RESEARCH

Geographical Diversity of Proteomic Responses to Cold Stress in the Fungal Genus *Pseudogymnoascus*

Nurlizah Abu Bakar^{1,2} · Benjamin Yii Chung Lau³ · Marcelo González-Aravena⁴ · Jerzy Smykla⁵ · Beata Krzewicka⁶ · Saiful Anuar Karsani⁷ · Siti Aisyah Alias^{1,2}

Received: 12 August 2023 / Accepted: 13 November 2023 © The Author(s) 2023

Abstract

In understanding stress response mechanisms in fungi, cold stress has received less attention than heat stress. However, cold stress has shown its importance in various research fields. The following study examined the cold stress response of six *Pseudogymnoascus* spp. isolated from various biogeographical regions through a proteomic approach. In total, 2541 proteins were identified with high confidence. Gene Ontology enrichment analysis showed diversity in the cold stress response pathways for all six *Pseudogymnoascus* spp. isolates, with metabolic and translation-related processes being prominent in most isolates. 25.6% of the proteins with an increase in relative abundance were increased by more than 3.0-fold. There was no link between the geographical origin of the isolates and the cold stress response of *Pseudogymnoascus* spp. However, one Antarctic isolate, *sp3*, showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. This Antarctic isolate (*sp3*) was also the only one that showed decreased phospholipid metabolism in cold stress conditions. This work will improve our understanding of the mechanisms of cold stress response and adaptation in psychrotolerant soil microfungi, with specific attention to the fungal genus *Pseudogymnoascus*.

Keywords Soil microfungi \cdot Metabolic pathways \cdot Cold adaptation \cdot Lipid metabolism \cdot Fungal adaptation \cdot Methane metabolism

Importance This study contributes to the general understanding of the response of soil microfungi from different geographic regions toward climate change. Through a proteomic perspective, we observed a diversity of cold stress responses and adaptation of soil microfungi in terms of their metabolism and protein regulation. Our findings provide information on the roles and importance of microfungi in the soil environment with broad relevance to the emerging threat of climate change.

Siti Aisyah Alias saa@um.edu.my

- ¹ Institute of Ocean and Earth Sciences, C308, Institute of Advanced Studies Building, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- ² National Antarctic Research Centre, B303, Institute of Advanced Studies Building, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- ³ Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia

Introduction

Cold environments encompass many of the Earth's biomes, including polar regions and alpine environments. Along with frequent and often long-lasting sub-zero temperatures, these environments are often characterized by frequent freeze-thaw cycles, high salt concentrations, low moisture and nutrient availability, and extreme ultraviolet (UV) and solar radiation. Despite the harshness, they are inhabited

- ⁴ Instituto Antártico Chileno, Plaza Muñoz Gamero, 1055 Punta Arenas, Chile
- ⁵ Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
- ⁶ W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- ⁷ Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

by a high diversity of biota, composed predominantly of microorganisms such as bacteria, protists, and fungi [13, 20].

Cold-adapted (psychrotolerant) fungi provide a large portion of low-temperature biodiversity and are essential for maintaining ecosystem processes in cold environments [20, 37]. However, while they grow at sub-zero temperatures, most can cope with wide temperature ranges and have a growth optimum above 15°C [20, 28, 36]. Fungi are also highly abundant and widespread in temperate zones and are even found in artificial habitats, such as refrigerated environments [20, 37]. For the genus *Pseudogymnoascus*, a multilocus phylogenetic analyses and morphological characterizations have determined four new species in Antarctica: Pseudogymnoascus antarcticus sp. nov., Pseudogymnoascus australis sp. nov., Pseudogymnoascus griseus sp. nov., and Pseudogymnoascus lanuginosus sp. nov. [35]. Moreover, new secondary metabolites have been described for these fungi isolated from Antarctica, demonstrating the recent interest in this group of organisms [19, 31].

