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Abstract
It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species 
often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during 
invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the 
composition and diversity of host-associated microbiomes in Centaurea solstitialis (yellow starthistle), a Eurasian plant that 
is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion 
of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and 
invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the 
experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated 
different microbial associations at the family level in each soil community, often counter to differences in family abundance 
between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as 
these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacte-
rial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique 
microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of 
invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change 
in composition in response to host evolution during invasion.

Keywords  Invasive species · Root microbiome · Centaurea solstitialis · Yellow starthistle · Grasslands · Amplicon 
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Introduction

Introduced species that proliferate in their new environments 
are able to do so as a result of a suite of environmental and 
biological interactions [1, 2]. Biotic interactions are thought 
to be a particularly important means by which an introduced 
species could become invasive, because of opportunities for 
escape from enemies (i.e., the Enemy Release Hypothesis 
[3–7]) or gain of mutualisms [8–11] in an introduced envi-
ronment. Altered interactions with enemies or mutualists 

not only could have immediate fitness benefits to invaders 
but also might allow introduced populations to evolve phe-
notypes that increase invasiveness, in response to increased 
resource availability from mutualists and/or relaxed selec-
tion for defense from enemies [12, 13]. While the potential 
for invaders to adapt in response to differences in species 
interactions in this way has received considerable atten-
tion (e.g., the Evolution of Increased Competitive Ability 
Hypothesis [14, 15]), it is also the case that invader evolu-
tion for any reason, adaptive or otherwise, might itself alter 
species interactions. The question of whether altered species 
interactions arise from a novel environment (“E”) or from 
invader evolution (i.e., genotype, “G”), or their interaction 
(“G × E”) is largely unexplored, though the contributions of 
these different effects would have important consequences 
for understanding the mechanisms of invasions and predict-
ing further spread (e.g., see [16, 17]).
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For invasive plants, a critical source of both enemy and 
mutualist interactions is the soil microbial community [5, 
18–26]. Some invasive plants perform better with soil micro-
bial communities from invaded ranges, which suggests that 
initial interactions with soil microbes could facilitate inva-
sion [4, 20, 27–30], but see [31]. Invaders could also benefit 
from differences in plant-soil feedbacks that accumulate over 
time [32]. Plants experience negative feedbacks when a host-
specific pathogen accumulates in the soil and suppresses 
their growth [33, 34] or positive feedbacks if the same 
dynamic occurs with a mutualist [35], and invading species 
have been observed to benefit from enhanced positive or 
reduced negative feedbacks in soils from their introduced 
ranges [24, 29, 35–38]. Invaders might also benefit from 
interactions with a simplified microbial interaction network 
in a novel environment, allowing invaders more specificity 
in exploiting a smaller number of mutualists or defending 
against fewer pathogens [12, 39].

Regardless of whether microbial pathogens or mutualists 
differ between native and invaded ranges, we know very lit-
tle about whether invaders that undergo evolutionary change 
over the course of their invasion interact with soil microbes 
differently than native genotypes. It is well documented in 
the fields of plant disease and agriculture that the genotype 
of a plant can be tightly correlated with the presence or rela-
tive abundance of specific microbes in and around their tis-
sues [40–42]. Plant genotypes can control microbial commu-
nities through differences in their resulting phenotype, via 
traits like root and leaf morphology [43], exudate produc-
tion [44, 45], and interaction between plant phenotype and 
environment (e.g., root morphology) [46]. Plant genotypes 
vary in the amount or type of compounds they produce in 
defense against microbes [47], or as incidental secondary 
metabolites that nonetheless impact microbial communities 
associating with their tissues [48]. These types of genetically 
based phenotypic differences have been shown to control 
plant association with individual microbial taxa, as well 
as the plant-associated microbial community makeup [44, 
45, 49]. The strong existing evidence that plant genotype 
affects microbial associations suggests that the evolution of 
invader genotype could lead to changes in microbial associa-
tions, which could then play a role in invader success and 
proliferation.

Indeed, invaders are well known to experience rapid evo-
lution for a variety of reasons. Introduced populations can 
adapt to their new environments and the process of coloni-
zation [50–52], but they may also experience non-adaptive 
genetic changes through several mechanisms, including ini-
tial and serial founder events, multiple introductions and 
admixture of previously isolated subpopulations, hybridiza-
tion with other species, stimulation of transposable element 
activity, and/or the revealing of cryptic genetic variation 
in a novel environment [39, 53–57]. Given that microbial 

associations respond to host genotype (as discussed above), 
such broad opportunities for genetic change in invaders are 
likely to create opportunities for altered species interactions, 
particularly with microbial communities that are sensitive to 
variation in plant growth and chemistry.

