinate

reaches the value x, if it takes a time span substantially

exceeding s 0ð Þ
w . On the contrary, a cross-bridge attached to

slowly moving actin is unlikely to be detached from it for a

time span much smaller than s 0ð Þ
w .

In the case of isovelocity contraction, these conclu-

sions are supported by direct analytical calculation. The

coordinate x becomes a single-valued function of time t

(see 35), and W turns out to be a function of a single

variable:

Wðx; tÞ ¼ W vt=k; t
� �

� ~W tð Þ: ð37Þ

Now, we obtain an ordinary differential equation instead

of (34):

w tð Þ � � d

dt
~W tð Þ ¼ 1

sw
vt=k
� �þ d t � kD=v

� �" #
~W tð Þ;

~W 0ð Þ ¼ 1;

ð38Þ

and, integrating it, obtain the result

~W tð Þ ¼ exp � t

s 0ð Þ
w

ez � 1

z

( )
h S=v� t
� �

; z � jvt=k;

w tð Þ ¼
~W tð Þ

sw
vt=k
� � h S=v� t

� �
þ ~W S=v

� �
d t � S=v

� �
; ð39Þ

where h(x) is the step function. This solution satisfies both

the natural initial condition ~W 0ð Þ ¼ 1 (the cross-bridge is
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attached to actin filament at the initial moment) and the

condition that ~W vanishes if the cross-bridge displacement

reaches one pace S at the moment t = S/v (working stroke

interruption because of back door opening at x = D).

Force, work, and efficiency for a single cross-bridge

Let us consider once more the dependence of the average

duration of the working stroke on the contraction

velocity. This dependence is now determined by the

integral

tw vð Þ�
ZS=v

0

tw tð Þdt¼
ZS=v

0

~W tð Þdt; lim
v!0

tw vð Þ¼ s 0ð Þ
w : ð40Þ

If j¼ 0 and hence sw in (33) does not depend on x, this

can be easily integrated:

~W tð Þ



j¼0
¼ exp �t=s 0ð Þ

w

� �
;

tw vð Þjj¼0¼ s 0ð Þ
w 1� exp �S= vs 0ð Þ

w

� �� �h i
:

ð41Þ

It is seen that the function tw vð Þ varies very differently

in two different regions of v values: v\vch and v [ vch;

where vch ¼ S
.
s 0ð Þ

w
. In the first case tw is almost unchanged

tws v\vchð Þ � s 0ð Þ
w , while in the second case it decreases in

inverse proportion to the speed tws v [ vchð Þ � S=v. A

similar situation holds for j 6¼ 0, but in this case it is

better to use the approximate formula

vch � S=sw Dð Þ: ð42Þ

In the case v \ vch fluctuations dominate and the

probability for a cross-bridge to be kept attached to actin

filament up to completion of the step (x = D) is negligible.

In the contrary limiting case v [ vch fluctuations turn out to

be too slow, so that the majority of cross-bridges detach

from actin filament just at the moment when the

displacement reaches S, and we return to (9) for tw.

The work done by the force F(x) (2) on the movement of

filaments in a distance s is determined by (4). Averaging

this work over the duration of the working stroke (it is not

permanent now on account of the fluctuations) in the case

of isovelocity contraction s = vt one obtains

v ¼ const : sh iws¼ vtw vð Þ;

Workh iws ¼
ZS=v

0

Zvt=k

0

F xð Þ dx

2
664

3
775 � w tð Þ dt

¼ v

k

ZS=v

0

F vt=k
� �

� ~W tð Þ dt:

ð43Þ

In contrast to Work(S) (see ‘‘The simple mechanical

model of S1 structure’’) this expression depends on the

contraction velocity and vanishes at v ? 0.

Now, we want determine the average force exerted on

actin by a single cross-bridge during its working stroke.

The result will depend on the conditions of the corre-

sponding experiment. If the forces exerted by a single

cross-bridge (i.e., work=displacement) are sequentially

measured and then averaged, one obtains

fh iws¼
ZS=v

0

1

vt

Zvt=k

0

F xð Þ dx

2
664

3
775 � w tð Þ dt: ð44Þ

Otherwise, if a sarcomere or a group of sarcomeres is

tested, one at best can measure only the total work and

average pace sh iws so that

fh iws¼ Workh iws
�

sh iws
ð45Þ

In general, the expressions (43–45) are functions of v.

There is some experimental evidence that the force

generated per cross-bridge really varies with velocity

(Barclay et al. 2010), and using data of this sort one can

try to determine the true E(x) dependence. However, in

this paper, we restrict ourselves to the case F = const (see

3). The following very simple expressions appear in this

case:

fh iws¼ F=k;

Workh iws¼ fh iwsvtw vð Þ:

(
F ¼ const.

v ¼ const.

 !
ð46Þ

Substituting these expressions into Eq. (11), we obtain

the same formulas (13–25) in the region v [ vch. At the

same time, the situation is completely different in the

region v\vch. Here, the functions fh i vð Þ (11) and P(v) (13,

14) decrease very slowly with increasing v, just as tw vð Þ
(40). This effect is very similar to that discussed by Ritchie

and Wilkie (1958) and Edman (1979), but with the

condition F = const. and reasonable values of the

parameters, the region where the deviations from Hill’s

curve (12) emerge turns out to be too narrow.

To conclude this section it remains to discuss the

dependence of the isometric force on the ATP concentra-

tion. Such a dependence should occur at small values of

[ATP] when the ATP binding process turns out to be the

rate-limiting step instead of the Pi release process, i.e.,

tw 0ð Þ is less than or approximately tATP ¼ kATP ATP½ �ð Þ�1
.