Studies have demonstrated that the great efficiency of cold-adapted fungi and their ability to cope with extreme environmental conditions depends on various molecular and physiological adaptations, including the production of antifreeze proteins, compatible solutes (i.e., glycerol, trehalose, polyols) and cold-active enzymes [20, 34]. These findings are crucial from both evolutionary and biotechnological points of view [5, 17, 23]. Various cosmopolitan model organisms such as Saccharomyces cerevisiae Hansen and Aspergillus nidulans (Eidam) G. Winter are important model organisms of fungal stress tolerance. Nonetheless, psychrophilic and psychrotolerant fungi have also been studied to provide specific details and information on their cold-adapted properties. Improving understanding of the cold stress responses of psychrotolerant fungi is nevertheless an important research field. However, it should also be noted that the natural micro-environments of many fungi are often extremely variable [18]. Therefore, relatively stable experimentally-applied cold stress and non-stress conditions do not replicate the natural environmental variation [3]. Thus, caution must be applied when interpreting data from experimental laboratory studies. From a proteomic perspective, cold stress responses are expected to involve a balanced production of protein networks within cells to eliminate the damaging effects of low-temperature stress while sustaining normal cell processes. Various mechanisms are proposed to underlie the overall complexity of fungal cold stress responses [15, 20]. Many of the proposed mechanisms involve a range of cold-adapted metabolic pathways [16, 22] and translation-related processes [10, 14]. For instance, the cold stress responses of Aspergillus flavus Link and Exophiala dermatitidis (Kano) de Hoog showed increased activity of metabolic pathways involved in amino acid and carbohydrate metabolism [4, 33]. In Flammulina velutipes (Curtis) Singer and *Umbelopsis isabellina* (Oudem.) Gams, the upregulation of energy metabolism pathways, and ATP production were reported [21, 27]. Various lipid metabolic pathways are also involved in the cold stress response of fungi, including the metabolism of sphingolipids, phospholipids, and unsaturated fatty acids [15, 32]. Lipid modulation is significantly related to the stability of fungal membrane structures and their integrity, allowing survival after freezing [26, 29]. The cold stress response of fungi also includes various translation-related processes, such as the upregulation of SRP-dependent co-translational protein targeting membrane pathway, different cold-adapted ribosomal protein biosynthesis, and translation elongation pathways [4, 14, 32].

Progressive advances in proteomic technologies have enhanced our understanding and biotechnological application of psychrotolerant fungi [1, 27]. For instance, some fungal cold stress response mechanisms are applicable in producing antibiotics, antifungal molecules, secondary metabolites, and methane metabolism [25, 38]. However, their potential biotechnological application value is still underexplored and unrecognized. Considering these limitations, we aimed to investigate the cold stress response mechanisms of Pseudogymnoascus spp. using a proteomic approach. To elucidate potential broad-scale differences in cold stress response mechanisms, isolates from three different and geographically distant regions were selected, including polar regions (i.e., Arctic and Antarctic) and Europe as a temperate region. Our findings provide important baseline data on cold stress responses of soil microfungi that are needed to enhance further research on their biotechnological applications.

Methodology

Fungal Cultivation and Cold Stress Experimental Design

Four isolates of *Pseudogymnoascus* spp. from the polar regions, including the Arctic (HND16 R4-1 sp.1 and HND16 R2-1 sp.2) and Antarctic (AK07KGI1202 R1-1 sp.3 and AK07KGI1202 R1-1 sp.4) were obtained from the culture collection of the National Antarctic Research Centre (NARC), Universiti Malaya, Malaysia. Isolation, identification, and phylogenetic analysis of these isolates are described in a prior publication from our group [39]. Phylogenetic analysis clustered all isolates within an undescribed group of *Pseudogymnoascus* sequences; thus, they were described as *Pseudogymnoascus* sp. [39]. All the isolates were kept in pure culture, and their sequences were deposited into the GenBank database. Two isolates of *Pseudogymnoascus* pannorum (Link) Minnis & D.L. Lindner (CBS 106.13 and CBS 107.65) that originated from the temperate