We test whether invader evolution alters microbial inter-
actions in the invasive annual forb yellow starthistle (Cen-
taurea solstitialis, L.; Asteraceae). This species is native to 
Eurasia, introduced to the Americas, Australia, and South 
Africa, and highly invasive in the grasslands of North and 
South America [58]. The C. solstitialis invasion of CA, 
USA, is particularly well characterized for its evolution of 
novel genotypes and phenotypes. Previous work has used 
genome-wide markers to reconstruct its invasion history 
and detail genetic divergence among populations [59–61]. 
This work finds that plant populations invading California 
are unique genotypes, genetically divergent from popula-
tions elsewhere, but derived from a single subpopulation in 
Spain and Southern France [59]. Levels of genetic diversity 
in California populations are similar to those in native range 
populations, indicating the lack of any strong genetic bot-
tlenecks during the divergence of this invasion [59]. The 
California genotypes are also distinct from their native pro-
genitors in terms of genetically based phenotypes, including 
having evolved larger seeds, larger plant size (leaf number, 
leaf area, height, and biomass), higher reproduction (repro-
ductive duration and number of capitula), and greater com-
petitive ability against grasses than native genotypes [59, 
61–65]. Most recently, these phenotypes are being geneti-
cally mapped to the regions of the genome responsible for 
these evolved differences in the invaders [66].

Invading C. solstitialis plants in California also appear 
to accumulate more biomass from more favorable (reduced 
deleterious) interactions with the soil microbial community 
in the invaded range [30, 67, 68], raising the possibility that 
the larger and more fecund invading genotypes have evolved 
to take advantage of release from microbial enemies or gain 
of mutualists [69]. These experiments tested the perfor-
mance of C. solstitialis plants in soil inoculated with soil 
microbial communities collected from different parts of the 
global range but did not test for evolved differences among 
host plants. Field experiments treating C. solstitialis plots 
with fungicide found that fungi in the invaded range are 
less favorable for plant performance, which has generated 
interest in the potential for bacterial communities to play 
an important role in creating more favorable growth con-
ditions in the invasion [70]. A previous survey of bacteria 
associated with C. solstitialis in the field by Lu-Irving and 
colleagues [69] found that bacterial diversity, including of 
known pathogenic groups, was lower on invading plants. 
The authors hypothesized that the lower diversity of plant-
associated bacteria could reflect escape from enemies in the 
invaded range [69]. Their results suggest that invaders might 
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benefit from altered interactions with the microbial commu-
nity, but it is not clear to what extent observed microbiome 
differences are a cause or effect of the evolution of plant 
invader genotypes.

Here, we identify the roles of both microbial community 
environment, plant genotype, and their interaction in shaping 
plant-microbial associations in this system. Based on previ-
ous observations of plant microbiome differences between 
ranges, we predict that soil microbial communities will be 
the primary source of variation in microbial associations, 
and we predict that plants (native or invading genotypes) 
grown with invaded range soil inoculum will accumulate 
a lower diversity of rhizosphere bacteria. Using the same 
populations sampled in previous studies of both plant evolu-
tion and microbiome variation in this system [59, 62, 69], we 
sample field soil from native and invaded ranges to identify 
the bacterial community available for plant interactions. We 
conduct a factorial greenhouse experiment, in which both 
native genotypes and invading genotypes of C. solstitialis 
are grown in native and invaded range soil microbial com-
munities, to identify which members of the soil community 
recruit to roots of the genotype from each range. We identify 
bacteria using 16S amplicon sequencing and test for associa-
tions with genotype and soil source. In contrast to our pre-
dictions, we find that the interaction of both plant genotype 
and microbial environment influences specific microbial 
associations, and we find that previously observed patterns 
of lower diversity of bacterial communities on invading 
plants are not inherent features of the microbial environ-
ment as formerly hypothesized, but are instead the product 
of novel plant genotype interactions in the invasion.

Methods

Study System Biology

Centaurea solstitialis was introduced accidentally as a con-
taminant of alfalfa into South America in the 1600 s and 
then North America in the 1800s [58, 71]. It is an obligately 
outcrossing diploid annual plant that has four distinct native 
genetic subpopulations across Eurasia [59, 60, 72, 73]. In 
both the California invasion and its source subpopulation in 
Western Europe, C. solstitialis is an annual plant that grows 
as a rosette with a taproot through a mild and wet winter and 
spring, then bolts and flowers throughout the dry summer 
[62, 63, 74].