Putting tr 
 T0 and therefore tw 0ð Þ � T0, by analogy with

(20) we obtain from (45) and (46) that

P ATP½ �ð Þjv!0¼
F

k
sw 0ð Þ

sw 0ð Þ þ tr
� F

k
T0kATP ATP½ �

1þ T0kATP ATP½ � : ð47Þ
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The coefficient preceding [ATP] is now equal to T0kATP

[compare with Eq. (20)]. This is why this hyperbole rises

with increasing [ATP] an order of magnitude steeper than

hyperbola (20):

ATP½ �jVmax¼vmax=2

ATP½ �jP ATP½ �ð Þjv!0¼F
2k

� T0

tr
: ð48Þ

In the main, these equations correctly describe the

experimental curves [compare (47) and (48) with (20) and

(21) and Figs. 2 and 5 in Cooke and Bialek (1979)].

However, it should be noted that equation (47) does not

describe a slight isometric force decrease at high [ATP]

(see Fig. 2 in Cooke and Bialek 1979). It might be that this

decline is associated with factors that are not accounted for

in the model under consideration; For instance, according

to Karatzaferi et al. (2004), the isometric force decreases

sharply with increasing Pi concentration, which should rise

with [ATP].

Numerical calculations

Since Workh iws! 0 at v ? 0, the efficiency (22) also

vanishes in this limit while the rate of heat release (23)

becomes equal to EATP � T�1
0 . The results of numerical

calculations performed using these formulas are shown in

Figs. 3 and 4. The computations again were done for the

two types of dependences of hindering force on velocity:

the linear one with Fh = cv operating within a cross-

bridge, and the constant one with Fh = const. operating

outside it. The numerical values of the five model fitting

parameters tr, F, s 0ð Þ
w , j, and Fh (or c) were determined to

reproduce the values of the parameters (27). The only

difference was that the slope of the curve HR vð Þ was

selected as close to the value 0.25 as possible instead of the

value of (a/P0) determined preliminarily:

HR vð Þ � HR0 þ 0:25P0v: ð49Þ

To fit HR0, the value of s 0ð Þ
w was specified to satisfy the

first condition in (10): s 0ð Þ
w ¼ T0 � tr. It must be empha-

sized that, in the approximation F(x) = const., the shape

of all the curves depends chiefly on tr and nearly does not

depend on j. This is quite natural because, in a wide

range v [ vch, the curvature of the function fh i vð Þ (11)

(or, what is the same, the magnitude of the parameter P0/

a, which regulates the curvature of the force–velocity

curve) is mainly determined by the tr value (see 15). The

dependence of the curvature on j is weak because this

parameter plays an important role for the function

tw(v) only in the narrow interval v \ vch. Finally, the P0

value depends mainly on F, while vmax is fixed by a finer

fitting of F and Fh.

In Fig. 3, the dependence P vð Þ of the force exerted by a

single cross-bridge on the contraction velocity is shown only

for the case Fh = cv for the following parameter values:

F ¼ 97 pN; cvmax ¼ 4:41 pN; tr � 0:04 s;

j ¼ k� 108 m�1:
ð50Þ

At this scale, the distinction between this case and the

case Fh = const. at

F ¼ 116 pN; Fh ¼ 0:8 pN; tr � 0:04 s;

j ¼ k� 108 m�1 ð51Þ

Fig. 3 Force–velocity curve at the parameter values specified in (50)

or (51); the value of vch is indicated by an arrow. The curve coincides

with the hyperbola (12) at a/P0 = 0.2 (this value was not fitted). Inset
the dimensionless ratio vtw vð Þ=S of the actin filament shift averaged

over the working stroke to the maximal pace, and the dependence

tw vð Þ (in seconds) at the same parameter values are shown. The value

of vch is indicated by a vertical dashed line here; note the break on the

abscissa

Fig. 4 Dependence of the rates of heat (HR), work (WR) and

heat ? work (HWR) output on contraction velocity v (see 23), taking

into account the contribution of fluctuations. Corresponding param-

eter values are listed in (27) and (50). Inset dependence of the cross-

bridge efficiency (22) on v/vmax and P/P0. Note the values of the

functions HR(v), HWR(v), and g(v) at v = 0 (compare with Fig. 2)
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is negligible, similarly to the distinction between the force–

velocity curve and the hyperbola (12) at (a/P0) = 0.2. The

dependence vtw vð Þ=S shown in the inset illustrates the

correctness of the approximation tw & S/v and of expres-

sion (42) for vch. The dependence tw vð Þ and the value of tr
are shown in the inset as well.

The dependences of the efficiency (22) on the relative

velocity v/vmax in the course of isovelocity contraction and

on the relative force P/P0 in the course of isotonic con-

traction are shown in the inset to Fig. 4. The maximal g
value amounts to about 0.5 and was not fitted. The same

Fig. 4 shows the dependences of the rates of work and heat

output on the contraction velocity per half-sarcomere

(compare Fig. 4 and Fig. 2). It is clear from (26) that the

slope of the HR(v)/P0 curve is about a/P0. Therefore, by

fitting the parameters to satisfy (49), we actually determine

the parameter a/P0. We see that the curves shown in Figs. 3

and 4 and those usually obtained in experiments on frog

sartorius muscle at low temperatures coincide in outline. It

should be emphasized that this reasonably good agreement

between theory and experiment was in fact obtained by

fitting a single parameter. Indeed, the changes of F and Fh

[i.e., P0 and vmax, see (13), (14)] merely change the scale

and do not alter the shape of the curves, while the role of j
is negligible. As a result, a single parameter—the recovery

time tr (see 15)—is now in the forefront.