region (Switzerland and Germany) were purchased from the Westerdijk Fungal Biodiversity Institute which was previously known as Centraalbureau voor Schimmelcultures (CBS-KNAW) Fungal Biodiversity Centre (Utrecht, The Netherlands). The list of the investigated isolates with information on their origin and identification codes is given in Table 1. Fungal colony plugs (ca. 5 mm in diameter) were inoculated onto 100 mm Petri dishes of Czapek-Dox agar (CDA, Oxoid) and incubated in cold stress (CS) conditions (5 °C) and at optimal temperature (15 °C) for control (C) for 5 days. In this work, 5°C and an incubation period of 5 days were chosen to represent cold stress conditions for all isolates. Our previous work showed a clear indication of stress-related changes in colony morphology at 5°C, and no growth was observed below 5°C for all isolates. [2]. The incubation period was fixed at 5 days to ensure that all fungi cells were maintained in log phase growth since no significant difference in growth rates between day 5 and day 7 for all six isolates was observed [2].

Preparation of Protein Extracts

Mycelia of *Pseudogymnoascus* spp. (from 10-day cultures) were carefully scraped using a sterile spatula. An average of 1 g of fungi mycelia (initial wet mass) was inoculated into 300 mL of Czapek-Dox liquid cultures in three replicates and grown for 5 days at the selected experimental temperatures (i.e., 5 °C and 15 °C). After 5 days, fungal biomass was harvested using a 0.45-µm filter paper and transferred to sterile tubes for weighing. Then, the harvested biomass was immediately flash-frozen and ground into fine powder in

liquid nitrogen. Further steps of protein extract preparation were carried out following Tesei et al. [33] with modifications. Briefly, 1 g of ground mycelia was incubated in lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM tris HCl, pH 8.5) for 1 h. The mixture was bath-sonicated for 15 min at 20 °C. Then 5 mL of tris-buffered phenol solution pH 8.0 (Sigma Aldrich) was added to the cell lysate, and the phenolic phase was collected after centrifugation $(3300 \times g$ for 20 min). Proteins were precipitated overnight at -20 °C by adding 5 volumes of 20% (w/v) ice-cold TCA/acetone (with the addition of 0.2% DTT, w/v). After centrifugation at $10,000 \times g$ for 30 min, the precipitate was washed twice with ice-cold acetone (80%, v/v). The resulting pellet was air-dried and resuspended in 100 µl of modified lysis buffer (2 M urea, 30 mM tris HCl, pH 8.5). Total protein content was determined using a standard Bradford protein assay [8].

In-solution Protein Digestion

In-solution protein digestion was carried out following Lau and Othman [24]. The extracted proteins (50 μ g) were suspended in 100 μ L of 50 mM ammonium bicarbonate and 1 M urea. The proteins were reduced and alkylated using 100 mM tris(2 carboxyethyl)phosphine and 200 mM iodoacetamide. Sodium deoxycholate in 5 mM ammonium bicarbonate [1% (w/v)] was added to the reduced and alkylated proteins to enhance the tryptic digestion at 37 °C for 10 min. Tryptic digestion using 1 μ g of sequencing grade trypsin (Promega, Madison, WI, USA) per 50 μ g protein was performed at 37 °C for 17 h. The resulting peptide mixture was then acidified with 0.5% formic acid to precipitate

Table 1 Pseudogymnoascus spp. isolates used in this study with information on their origin and identification codes

Taxon name	Isolate code	Code used in text	Region	Sampling loca- tion	Coordinates	GenBank accession number	Collection
Pseudogymnoas- cus sp.	HND16 R4-1 sp.1	sp1	Arctic	Hornsund, Spits- bergen	77°00′04″N, 15°33′37″E)	MK443476	NARC, Malaysia
Pseudogymnoas- cus sp.	HND16 R2-1 sp.2	sp2	Arctic	Hornsund, Spits- bergen	77°00′04″N, 15°33′37″E)	MK443477	NARC, Malaysia
Pseudogymnoas- cus sp.	AK07KGI1202 R1-1 sp.3	sp3	Antarctic	Fildes Peninsula, King George Island	62°12′57″S, 058°57′35 ″W	MK443474	NARC, Malaysia
Pseudogymnoas- cus sp.	AK07KGI1202 R1-1 sp.4	sp4	Antarctic	Fildes Peninsula, King George Island	62°12′57″S, 058°57′35″W	MK443475	NARC, Malaysia
P. pannorum	CBS 106.13	C106	Temperate	Sainte-Croix, near Yverdon, Switzerland	n.a	MH854616	Westerdijk Fungal Biodiversity Institute
P. pannorum	CBS 107.65	<i>C107</i>	Temperate	Schleswig–Hol- stein, Kiel- Kitzeberg, Germany	n.a	MH858505	Westerdijk Fungal Biodiversity Institute