Soil and Seed Sampling

Field soils used in this study were collected when seeds were 
being produced on C. solstitialis plants, during dry summer 
conditions in August 2018. Soils came from four invaded 

sites in CA, USA, and four native sites in southern Spain 
and France, all of which were locations previously included 
in other studies of this system, including in the compari-
sons of plant-associated microbial diversity by Lu-Irving 
and colleagues [69], plant genetic diversity by Barker and 
colleagues [59], and plant trait variation by Dlugosch and 
colleagues [75] (Supporting Information Table S1). At each 
site, a 30 m linear sampling transect was established through 
a C. solstitialis patch, and a second 30 m sampling transect 
was established outside of the patch, parallel to the first and 
separated by ~ 5 m, to capture site variation outside of C. sol-
stitialis patches. The distance between transects was chosen 
to be adjacent but outside of active growth by C. solstitialis, 
noting that microbial communities have been observed to 
vary more by soil characteristics than geographic distance 
even at small scales [76, 77]. Samples from both transects 
were ultimately grouped for analysis by site (see below). A 
soil sampling point was established every 2 m along each 
transect. At each sampling point, an 18 mm diameter soil 
core was used to sample the topmost 5–10 cm of soil from 
three adjacent cores (< 10 cm apart), which were combined 
into a single sample for that sampling point, in a sealed plas-
tic bag. This resulted in 15 separate samples per transect 
(one per sampling point). Larger bulk soil collections (to be 
used for experimental inoculum) were made near each tran-
sect, both inside and outside of C. solstitialis patches. For 
these bulk collections, 1-L plastic bags were filled with soil 
collected from the top 5–10 cm of soil from a single loca-
tion. Gloves and tools were sterilized between soil samples 
by wiping with 70% isopropanol. Soils were stored dry (as 
collected) at room temperature until their use in the green-
house experiment. Seeds were collected from the plant clos-
est to each meter along the transect through the C. solstitialis 
plants, for a total of 30 seed collections per site.

Soil samples were cleaned and homogenized for DNA 
sampling and use as inoculum. Large rocks and organic 
particles were removed from each sample manually with 
sterilized forceps in a biosafety cabinet, and the resulting 
sample was sifted through a sterilized 2-mm sieve. Soil 
aggregates that did not pass through the sieve were ground 
gently with a mortar and pestle to break up the aggregates 
until all soil particles could pass through the 2-mm sieve. 
The sample was stirred to homogenize, and 250 mg was 
weighed and collected in a 2-mL microcentrifuge tube for 
DNA extraction.

Experimental Inoculations

We used a fully factorial greenhouse experiment to test for 
the effects of seed source (native vs. invaded range) and soil 
microbial community source (native vs. invaded range) com-
binations on rhizosphere bacterial composition and diversity, 
using seeds and soils from all sites described above. Soil 
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microbial communities were derived from the bulk collec-
tions made from outside of C. solstitialis patches at each 
site (Supporting Information Table S1). All seeds were ger-
minated on the surface of sterile soil (50:50 mix of sand 
and high porosity soil; HP PRO-MIX™, Quebec, CA) in 
petri dishes, in a greenhouse set to a maximum of 21 °C day 
and 10 °C night at the University of Arizona (Tucson, AZ, 
USA) College of Agriculture and Life Sciences greenhouses 
in February 2019. The germination date of each seed was 
noted to account for differences in germination timing (see 
the “Analyses” section). One week after germinating, seed-
lings were potted in individual Deepots™ (410 mL; D25L 
from Stuewe & Sons, OR, USA) in sterile soil and inocu-
lated with a surface application of 15 mL of unsterilized 
(live) soil slurry from soils collected in the same locations, 
or sterilized soil as a control. Slurries were prepared by add-
ing 150 mL of sterile water to 10 mL of soil, mixing, and 
filtering through sterile cotton gauze.

Deepots were arranged in five spatial blocks in the green-
house. Each block included all four combinations of plants 
from the native or invaded range planted into soil inocu-
lum from the native or invaded range. Within each of these 
four combinations were up to 16 combinations of plants and 
soil inoculum from the four source populations within each 
range. Multiple source populations were included to cap-
ture variation within ranges and were grouped as replicates 
by range for analyses described below. Replication for each 
plant range × soil inoculum range combination, including all 
five blocks, ranged from 43 to 72 plants whose rhizosphere 
communities were successfully sequenced.