Boltzmann equation and collective effects

The solution (39) describes the probability that a single

cross-bridge which at the moment t = 0 attaches to actin

filament moving uniformly in v will stay attached to it up to

the moment t. Now, we consider the whole ensemble

consisting of a large number N of identical myosin heads

which attach to actin filaments and detach from them with

random phases. Apparently, there are no grounds to think

that some direct interaction exists between these myosin

heads. Hence, for all the cross-bridges, alteration in the

velocity of filament sliding is the only means for a single

cross-bridge to feel the change in external load.

In the model discussed above, just the contraction

velocity is the principal parameter determining the average

force generated by each cross-bridge. Consequently, the

decrease in the velocity of contraction, which necessarily

arises upon an increase in the load on the muscle, causes a

synchronic increase of the average force generated by each

cross-bridge. In other words, it is just this muscle response

to the changes in the contraction velocity that causes any

weight to be lifted by a muscle uniformly.

This explanation is very simple and transparent

compared with the assumption suggested by Huxley and

Simmons (1971) and now underlying a number of models

from those of Duke (1999) to Walcott and Sun (2009); see

the discussion in ‘‘Relation to earlier theories.’’ Its meaning

is that the load change results in the change in tension of

the cross-bridge neck; this in turn modifies the energies and

population of different S1 states and, eventually, leads to

an alteration of the force which is generated by the cross-

bridge. It seems, however, that even the author of this

theory, Huxley himself, did not quite believe in its

correctness: ‘‘The fact … implies that the molecular events

are directly affected by the longitudinal displacement of

filaments rather than by the tension in them’’ (Huxley 2000,

p. 435).

Distribution function and Boltzmann equation

Let us still suppose that after the instant t = 0 the con-

traction velocity v does not change, and look at a much

longer time span comprising a series of cross-bridge cycles.

We now want to examine the evolution of this ensemble for

t [ 0, i.e., to ask:

1. What is the average number Nd (t) of myosin heads

detached from actin filaments?

2. What is the average number Na (x,dx,t) of cross-

bridges which are attached to actin and have coordi-

nates between x and x ? dx?

It is convenient to introduce the distribution function

q(x,t) satisfying the equation

Na x; dx; tð Þ ¼ Nq x; tð Þdx ð52Þ

for any x, t and rather small dx 
 D. Since any myosin

head should either be attached to actin filament with some

value of x or be detached from it, this distribution function

satisfies the normalization condition

nd tð Þ þ
ZD

0

q x; tð Þ dx � 1; nd tð Þ � Nd tð Þ=N: ð53Þ

Taking into account that the filaments slide at velocity v,

after an interval dt the states of Na(x,dx,t) cross-bridges that

had coordinates between x and x ? dx at the moment

t change as follows:

1. Na(x,dx,t)�(dt/sw(x)) of them detach from actin owing

to the fluctuations according to (32) if x ? dx \ D;

2. All of Nq(D,t)vdt/k cross-bridges with coordinates

from D – vdt/k up to D detach from actin because of

the forced opening of their back doors;

3. Coordinates of all other cross-bridges increase by

vdt/k.

This means that the decrease of the function q(x,t) due to

cross-bridge detachment depends on time according to the

equation
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Consequently, the equation for nd(t) has the form

d

dt
nd tð Þ ¼ v

k
q D; tð Þ þ

ZD

0

q x; tð Þ
sw xð Þ dx� nd tð Þ

sr

: ð55Þ

Here, the last term is written based on the hypothesis

that the rate of cross-bridge transition from the detached to

attached state is determined by an equation of the type (32)

with lifetime sr independent of v. These cross-bridges

become attached to actin with some values of coordinate x,

and this is the only contribution leading to an increase in

q(x,t). Therefore, we have to define the last term which

describes the increase of q(x,t) in the equation

d

dt
q x; tð Þ ¼ o

ot
þ v

k
o

ox

� �
q x; tð Þ






dec

þ o

ot
q x; tð Þ






inc

: ð56Þ

We shall presume that the working stroke of any cross-

bridge always begins at the state with x = 0. On the one

hand, this assumption seems natural because the waste of

energy is minimal in this case. On the other hand, this

assumption does not seem well established because a cross-

bridge can attach to actin filament only at certain points

and thus should bend somehow to do so. Anyway, this

assumption does not seem improbable and simplifies the

calculations, although at any moment it can be rejected in

favor of a function of the type f±, g± (Huxley 1957).

Thus, we reach the conclusion that, during the time span

dt, all cross-bridges with coordinate values from x = 0 up to

dx = vdt/k leave this band while Nd(t)(dt/sr) of the newly

attached cross-bridges fill their places. Consequently,

q 0; tð Þ ¼ knd tð Þ=vsr
; ð57Þ

and now instead of (56) we must solve Eq. (54) with the

boundary condition (57).

The set of equations (53–57) enables us to find the

distribution function q(x,t) if the initial one q(x,0) and the

value v are known. One can expect that the same system of

equations will describe the evolution of q(x,t) in the case

when v(t) changes sufficiently slowly with time. At least

this means that the velocity change during a single cross-

bridge cycle should be negligible, i.e., v t þ T vð Þð Þj
�v tð Þj 
 v tð Þ.