*n.a: data not available, detailed information can be accessed from Westerdijk Fungal Biodiversity Institute website

sodium deoxycholate through centrifugation at $14,000 \times g$ (Eppendorf, Thermo Scientific) at ambient room temperature for 15 min. The remaining solvents and acids were removed using a centrifugal evaporator (CentriVap Concentrator, Labconco, MO, USA). The desiccated peptides were suspended in 100 µL of 0.1% formic acid and gently mixed before peptide purification. An EmporeTM solid phase extraction disk (3 M Purification, Inc., MN, USA), conditioned with acetonitrile and methanol, was added into the peptide solution and incubated at the ambient temperature for 3 h to bind the peptides. Elution of the peptides from the disk was done twice using 50% ACN in 0.1% FA for 30 min each.

Liquid Chromatography Tandem Mass Spectrometry Analysis (LC-MS/MS)

Peptides were reconstituted in 30 µL of 0.1% FA and 5% ACN. Then, 2 µL of the digest was loaded onto an Acclaim PepMap 100 C18 column (3 µm, 0.075 × 150 mm) (Thermo Scientific, MA, USA). The reverse phase column was equilibrated with 0.1% FA (mobile phase A) and 80% ACN in 0.1% FA (mobile phase B). A gradient of 5-35% mobile phase B over 70 min, at a flow rate of 300 nL min⁻¹, was applied to elute the peptides. The peptides were separated using the EASY-nano liquid chromatography (EASY-nLC) 1200 System (Thermo Scientific, MA, USA). An online Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer system (Thermo Scientific, MA, USA) generated the peptide ions with a spray voltage of 1800 V in positive mode. The precursor ion scan was conducted with a resolution of 70,000 and a mass range of m/z 310–1800. Precursors containing charge states from 2 + to 8 + were fragmentedfurther. The fragmentation was done via collision-induced and high-energy collision-induced at a normalized energy of 28%. The resolution, isolation window, and ion injection time were set at 17,500, 0.7 Da, and 60 ms, respectively. The scanned precursor mass range was set at m/z 110–1800.

Protein Identification and Bioinformatic Analysis

Mass spectra of the peptides were acquired using Xcalibur (Ver. 4.1.31.9) (Thermo Scientific, MA, USA) and deconvoluted with Proteome Discoverer (Ver. 2.4) (Thermo Scientific, MA, USA) to create the peptide mass list. SEQUEST HT search engine, incorporated in the Proteome Discoverer, was used to match the generated mass list against *Pseudogymnoascus destructans* (Blehert & Gargas) Minnis & D.L. Lindner (Taxonomy ID is 655981, 82,900 sequences). Mass tolerance for the proteins and their fragments was fixed at 10 ppm and 0.02 Da, respectively. Trypsin was indicated as the digestion enzyme, with up to two missed cleavages allowed during the search. Carbamidomethylation modification on cysteine residues was set as a static modification, whereas variable amino acid modifications included deamidation (asparagine and glutamine residues) and oxidation (methionine residues). The mass list was also searched against a decoy database generated from randomized protein sequences of the taxonomy mentioned earlier. Only proteins having at least the Rank 1 peptide and a false discovery rate of 1% were accepted. Spectra that matched the sequences were further validated using the Percolator algorithm (Ver. 2.04) with *q*-value at 1% false discovery rate. Venn diagrams were generated using the web-based Venny v2.1 software available at https://bioinfogp.cnb.csic.es/tools/venny/index. html (Oliveros 2007–2015).