Plants were maintained in the greenhouse for 2 months, 
when they were harvested by block within a single week. 
Sterile water was provided through daily misting by a reverse 
osmosis irrigation system (Evolution-RO, Hydro-Logic Inc., 
Port Washington, NY, USA). After 1 month, plants were 
fertilized every 2 weeks using autoclaved Hoagland’s solu-
tion (1/8 strength Hoagland Complete Medium, BioWorld, 
Dublin, OH, USA). At harvest, plants were removed from 
their pots for rhizosphere collection. The upper 2 to 5 cm 
of the taproot was collected, together with attached lateral 
roots, and these root tissues were processed and analyzed 
together. Excess soil was brushed or shaken off, and root 
samples were placed in individual 50-mL tubes contain-
ing 25 mL of sterile wash solution (45.9 mM NaH2PO4, 
61.6 mM Na2HPO4, 0.1% Tween 20). Tubes were shaken 
by hand for 1 min. Root samples were then removed and 
stored on ice in tubes containing 10 mL of wash solution 
until further processing, stored on ice during transport, and 
then refrigerated at 4 °C. Ectorhizosphere washes were cen-
trifuged at 2200 g at 4 °C for 15 min, supernatants were dis-
carded, and pellets were air-dried and stored at 20 °C until 
DNA extraction. Plant growth and reproduction traits were 
not collected in this study (but have been extensively studied 

elsewhere, as described in the “Introduction” section), due 
to the early age of plants at destructive harvest.

DNA Extraction and Amplicon Sequencing

Microbial DNA was extracted from soil samples using the 
DNeasy PowerSoil Pro kit (Qiagen, Hilden, Germany). A 
blank sample of nanopure water was also included in extrac-
tions to record any contamination. The resulting double-
stranded DNA concentration was quantified using a Qubit 
fluorometer (Broad Range Kit, Invitrogen, Waltham, MA, 
USA).

The 16 s rRNA region was amplified using a 2-step poly-
merase chain reaction (PCR) as in [69] as follows. Target-
specific PCR (PCR 1) was conducted by creating a 25.1 µL 
reaction mixture using 1 µL of microbial DNA, 1.3 µL of 
515-F primer (5′-GTG​CCA​GCMGCC​GCG​GTAA-3′) and 
1.3 µL of 806-R primer (5′-GGA​CTA​CHVGGG​TTC​TAAT-
3′), 12.5 µL of Phusion Flash Master Mix (Thermo Scien-
tific, Waltham, MA, USA), and 9 µL PCR grade water. Reac-
tion mixtures were placed in an Eppendorf Mastercycler 
Thermal Cycler starting with 98 °C for 10 s, then 25 cycles 
of this sequence: 98 °C for 1 s, 78 °C for 5 s, 57 °C for 5 s, 
72 °C for 15 s, 72 °C for 1 min [78]. PCR 1 products were 
visualized on an agarose gel to determine whether PCR was 
successful before a second PCR step (PCR 2) was used to 
incorporate sequencing adapters onto the ends of the ampli-
fied PCR products. PCR 2 reaction mixtures were created 
using 1 µL of PCR 1 product, 12.5 µL Phusion Flash Master 
Mix, and 0.75 µL of a unique barcoded primer combina-
tion provided by the University of Idaho’s IBEST Genomic 
Resources Core. Our PCR program ran at 98 °C for 10 s, 
then 10 cycles of 98 °C for 1 s, 78 °C for 5 s, 51 °C for 
5 s, 72 °C for 15 s, 72 °C for 1 min. Barcoded amplicons 
were quantified by Qubit fluorometry, pooled in equimo-
lar amounts, cleaned using a MinElute kit (Qiagen, Hilden, 
Germany), and submitted to the University of Idaho’s IBEST 
Genomic Resources Core for quality control and sequencing 
with Illumina MiSeq 350 bp pair-end sequencing.

Analyses

Microbial metabarcoding data was processed and analyzed 
in QIIME 2 version 2019.10 [79], and additional analyses 
were carried out in R [80], as detailed below. Scripts for pro-
cessing sequences and replicating all analyses are available 
on GitHub (https://​github.​com/​mBerl​ow/​Plant​GxMic​robia​
lE.​git). Sequences were denoised in QIIME 2 using the Divi-
sive Amplicon Denoising Algorithm (DADA2) to remove 
sequence errors and trim primers [81]. Next, sequences 
were aligned, and a phylogeny was generated using Fast-
Tree, rooted at the midpoint [82]. Sequences were grouped 
at the level of amplicon sequence variants (ASVs, 100% 

https://github.com/mBerlow/PlantGxMicrobialE.git
https://github.com/mBerlow/PlantGxMicrobialE.git
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similarity), and taxonomy was assigned using the SILVA 
database, version 138 [83]. ASVs assigned to non-bacterial 
kingdoms were filtered out for the purposes of our analyses.