Actually, the system (53–57) represents one of the

simplest versions of the Boltzmann equation, specifically

that in which the velocities of all the ‘‘particles’’ are equal

to v and unusual boundary conditions are used. Conse-

quently, we can try to convert the system to a single

integrodifferential equation. This is indeed possible in the

case of isovelocity contraction, at least. In this case, a

cross-bridge can turn out to be in the state with coordinate x

at moment t only if it has attached to the actin earlier at the

moment t - kx/v in the state with x = 0 and has not

detached as yet. This means that

q x; tð Þjv¼const:� q 0; t � kx=v

� �
~W kx=v

� �

¼ k=vsr
nd t � kx=v

� �
~W kx=v

� �
ð58Þ

[see (39) for ~W and (57)]. Therefore, it can be said that the

distribution function q, determined at any moment t in the phase

space within the interval 0� x�D, is in one-to-one

correspondence with the function nd t0ð Þ related to the instants

t � kD=v� t0 � t. We obtain now the desired integrodifferential

equation in nd tð Þ by substituting (58) into (55):

d

dt
nd tð Þ ¼ 1

sr

�nd tð Þ þ
ZkD=v

0

w t0ð Þnd t � t0ð Þ dt0

8><
>:

9>=
>;: ð59Þ

According to (58), specifying the distribution function

q(x,0) at an initial moment t = 0 within the interval

0� x�D results in an unambiguous determination of

fictitious values of nd t0ð Þ at ‘‘earlier’’ moments

�kD=v� t0 � 0, which is just the initial condition for (59).

Calculation of experimentally observed parameters

In a nonequilibrium system, the above-obtained equations

could hardly be solved analytically, but the computation

can easily be performed. If we restrict ourselves to the case

of v = const., the results of this type of calculations should

be compared with the results of experiments on the step-

wise transition of muscle from a definite initial state to

isovelocity contraction at t = 0. Even more interesting may

be the analysis of experiments in which the contraction

velocity changes stepwise twice or more times in relatively

short intervals, for example, the experiments by Edman

(1980) or Irving and Woledge (1981).

Providing that q(x,t) is found, the force, heat rate, and

other physical data per cross-bridge can be obtained by a

standard averaging procedure:

P tð Þ ¼ � 1

k

ZD

0

oE xð Þ
ox

q x; tð Þdx� cv 1� nd tð Þ½ �;

HR tð Þ ¼
ZD

0

E xð Þ q x; tð Þ
sw xð Þ dxþ E Dð Þ v

k
q D; tð Þ

þ cv2 1� nd tð Þ½ �; . . .

ð60Þ

Here, relation (2) instead of (3) was used and the case

Fh = cv was chosen.
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Echo effect

Detailed numerical treatment of concrete experiments lies

beyond the scope of this paper, and I confine myself to the

examination of twitch shortening of a muscle following

isometric tetanus. Some curious phenomena would occur in

this case if the above model is adequate. According to the

assumptions used in deriving equation (57), the distribution

function in the isometric contraction state should resemble

a Dirac d-function; that is, q(x) at the isometric tetanus

represents a narrow peak because the coordinates of all the

attached cross-bridges have nearly the same time-inde-

pendent value x & 0. Let us trace the evolution of this

narrow peak if the state of the muscle changes stepwise

from isometric to isovelocity contraction.

The evolution of q(x,t) at the velocity v = 0.15vmax with

sr = tr and the magnitudes of all the other parameters

specified in (27) and (50) is shown in Fig. 5. It is seen that

the initial peak lowers and smears, shifting right with time,

while its square (the total number of cross-bridges attached

to actin filaments) decreases relatively slow. It is worth

noting that, in accordance with (54), the peak of the

function q(x,t) must lower, shifting right, but no smearing

should be observed in the interval 0 \ t \ S/v, since the

equation is linear and all the cross-bridges move with the

same velocity v. In the calculations which I made, the real

differential equation (54) was changed to a finite-difference

one, and this resulted in the appearance of smearing shown

in Fig. 5. I would expect similar smearing to occur in real

muscle also, coming from spatial inhomogeneities of the

contraction velocity within the bulk.

A dramatic change in the distribution function takes

place at t & kD/v. Here, the attached cross-bridges detach

from the actin filaments like an avalanche; the faster it is,

the narrower the q(x, kD/v) peak. This leads to an abrupt

decrease of the force exerted by the muscle and an equally

abrupt peak of the rate of heat production (Fig. 6).

Now, most of the cross-bridges are detached from actin;

i.e., nd
kx=v

� �
is about unity. During the time span of the

order of sr, the majority of them should attach to actin

again. If the velocity of filament sliding is low and the

cross-bridge shift for this period is insignificant, the new

narrow peak bulges on the q(x, t) dependence and then

disappears at t & 2kD/v, etc. Thus, at rather low shorten-

ing velocity, an echo peculiarity repeated with period

kD/v appears in the form of drops of force and overshoots

of heat output. In the case shown in Figs. 5 and 6, the

sliding velocity is quite large (about 0.15vmax) and instead

of the new peak, a prolonged step forms on the distribution

Fig. 5 Dependence of the distribution function q(x,t) on relative

coordinate x/D at v = 0.15vmax for successive instants shown in the

graphs (panels from top downward, note the scale changes). The

initial state is isometric contraction, so q(x,0) is analogous to a narrow

peak. The final state corresponds to the equilibrium at this velocity

distribution function; see the lowermost panel. Time is represented in

dimensionless units trel ¼ vt=S. Note the sharp change of q(x,t) at

t � 0:05 s trel � 1ð Þ and the weaker one at t � 0:1 s trel � 2ð Þ

Fig. 6 Time dependences of tension (triangles) and rate of heat

production (circles); on the abscissa, time is represented in dimen-

sionless units trel ¼ vt=S. The zero time reference on the abscissa is

related to the initial moment of isovelocity contraction with velocity

v = 0.15vmax; see Fig. 5. The force and heat rate values at trel = 3

(t & 0.15 s) already almost coincide with equilibrium at this velocity

value
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function after t & kD/v (middle panel in Fig. 5). As a result