Peptide Quantification and Bioinformatics Analysis

The protein function was determined by inputting protein identifiers (NCBI accession number) into the UniProtKB database (http://www.uniprot.org/blast/) and assigning the respective Gene Ontology (GO) terms and annotations. Protein abundance values were used to calculate each isolate's log₂ ratios of CS:C for each isolate. A microarray (MA) plot was constructed using log₂ CS:C ratios against -log₁₀ local false discovery rate (FDR) values. A cut-off value of 1% FDR was applied to all data obtained from LC-MS/ MS and quantification before performing MA plot analysis. Relative abundances (RA) were identified from the protein abundance data with a minimum of ± 0.1 -fold change. The proteins that were significantly increased and decreased in relative abundance were determined with a 1.5-fold change as the cut-off value. Venn diagrams were also constructed to compare RAs of isolates within regions.

Differences in protein abundances between cold stress (CS) and control (C) conditions were analyzed by label-free relative quantitation method with the Proteome Discoverer v2.4 software. Briefly, the following parameters were used: precursor quantitation was based on intensity; normalization mode and scaling mode were set as "total peptide amount" and "on all average." Protein abundances and ratios were calculated using the summed abundances and pairwise ratios. In this method, protein ratios were calculated as the median of all possible pairwise peptide ratios between the replicates of all related peptides. These values were normalized by the sum of their abundances for each channel over all peptides identified.

Gene Ontology Enrichment Analysis

KOBAS v2.0 (http://kobas.cbi.pku.edu.cn) was used to search for gene enrichment. This software uses gene-level statistics called overrepresentation analysis [40]. The analysis is based on the hypergeometric distribution/Fisher's exact test with the addition of Benjamini and Hochberg [7] false discovery rate (FDR) correction. FASTA sequences were used to identify enriched pathways in the KEGG, Bio-Cyc, and Reactome databases based on changes in protein abundances between CS and C conditions. GO terms with $p \le 0.05$ were considered significantly enriched. *Saccharomyces cerevisiae* was selected as the reference Ascomycota species.

Results

Response of Proteomic Profiles to Cold Stress

The intracellular protein extracts from *Pseudogymnoascus* spp. isolates were analyzed using tandem liquid chromatography-mass spectrometry (LCMS/MS). A total of 2541 proteins were identified with high confidence (p < 0.01) from all six isolates in cold stress (CS) and control (C) conditions (Supplementary 1). The shift in the distribution of protein abundances under CS was demonstrated on a microarray analysis (MA) plot (Fig. 1). The fold change ratios of increased or decreased relative protein abundance (RA) with a minimum of ± 0.1 -fold were plotted against -log₁₀ local false discovery rate (FDR). The MA analysis identified 720 RA in all six isolates, with relatively similar proportions being increased and decreased in RA; 383 (53.2%) and

Fig. 1 The microarray analysis (MA) plot showing the distribution of 2,541 proteomic profiles of proteins identified in all six isolates of *Pseudogymnoascus* spp. under cold stress (CS). Proteins that pass a threshold of 1.5-fold change were determined as significantly up- or downregulated (red- and blue-shaded area, respectively). Colors and shapes represent different isolates; Arctic: sp1 - grey circle, sp2 - grey diamond, Antarctic: sp3 - yellow circle, sp4 - yellow diamond, and temperate region: C106 - green circle, C107 - green diamond

337 (46.8%) proteins, respectively. The majority of identified proteins (i.e., 71.7%) were clustered close to 0 and had relatively high confidence values ($-\log_{10}$ FDR > 800). All isolates showed a similar distribution pattern of RA under CS with no indication of differences related to geographical origin.