Bacterial alpha diversity was measured as richness cal-
culated by the R package “vegetarian” [84] and Shannon’s 
diversity index calculated by QIIME 2 after rarefying to 
1000 sequences per sample [78]. Rarefaction curves indi-
cated that our sequencing coverage was sufficiently exhaus-
tive to observe plateaus in the accumulation of diversity 
within nearly all of our samples, with a diminishing accu-
mulation of diversity at 1000 sequences (Fig. S1) [79]. To 
test for the effects of soil source (native vs. invaded range) 
on alpha diversity metrics, we used two-sided t-tests in the 
stats package in R [80]. To test for effects of experimental 
treatments on alpha diversity metrics, we used linear models 
that included effects of seed genotype (native vs. invader), 
soil source (native vs. invaded range), germination date of 
the plant (i.e., its age at harvest), experimental block in the 
greenhouse, and the interaction between seed genotype and 
soil source (see Figs. S4 & S5 for normality test results). 
Non-significant interaction terms (P > 0.1) were not included 
in the final models. Linear models and Tukey’s post hoc 
tests were conducted using the stats package in R [80]. To 
determine which bacterial taxa were differentially abundant 
between sample types and treatment groups, we used Linear 
discriminant analysis Effect Size (LEfSe) [85]. LEfSe iden-
tifies taxa whose abundances differ significantly between 
treatments using a Kruskal Wallace sum-rank test, inves-
tigates biological significance with a Wilcoxon rank-sum 
test, and finally calculates effect sizes of each differentially 
abundant taxa using linear discriminant analysis (LDA).

Bacterial community beta diversity was measured as 
unweighted and weighted UniFrac distances, a dissimilar-
ity measure that accounts for phylogenetic relatedness [86]. 
Unweighted UniFrac distance accounts for information about 
the presence/absence of ASVs and can be thought of as com-
munity membership, while weighted UniFrac distance also 
accounts for relative abundances and can be thought of as 
community structure. We used PERMANOVA conducted 
in the R package vegan [87] with 9999 permutations to test 
whether beta diversity distances were predicted by fixed 
effects of range (native vs. invaded) and sites nested within 
range (including samples both inside and outside of C. sol-
stitialis patches). We calculated the partial omega squared 
effect size using the MicEco package in R.

Given that soil microbial communities can change over 
very small spatial scales [77], we assessed whether the bulk 
soil collections (used as inocula for the greenhouse experi-
ment) were representative of the soil bacterial diversity 
sampled across the transects at the same site. To do this, 
we compared beta diversity distances between each bulk 
soil sample and the soil transect samples from the same site 
with the beta diversity distances between that same bulk soil 

sample and all the soil samples from other sites. Compari-
sons were made using paired t-tests in R.

Results

We sequenced a total of 351 samples, yielding 16,654,396 
paired reads (mean = 44,059; SD = 35,066; min = 12; 
max = 173,097; see Table  S2 for sequence and ASV 
counts for each sample and Fig. S1 for rarefaction curves). 
Sequences are available on the NCBI Sequence Repository 
(SUB13812121).

Field Environment: Soils

Across our native and invaded range field soil samples, 
we identified 29 phyla, including 294 families of bacteria. 
Eleven phyla made up 99% of sequences present (Fig. 1, 
Table S3). The most abundant phyla across all samples were 
Actinobacteriota (an average of 33% of invaded soil bac-
terial communities, SD = 9%; 41% of native, SD = 14%), 
Proteobacteria (22% of invaded, SD = 6%; 20% of native, 
SD = 14%), and Acidobacteriota (14% of invaded, SD = 5%; 
18% of native, SD = 8%).

Bacterial taxa differed between soils from the native and 
invaded range at both the phylum and family level. Ten phyla 
were differentially abundant: Actinobacteriota, Acidobacte-
riota, and Myxococcota were more abundant in native range 
soils, and Proteobacteria, Armatimonadota, Gemmatimon-
adota, Planctomycetota, Chloroflexi, Bacteriodota, and Fir-
micutes were more abundant in invaded range soils (LDA 
effect size > 2, LEfSe; Fig. S2). Nineteen bacterial families 
were more abundant in native range soils, and 55 families 
were more abundant in invaded range soils (LDA effect 
size > 2, LEfSe; Table S4).

The distribution of soil bacterial diversity also differed 
between the ranges. Invaded soils had higher alpha diversity 
than native soils by both metrics (richness P = 0.035, Shan-
non P = 0.002, t-test; Fig. 2a, b). In terms of beta diversity, 
both range (native or invaded) and site had a significant 
effect on community membership and community structure 
(all P < 0.0001, PERMANOVA; Table 1; Fig. 3).