one can see in Fig. 6 only faint traces of even the second echo,

and the relaxation time of the distribution function is very

short (about 3kD/v) (lowermost panel in Fig. 5). It can also be

observed that, at low contraction velocity v\ vch, the initial

q(x,0) peak does not last even until the instant t = kD/v, so

the echo disappears in this region.

I failed to find experimental studies that would report on

the observation of a similar echo. If such a phenomenon

does exist, the lack of this information may be related to

the necessity for a special choice of experimental param-

eters for its observation. Presumably, an analogous peak of

heat production should also be observed after a sudden

cease of muscle stimulation in an isometric tetanus. The

corresponding experiment was performed by Hill (1961).

He observed a fall adjacent to the last shock [presumably

due to the sarcoplasmic reticulum calcium pumps cutting

out] and then a much more prominent peak of the heat

production rate. It should be emphasized that experimen-

tally the beginning of the peak coincides nearly with the

onset of tension decrease. One can expect that the begin-

ning of the tension fall provokes the appearance of inho-

mogeneity: any relaxation of a separate region must lead to

an abrupt contraction of other regions in series with the first

one. As noted above, this results in a torrent of cross-bridge

detachments accompanied by a heat outburst (the work

done in the course of this local contraction is converted to

heat as well). Since the myosin heads cannot attach to the

actin again, the new region turns out to be relaxed, enabling

contraction of the neighboring one, etc. One can draw an

analogy between this process and the principle of laser

operation. In an isometric tetanus, the stimulation, similar

to laser pumping, transfers most of the cross-bridges to the

same state with high potential energy, which they leave

almost simultaneously, performing work and producing

heat during avalanche-type relaxation (compare also with

the ‘‘synchronization effect’’ in Duke 2000).

Coulomb interaction as the source of muscle force

The force that causes a muscle to move arises during ATP

splitting, which is why the problem on the origin of this

force is directly related to the question of why ATP is the

energy source for muscular contraction. In other words, one

should consider what it is in the structure of the ATP

molecule that provides a capacity to generate force and

perform mechanical work in the course of its hydrolysis.

The only interaction that completely controls the course

of chemical reactions is the electromagnetic interaction. Its

pure magnetic part is almost always negligibly small, and

consequently the only force that can perform mechanical

work during a chemical reaction, i.e., upon rearrangement

of atomic electron shells, is the Coulomb force. Therefore,

direct conversion of chemical to mechanical energy cor-

responds to utilization of the mechanical work performed

by Coulomb forces when rearranging the electrical charges

in the course of the chemical reaction.

Thus, to understand the mechanism of the force gener-

ation, one should ascertain which charges shift upon ATP

cleavage and in which directions. In this connection the

work of Lampinen and Noponen (2005) is worth men-

tioning. In that work, the electric-dipole theory of storing

and transforming ATP chemical energy in the actomyosin

molecular motor is presented. The authors of this work

suppose that the cross-bridge conformation is its response

to the change in the dipole electric field of the ATP mol-

ecule, which occurs when the phosphate tail shortens.

However, the dipole field represents the major part of the

electric field of some system only in the case when the

system as a whole does not have electrical charge. Other-

wise, the common Coulomb interaction becomes dominant,

and it is just this interaction that must be taken into con-

sideration for the ATP molecule, which is a tetraanion in

the cell milieu. Upon the ATP ? ADP ? Pi hydrolysis,

the molecule decomposes into like-charged fragments

ADP2- and Pi
2- (Bendall 1969; Bohinski 1983), and the

Coulomb repulsion of these pieces can quite naturally be

considered as the force propelling the myosin motor.

This principle is quite similar to the one underlying

firearm (or combustion engine) performance. In the course

of a shot, the cartridge breaks up into the bullet and the

cartridge box (cf. ATP cleavage). The force due to the hot

powder-gas pressure (cf. Coulomb force) acts upon these

pieces in opposite directions, performing mechanical work.

The energy transferred to the bullet is higher, the longer the

distance it passes inside a trunk (see 4), and when the bullet

leaves the trunk, the residual powder-gas energy dissipates

(cf. spherule q2 moving in the cylinder in Fig. 1).