We found that the distances between the bulk soils used as 
inocula and the soil samples from the transects at the same 
site were significantly smaller than the distances between the 
bulk soils and soil samples from external sites (unweighted 
UniFrac P = 0.005, weighted UniFrac P = 0.0001, paired 
t-test, Fig. S3). In other words, bulk soils used as inocula 
in the greenhouse experiment were more similar to the soil 
of the site they were from than to any of our other sites and 
were thus representative of those sites for use in and inter-
pretation of our greenhouse experiments.
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Experimental Inoculation: Rhizosphere

Across our rhizosphere samples, we identified 23 phyla 
and 352 families of bacteria. Eight phyla made up 99% of 
sequences present (Fig. 1, Table S5). The most abundant 
phyla were Proteobacteria (an average of 70% across sam-
ples, SD = 12%), Bacteroidota (13%, SD = 9%), and Actino-
bacteriota (10%, SD = 6%). There were no phyla that differed 
between native and invading C. solstitialis genotypes within 
either native or invaded soil treatments or between native 
and invader plant genotypes overall (all LDA effect sizes < 2, 
LEfSe).

At the bacterial family level, the interaction of the source 
of soil microbial communities and plant genotype-shaped 
rhizosphere communities. For invaded range soil inocula, 
seven bacterial families were differentially abundant, includ-
ing six families that were more abundant on native range 
plants and one that was more abundant on invaders (LDA 
effect size > 2, LEfSe; Fig. 4). For native range soil inocula, 
five families differed, with two families more abundant on 
native range plants and three that were more abundant on 
invaders (LDA effect size > 2, LEfSe; Fig. 4). Only the fam-
ily Micropepsaceae was differentially abundant between 
plant genotypes in both native and invaded soil treatments, 
in which it was more abundant on native genotypes in both 
treatments.

Contrary to patterns in field soils, alpha diversity (rich-
ness and Shannon’s H) was higher for bacterial communities 
on native C. solstitialis genotypes than for communities on 
invader plant genotypes (Fig. 2c, d; Table S6). There was not 
a significant difference in alpha diversity between communi-
ties derived from native vs. invaded range soils, nor an inter-
action between soil range and plant genotype (Table S6).

Discussion

Our goal in this study was to test for the effects of plant 
evolution and its interaction with the soil microbial envi-
ronment on plant-microbial associations during invasion. In 
contrast to previous hypotheses that the invaded environment 
(i.e., Enemy Release) is responsible for shaping microbiome 
associations for C. solstitialis genotypes invading California, 
we found that both plant genotype and microbial environ-
ment interacted to shape microbial family associations in 
this invasion. We also found that previously observed pat-
terns of plant-associated microbial diversity in this invasion 
[69] were not a product of microbial communities available 
in the environment as hypothesized. Instead, plant geno-
type drove the pattern of its microbiome diversity, such that 
invading plant genotypes accumulated a lower diversity of 

Fig. 1   Relative abundance of 
bacterial phyla in field soil sam-
ples, grouped by range (invaded 
or native) and rhizosphere 
samples (root wash) grouped 
by plant genotype (invader or 
native) within range. All phyla 
shown constitute at least 1% 
of at least one sample for soil 
and at least 0.6% of at least one 
sample for rhizosphere. The 
relative abundance of each phy-
lum is average across replicates 
for each group
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rhizosphere bacteria than native genotypes, despite invaded 
range soils being overall higher in microbial diversity.

Amplicon sequencing of field soils indicated that bacte-
rial community environments differed significantly between 
ranges and among sites within ranges. Differences between 
native and invaded microbial environments were evident 
at both the phylum and family levels. For both taxonomic 
levels, most differentially abundant taxa were higher in 
the invaded range soils than the native range soils (e.g., 55 
families were more abundant in the invaded range, versus 

Fig. 2   Box plots showing two 
measures of alpha diversity 
(a, c richness; b, d Shannon’s 
diversity index) for field soil 
samples (a, b) in invaded range 
soils (CA, USA) and native 
range soils (Spain and France) 
and for native and invader yel-
low starthistle (C. solstitialis) 
genotypes grown (c, d)

Table 1   PERMANOVA results for two measures of beta diversity 
(weighted and unweighted UniFrac)

Predictor df Pseudo-F ω2 P

Unweighted UniFrac:
  Range 1 5.48 0.06 0.0001
  Site with/in range 5 5.49 0.19 0.0001

Weighted UniFrac:
  Range 1 10.15 0.14 0.0001
  Site with/in range 6 12.51 0.37 0.0001
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19 that were elevated in the native range). Consistent with 
these differences, alpha diversity was higher in the invaded 
range soils for Shannon diversity and marginally higher for 
species richness. Soil microbial diversity and composition 
are known to vary geographically for a variety of reasons, 
including soil physical characteristics (particularly pH), cli-
matic factors, land use and disturbance, and plant species 
composition [76, 88, 89]. Our collection sites were typically 

roadsides adjacent to agricultural fields, with cover of C. 
solstitialis and European grasses, and climatically similar 
environments [59], in both ranges. Nevertheless, significant 
side effects within each range indicate that microbial com-
munities were sensitive to subtleties of site characteristics, 
and the distribution of some microbial taxa (see below) sug-
gests that native range sites might experience more drought 
stress.

Fig. 3   Principal coordinate ordi-
nation of a weighted UniFrac 
distances (community structure) 
and b unweighted UniFrac 
distances (community member-
ship) of field soil samples. 
Variation explained by each 
axis is shown in parentheses. 
Each data point represents one 
soil sample. Ellipses represent 
90% confidence intervals. Solid 
line ellipses represent invaded 
sites, and dashed line ellipses 
represent native sites

Fig. 4   Bacterial families that 
are differentially abundant in 
rhizosphere bacterial communi-
ties between invader and native 
C. solstitialis genotypes when 
grown with invaded and native 
microbial communities. Shown 
are linear discriminant analysis 
(LDA) scores from LEfSe 
analyses comparing rhizos-
phere microbial communities 
between native and invading 
plant genotypes. Solid color 
bars are from LEfSe comparing 
microbial communities of each 
genotype when grown in native 
soil, hatched bars for when 
grown in invaded soil. Note: 
Micropepsaceae was the only 
family found to be differentially 
abundant between genotypes in 
both invaded and native soil
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Using these same soils as inocula in our experiment, we 
found that invading genotypes associated with a lower diver-
sity of bacteria than did native genotypes, regardless of the 
source of the soil inoculum. This indicates that plant geno-
types in this system shape the microbial communities on 
their roots and that invaders are not only experiencing novel 
interactions, their evolution is shaping these interactions. 
In their observational study of C. solstitialis–associated 
microbial communities in the field, Lu-Irving and colleagues 
(2019) noted that rhizosphere microbial alpha diversity was 
positively correlated with the genetic diversity (genetic vari-
ation) among plants with a site, within each range, consistent 
with an important effect of different genotypes accumulat-
ing a diversity of different microbial taxa within field site. 
This relationship could not explain differences in microbial 
diversity between ranges, however, because plant genetic 
diversity within sites did not differ substantially between 
the native and invaded ranges in this system [59, 69]. Our 
experiment reveals that it is a divergence between native and 
invading plant genotypes, rather than differences in their 
population genetic diversity within sites, that explains lower 
rhizosphere diversity on plants in the invasion.

We found no effect of soil community environment on 
alpha diversity of root-associated microbes in our experi-
ment, but we did find effects of both soil environment and 
plant genotype on the abundance of specific taxa in the 
rhizosphere. Below, we discuss known functions of several 
of these taxa, but we emphasize that their relationships to C. 
solstitialis are unknown in all cases and must be investigated 
further. While it is difficult to generalize the functions of 
many bacterial taxa (especially at higher taxonomic ranks) 
and some are entirely unknown, current understanding of 
these groups suggests that additional research on their func-
tional roles in this system would be informative.

In possibly our most important finding regarding differen-
tially abundant taxa, we found that Streptomycetaceae were 
more abundant in invaded range field soils and were more 
abundant on invader genotypes when grown in the native 
range soils (in which this group was less abundant, sug-
gesting preferential accumulation). This association between 
Streptomycetaceae and the invaded range, and the appar-
ent accumulation of these bacteria on invading genotypes, 
is potentially important because the Streptomycetaceae are 
widely associated with the promotion of plant growth [90]. 
Their benefits appear to be both direct effects on growth 
(as “biofertilizers”) and indirect effects through their sup-
pression of plant pathogens (the Streptomycetaceae are also 
responsible for the majority of human antibiotics) [91]. If 
members of this family have a similar positive relation-
ship with invading C. solstitialis, this could explain several 
observed advantages to invaders in this system, including 
increased invader growth [62], reduced negative plant-soil 
interactions in the invaded range [30], and potentially the 

decrease in diversity of microbes on invader roots, given the 
antimicrobial properties of Streptomycetaceae [69].

Native genotypes also had a set of interactions that mir-
rored the invader relationships with Streptomycetaceae. 
These were taxa that were more abundant in native soils 
and also more abundant on native genotypes when grown 
in the invaded soils in which these same groups were more 
depauperate (again suggesting preferential accumulation). 
These groups have a variety of potential functions of inter-
est and include an uncultured Gaiellales family (a group that 
has been associated with plant colonizers and may regulate 
organic and fatty acids in soils [92, 93]), a family in sub-
group 1 of the Acidobacteriaceae (a diverse group of oli-
gotrophs abundant in soils, some of which have adapted to 
specific dry soil conditions; [94, 95]), a family in the CPla-3 
termite group (a more highly specialized group in the soil, 
often in acidic environments; [96]), and the family Polyangi-
aceae (a group of predatory social bacteria, among the most 
common predators of bacteria in the soil, with the potential 
to structure the diversity of the entire microbial community 
[97–99]).