To assure ourselves of the rationality of this point of

view, we should first of all evaluate the potential energy of

a charged molecule and the repulsive force between its

parts. Returning to Fig. 1, let us suppose that q1 = -n1e

and q2 = -n2e are the charges of ADP and Pi, respec-

tively, whose centers are at a distance R away from each

other just after breaking the P–O–P chemical bond.

e & 1.6 9 10-19 C is the electron charge modulus. Using

the standard Coulomb law we obtain now instead of (2)

and (3)

E xð Þ ¼ 1

4pe0e
n1n2e2

Rþ x
’ 2:3� 10�28 n1n2=e

Rþ x
J;

F xð Þ ’ E xð Þ
Rþ x

N;

ð61Þ

where e is the permittivity of the milieu. To meet the

conditions E Rð Þ ¼ EATP � 2E Rþ Dð Þ (the second equality

748 Eur Biophys J (2012) 41:733–753

123



signifies that the maximal efficiency value is about g0 & 1/2)

we have to consider the problem under the assumptions

R & D & 0.5 nm, n1n2=e � 0:17. The order of magnitude

of the distance between the phosphates in the phosphate tail

R is correct. Regarding the charges, their product n1n2 is

determined by the permittivity, which for protein structures

in water falls in the range from units up to many tens,

depending on the form, dimensions, and relative positions

of the proteins (Finkelstein and Ptitsyn 2002). Therefore,

the nominal charge values n1 = n2 = 2 corresponding

to e & 25 are possible just as well as the lower values

n1 = n2 = 1/2 corresponding to e & 1.5. Anyhow, the

values of the energy and repulsive force are of the cor-

rect order of magnitude F Rð Þ � 8� 10�20=5� 10�10 ¼
1:6� 10�10 N, compared with (50) and (51). [One can find

a thorough analysis of these and related questions in arXiv

q-bio.BM/0703014. This is the only text that I was able to

publish after 3 years of disputes with referees from dif-

ferent biological and biophysical journals.]

It should be noted that a discussion of the Coulomb

contribution to the overall energy balance, and accentua-

tion of the important role of the Coulomb interaction, can

be found in biochemical literature (see, e.g., Ross 2006;

Nath and Nath 2009). Furthermore, the Coulomb forces are

explicitly taken into account in the course of computer

modeling of biochemical reactions by the methods of

quantum mechanics and molecular dynamics (QM/MD)

(see, e.g., Kamerlin et al. 2009). It may seem, therefore,

that the simple ideas set forth in this section are so trivial

that, in accordance with the suggestion of one of the

reviewers, they should be removed from the text.

Indeed, the fact of the existence of Coulomb repulsion

between like-charged ions within a single molecule is quite

evident, but it is well known that it is obvious things that

particularly easily pass out of sight and seldom become the

object of careful analysis. The motivation for this analysis

may be either the absence of any other way to find an

answer to some important issue or the existence of serious

arguments in favor of the productivity of such study. We

resorted to scrutiny of the Coulomb repulsion between

ADP and Pi after having exhausted other possibilities to

find a physical cause of myosin head conformation. The

structural peculiarities of the S1 fragment and the impos-

sibility of explaining its conformation involving many-

body effects forced us to consider the presence of a charge

on the ATP molecule. On the other hand, the results

obtained here give some grounds to continue research in

this direction.

I believe that a clear understanding of the physical

grounds for the conformation is particularly important for

QM/MD calculations. Indeed, if we want to explore the

working stroke by simply comparing the energies of

different conformations, the error of its calculation should

be substantially less than the value of EATP. However, the

free-energy error increases rapidly with increasing number

of atoms, which imposes rigorous restrictions on the size of

the system under consideration. It is also pointless to try to

analyze the wavefunction of a many-body system if you do

not know exactly what you want to find. Therefore, already

while stating the problem, it is desirable to clearly identify

relatively small subsystems, the state and the movement of

which must first be analyzed. If the above considerations

are correct, it would be most interesting to analyze: (1) the

initial ATP charge redistribution between different groups

of atoms in the course of hydrolysis, (2) the forces acting

on these groups and the dynamics of their movement, and

(3) the presence of rigid elements connecting the neck with

the active site.

Finally in this section, one should note the article by

Ross (2006), in which the idea of producing mechanical

work by means of Coulomb repulsion between ATP and Pi

was clearly formulated. Some consequences of this idea

were briefly discussed in the paper as well, but neither

myosin head structure nor consistent patterns of its oper-

ation were considered. This might explain why even Ross’s

assertions which really are true do not seem well estab-

lished, and the presence of clear logical relationships

between different pieces of the work is far from obvious.

For these or other reasons, the article unfortunately cannot

give a much needed boost towards enhanced research into

myosin head conformation.

Relation to earlier theories

The similarity of the proposed model to the model after

Cooke and Bialek (1979) was adequately considered in

previous sections. There is another class of models that

have much in common with the one considered in this

work, namely the phenomenological models of meccano

type, the first of which was, apparently, suggested by Hill

(1938). In these models, the muscle is considered as a set of

elements which are combined in a certain order and possess

specific properties: force-generating active element (AE),

damping element (PDE) in parallel to AE, elastic element

(SEE) in series to AE, etc.; for discussion of some

advanced versions of this model and review, see Gunther

and Schmitt (2010). In theories of this type, a muscle can

be modeled by a single unit consisting of AE, SEE, and

PDE (Hill 1938), as well as by a set of such units which

simulate individual sarcomeres and interact with each other

(Denoth et al. 2002; Telley and Denoth 2007). In a sense,

the above-presented theory can also be seen as a phe-

nomenological model of the minimal-in-size unit of this
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type. Indeed, many results delivered in ‘‘The model’’ to

‘‘Boltzmann equation and collective effects’’ can be

obtained under a simple assumption that cross-bridges

operate with random phase displacements and for each of

them (1) fluctuations specify the average lifetime sw, (2)

AE works by generating a constant force F only in the

range of displacements 0� s� S, (3) the recovery time

between working strokes makes up tr, and (4) FPDE ¼ �cv.