The most notable association for native plant genotypes, 
however, appeared to be with the family Micropepsaceae, 
which was more abundant in invaded range soils, but was 
overrepresented on native genotypes grown in either invaded 
or native range soils. This was the only family to be over-
represented on a genotype across both soil environments. 
The Micropepsaceae has been found to be an indicator taxon 
associated with specific plant species or site conditions in 
other studies [100, 101]. For studies that compared differ-
ent environmental manipulations, the family was associ-
ated with early phases of restoration (grasslands [102]), 
early responses to agricultural planting (tobacco [103]), 
and response to cold treatments of plants (lettuce [104]), all 
conditions in which a system had been perturbed recently. In 
one study, the presence of Micropepsaceae was also associ-
ated with reduced suppression of pathogens [105]. If native 
genotypes are exposed to more pathogens when associating 
with this family (perhaps during resource acquisition after 
disturbance), this might favor the diversion of resources 
from growth info defenses, which has been hypothesized to 
explain the smaller size of native plant genotypes within C. 
solstitialis [69].

The association patterns of the two families suggest that 
the native environment might be more stressful for plants, 
particularly in terms of drought. While native and invaded 
range climatic niches are generally similar in these areas 
[59], the families Bacillaceae and Terrimicrobiaceae were 
more abundant in native range soils. Bacillaceae is charac-
terized by the ability to form endospores that are resistant 
to environmental extremes, including drought [106]. The 
Terrimicrobiaceae have been observed to be enriched for 
G3P (glycerol-3-phosphate) transport-related genes, which 
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are associated with plant–microbe interactions that promote 
drought tolerance of plants [107]. Both families were also 
more abundant on invader genotypes in native soils, which 
is notable because previous research has found that invader 
genotypes are less drought tolerant and has suggested that 
this might be adaptive because invaders occupy an envi-
ronment with lower competition for limiting resources, pri-
marily summer water, and therefore experience lower water 
stress in the invasion [62].

Finally, two groups that are more common in invaded 
range soils could be of interest for their differential asso-
ciations with each genotype growing in that soil inoculum. 
Armatimonadales is a group of putatively generalist con-
sumers of organic compounds [96, 108]. In a comparison 
of patches invaded by Amaranthus palmeri to patches of 
native plants in China, Armatimonadales were one of a small 
number of families strongly associated with the invader and 
predictive of soil functional characteristics [109]. Taxa in the 
Chthonomonadales (a group associated with the decompo-
sition of glycine substrates; [110]) were more abundant on 
invader genotypes in our study. Glycine-rich proteins can be 
a major component of plant cell walls [111], and associated 
decomposers may reflect greater nutrient cycling in the pres-
ence of higher biomass input [110].

Further work is needed to identify how C. solstitialis 
interactions with these specific bacterial families that we 
have identified, as well as other components of their micro-
bial communities (i.e., fungi and viruses), affect host plant 
fitness across ranges. Microbial interactions could be respon-
sible for natural selection that has driven the evolution of 
invaders in this system, given that root microbiomes can 
have large effects on host plant performance [112, 113]. A 
study of 15 annual plant species in California grasslands 
(not including C. solstitialis) found that soil microbial com-
munities generated large fitness differences among species, 
suggesting that microbially driven selection could be strong 
[114].

Invaders will also evolve to adapt to other aspects 
of their new environments and are expected to evolve 
increases in traits associated with invasiveness itself 
[50–52, 62, 115–118]. Such trait changes could be syn-
ergistic with more favorable microbial interactions, for 
example, the evolution of increased root investments for 
resource acquisition could also help plants take advan-
tage of beneficial microbes [119]. The influence of host 
evolution on microbial interactions during invasion does 
not appear to have been investigated previously, how-
ever. There is some evidence that plant-microbial inter-
actions have changed over time during invasion, which 
could result from plant evolutionary change. For example, 
older invading populations of Solidago canadensis were 
found to have increased positive microbial interactions and 

competitive ability in a common garden experiment, which 
suggests that these changes were genetically based [120]. 
In contrast, the evolution of aboveground herbivore inter-
actions in plant invasions has attracted long-standing inter-
est [12], and recent reviews find abundant evidence for the 
evolution of these interactions, though not consistently to 
the advantage or disadvantage of the invader [121, 122]. 
Our work demonstrates that belowground microbial inter-
actions should also be expected to evolve during invasion, 
as a product of both the resident microbial community 
and the genetic composition of the host. How these inter-
actions alter fitness and invasiveness over time, and how 
they interact with available genetic variation in introduced 
populations, will be important avenues of further research.
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