However, presenting opportunities for a formal description

of experiments such an approach in itself does not reveal

any new perspectives for advances of understanding of the

principles of the work of myosin motors. It is consideration

of a particular internal structure of myosin head that allows

somehow grounded suggestions to be made on the nature

of the force that produces its conformation (see ‘‘Intro-

duction’’ and ‘‘Coulomb interaction as the source of muscle

force’’).

The above-mentioned theories, I think, exhaust the list

of models in some respects similar to the model proposed

here. Therefore, in this section we now focus on the fun-

damental differences between this model and the theories

most widely used today.

In the response of a muscle to stepwise shortening

(Huxley and Simmons 1971; Ford et al. 1977; Piazzesi and

Lombardi 1995) one can clearly trace three main types of

processes taking place inside it. On the one hand, upon

slow changes of the force, the main part is taken by the

cross-bridge attachment and detachment processes with a

characteristic time of tens to hundreds of milliseconds. To

describe these, Huxley’s (1957) model is quite appropriate,

and in one form or another, this model should probably be

a part of any other theory. On the other hand, upon very

sharp (fractions of a millisecond) changes of length, the

response is as quick, which testifies to the existence of

SEE. However, having rapidly arisen, these changes in the

force generated by the muscle then start to relax with a

characteristic time on the order of a millisecond. Such a

duration cannot feature cross-bridge attachment and

detachment processes, which means that the internal

structure of myosin head (for example, PDE) has to be

involved. In this case, quick relaxation processes are due to

some kind of retardation of changes in the internal state,

while Huxley’s (1957) mechanism becomes activated later.

Seemingly, the internal degrees of freedom of a myosin

head were explicitly introduced into a model for the first

time in the classical work by Huxley and Simmons (1971).

The only information about the myosin head available at

that time was that it is connected with the thick filament by

an elastic neck. Therefore, a particular form of the other

elements of internal structure introduced in the model must

necessarily be defined based on the concepts of the phys-

ical processes that give rise to the myosin head confor-

mation. One can think that quite an important part in the

formation of these conceptions was taken by an obvious

analogy with the abrupt first-order transitions that arise in

other proteins upon, say, temperature changes (Finkelstein

and Ptitsyn 2002). Besides, these conceptions were formed

taking account of the then common and up to now firm

principle, which had not yet been clearly outlined in

Huxley and Simmons (1971). I present here its formulation

from the later work by Duke (2000, Sect. 2a): ‘‘Since the

transduction of chemical energy to mechanical work by

motor proteins occurs via a series of biochemical reactions,

the most natural theoretical description is a kinetic one.’’

One way or another, in 1971 Huxley and Simmons

suggested a new model based on the assumption that the

cross-bridge can occur only in a small number of discrete

states. Such a model made it possible, using a standard

procedure of calculating concentrations of reaction prod-

ucts, to determine instead populations for the cross-bridge

states. As a result, the rate of fast relaxation is controlled

now by the rate constants of reactions which, as in Hux-

ley’s (1957) model, should be somehow specified.

Certainly, the simplest and formally faultless approach

would be to duplicate Huxley’s (1957) model, sorting out

ad hoc necessary forms of dependences on coordinates of

the energies and rate constants for these new states and

transitions between them. However, this would result in an

unacceptable increase of the number of fitting functions;

for example, despite the additional limitations which were

imposed by the authors of the well-known work (Piazzesi

and Lombardi 1995), graphs of these dependences take a

whole page.

A second possibility, proposed for the first time by

Huxley and Simmons (1971), consists not simply in that

different stages of the chemical reaction of ATP hydrolysis

are placed in correspondence with certain spatial configu-

rations of the myosin head; rather, now the energies of

these configurations are considered equal to the free ener-

gies of the corresponding reagents and intermediate and/or

finite products of the reaction. From the viewpoint of

classical thermodynamics this is quite unexpected, since

the free energy turns out to be a function of coordinates of

individual molecules (myosin heads), whose occasional

migrations from state to state (thermal fluctuations) now

must take place with a frequency that depends on the

characteristic time of fast relaxation of a muscle. However,

nowadays (Walcott and Sun 2009), microscopic models of

this type are widely used for treatment of experimental

data.

Without getting into a discussion on the rigor of the

deduction of the results in the framework of these models, I

would again underline one principally important circum-

stance. These microscopic models are based on the

assumption that possible spatial configurations of the

myosin head are discrete for no other reason than that
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40 years ago nothing was known about the real internal

structure of myosin head. Until today, this assumption has

not been questioned, despite the fact that no real mecha-

nisms for the transformation of a cross-bridge into an

analog multiposition switch with a small number of stable

states have so far been proposed. All the problems con-

nected with the determination of rate constants arise in

these models just because of the postulate on the existence

of discrete states. Moreover, the thus-based models, being

very useful for the description of experimental results, do

not allow any advances into understanding of the working

principle of the myosin motor. In a system with discrete

spatial configurations, it is by definition impossible to

introduce the very concept of force. Force is the derivative

of the energy (see 2), and it is impossible to differentiate a

function defined only at a few points.

In other words: under this approach it is impossible to

describe the process of continuous transition from one

cross-bridge state to another. At the same time, the

stretching of the SEE and therefore the emergence of the

force between actin and myosin are just a consequence of

this process. If we want to understand the operation prin-

ciple of myosin motor, we need to determine the nature of

the force which propels the continuous cross-bridge

conformation.

The model presented in the above sections is based on

direct experimental data on the structure of myosin head. It

deals with nondiscrete modification (changes without

jumps) of the internal cross-bridge state, and, in this regard,

is diametrical to the already existing theories. It is quite

curious to note that, at the same time, this model is to some

extent a logical accomplishment of the ideas presented by

Huxley and Simmons. The number of different states now

tends to infinity, while the number of parameters deter-

mining the rate of transitions between them decreases to

one.

This parameter is a hindering force whose emergence in

the model is connected with the main advantage of the

latter: The model presents an opportunity to explicitly

introduce into consideration forces acting upon the lever

arm and compelling it to rotate. Now, in the state of rest,

the lever arm simply takes a position in which the pressure

force F exerted by inorganic phosphate compensates

(accounting for the lever rule) the external tension P. When

the external force deviates from this equilibrium value, the

lever arm starts to rotate with a velocity determined by the

equation P ¼ F=k� cv. Since the maximal rate of changes

of its coordinate is on the order vmax, upon a sharp change

of the muscle length by dl per half-sarcomere, the quick

equilibrium state is reestablished for the time period on the

order of s & dl/vmax. At vmax & 1.5 lm s-1 and s & 1

ms we obtain dl & 1.5 nm, which is in reasonable

agreement with experiment (Huxley and Simmons 1971;

Ford et al. 1977; Piazzesi and Lombardi 1995).

However, not wishing to preempt results which I hope to

publish in the near future, I would like to note two cir-

cumstances. First, herein I have not taken into account the

existence of the SEE for a very simple reason: if the SEE is

absent, the main ideas of the model become essentially

simplified. It will be rather easy to introduce SEE into

consideration in a next step. Second, to satisfactorily

describe the bulk of quick muscle response to stepwise

changes in its length or force acting on it, in the framework

of the ‘‘nondiscrete’’ model, it is sufficient to only suppose

that inside the myosin head there acts a hindering force. It

can be considered as the only parameter describing a black

box that contains all elements of the internal structure of

myosin head which are not covered by the model.

Last but not least, only in the framework of conceptions

about the indiscrete conformation does there appear the

possibility to discuss the nature of the force propelling

muscle.

To conclude this section, I note that the suggested and

already existing models, in particular the Duke (1999,

2000) model, along with drastic differences, reveal some

common features. Thus, the main parameter of the ‘‘non-

discrete’’ model, i.e., tr, is inversely proportional to the

parameter f, and the fluctuation mechanisms determining

the dependences g(x) and sw(x) on coordinates are in

essence indistinguishable. Moreover, the ways of descrip-

tion of the attachment–detachment processes in this work

and in Huxley’s (1957) model also coincide.

Discussion

As one can see from Figs. 3, 4, and 6 and equations (20),

(21), and (47, 48), the proposed model can semiquantita-

tively explain and even in part predict a rather wide range

of relations between the physical characteristics of con-

tracting muscle. In addition, all parameters (except Fh)

used in the model [see (27), (28)] have clear physical

meaning, and most of them have already been determined

experimentally. Among them, the most important role is

played by the single parameter tr, whose value determines

mainly the shape of the curves in Figs. 2–4. Apparently,

more detailed features of contracting muscle behavior can

be reproduced by picking out (or experimental determina-

tion of) two functions: E(x) and sw(x), which in the model

are merely ‘‘adjustable functions.’’ Specifying the form of

these functions, the time dependence of the contraction

velocity, and the initial state of the ensemble of myosin

heads, one can determine its further evolution from the

system of kinetic equations (54–57).
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It should again be noted that there are two main reasons

why the form of the whole series of curves is determined

by a few numerical parameters:

• The working stroke interruption at the Pi release

moment is initially built into the model;

• The existence of a special type of hindering force was

assumed.

The central point here is the former hypothesis that the

working stroke should be interrupted by the back door

opening just at the very instant when the displacement of

the actomyosin complex reaches the maximal pace value

S. Therefore, the results obtained provide indirect evi-

dence of the correctness of this assumption, and it seems

appropriate to raise the question of its experimental

verification.

The second most important assumption is the avail-

ability of an approximately linear in v ‘‘friction loss.’’ In

the absence of a hindering force, the stimulated back door

opening would lead to the following situation: (1) the

force hyperbolically diminishes but does not vanish as the

contraction velocity rises, and (2) the efficiency does not

depend on the velocity. Consequently, to attain the

appearance of vmax, the linear-in-v decline of g(v) in (22),

etc., we have to take into account the hindering force.

Since usual viscous friction is negligibly small at such

velocities, we should emphasize the problem of the

physical nature of two forces, namely the force applied to

the back door and propelling muscle, and the hindering

force counteracting it.

Since the suggested model is to a large degree phe-

nomenological, the question on the nature of the above

forces oversteps its framework. Nevertheless, although we

know almost nothing about the latter of these forces (see,

however, Cooke and Bialek 1979), based on very general

considerations (see ‘‘Introduction’’ and ‘‘Coulomb inter-

action as the source of muscle force’’), we can make some

suggestions about the former of them. It is known that the

ATP molecule is a tetraanion in the cell milieu and upon

ATP ? ADP ? Pi hydrolysis decomposes into like-

charged fragments ADP2- and Pi
2-. So it is natural to

assume that the force which pushes c-phosphate and

eventually moves switch-2 is the force of Coulomb

repulsion between ADP2- and Pi
2-. Although the simplest

evaluations do not contradict this assumption, only

straightforward numerical calculations using the QM/MD

methods could clarify this problem. From the experi-

mental point of view it would be very interesting to find a

means to change the charge of the ATP molecule in the

cell milieu while conserving muscle efficacy, and deter-

mine its force in this case.
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