A stacked bar graph was constructed to better visualize the distribution patterns of RA for each isolate (Fig. 2). The total number of RA differed noticeably among isolates from different geographical regions, with the highest numbers for the Arctic (168–271), intermediate for the Antarctic (97-102), and the lowest for the temperate region (38-44). This pattern seems to be consistent for both increased and decreased RA. However, due to the high variation, no clear pattern was visible in the proportion of increased and decreased RA. For instance, one of the Arctic isolates (i.e., sp2) exhibited a considerably higher number of increased than decreased RA proteins: 161 (59.4%) vs. 110 (40.6%), respectively. The other Arctic isolate (i.e., sp1) provided the opposite proportion, with only 70 (41.7%) vs. 98 (58.3%) increased and decreased RA proteins, respectively. The numbers of decreased RA proteins in both Arctic isolates were relatively similar, so these reverse proportions were mostly due to the very high difference in number of increased RA proteins. On the other hand, both Antarctic isolates (i.e., sp3 and *sp4*) produced very similar numbers and proportions of increased and decreased RA proteins, i.e., 59 (69.8%) vs. 38 (39.2%) for sp3 and 56 (54.9%) vs. 46 (45.1%) for sp4, respectively. Similarly, the temperate isolates (i.e., C106 and C107) did not differ significantly in the number

Fig. 2 Bar graph showing the number of differentially expressed proteins (DEPs) in response to cold stress (CS) in isolates of *Pseudogymnoascus* spp. from different geographical regions. Values by the bars represent the number of differentially expressed proteins (DEPs); + values, upregulated proteins; – values, downregulated proteins. The Arctic isolates: sp1, sp2; Antarctic isolates: sp3, sp4; temperate isolates: C106, C107

and proportion of increased and decreased RA proteins. Although, some proteins demonstrated the opposite pattern compared to the Antarctic isolates, with 20 (45.5%) vs. 24 (54.5%) for *C106* and 17 (44.7%) vs. 21 (55.3%) for *C106* increased and decreased RA proteins, respectively.

Simple Venn diagrams were used to illustrate the numbers of shared and unique proteins found in isolates from the same geographical region (Fig. 3). This analysis is crucial to show the degree of similarity or differences among isolates within regions to understand the relationship of RA proteins between isolates and to identify common proteins that potentially play a major role during cold stress in Pseudogymnoascus spp. The two Arctic isolates shared only two increased RA proteins (Fig. 3a), representing hypothetical proteins with molecular weights (MW) below 30 kDa. On the other hand, the Arctic isolates shared as much as 10 decreased RA proteins (Fig. 3d). These proteins were a mixture of enzymes (pyruvate dehydrogenase complex dihydrolipoamide acetyltransferase, ATP synthase F1, and isocitrate dehydrogenase), small subunit ribosomal proteins (S3e, S13, S20, and S22), structural protein (tubulin alpha-β chain), transporter protein (protein transporter sec-23) and degradation component protein (proteasome core particle subunit alpha 2). The Antarctic isolates shared 16 RA proteins, including eight increased and eight decreased RA proteins (Fig. 3b, e). Three of the shared RA proteins among increased RA proteins belonged to hypothetical proteins with MW over 30 kDa, and only one (GI number 1040529802) hypothetical protein VE03 04039 with a MW equal to 21.9 kDa. The other four of the eight shared RA proteins among increased RA proteins included translation initiation factor eIF4, guanine nucleotide-binding protein subunit beta-like protein, isocitrate dehydrogenase, and 60S ribosomal protein L20. The decreased RA proteins shared by the Antarctic isolates included NADP-specific glutamate dehydrogenase, mitochondrial heat shock protein 60, glucose-regulated protein, and 60S ribosomal protein L11. Surprisingly, the temperate isolates did not share any increased RA protein and had in common only one decreased RA protein, i.e., the plasma membrane ATPase (Fig. 3c, f).

Gene Ontology Enrichment Analysis of Proteins Significantly Increased in Abundance (Fold Change of ≥ 1.5)

The significantly increased RA of *Pseudogymnoascus* spp. was further analyzed to identify significantly increased RA proteins with a fold change of ≥ 1.5 (Table 2). A total of 176 proteins were significantly increased in abundance across all isolates, with 47.7% (84) of them identified as hypothetical proteins. Among all the analyzed isolates, Arctic *sp2* had the highest numbers of significantly increased RA proteins, 91. Whereas temperate *C106* had the lowest numbers of significantly increased the abundance of various species of large ribosomal subunit proteins (i.e., L4e, L10a, L12, L16, L20, L21e, L26e, L35, and P0) and enzymes (e.g., catalase, pyruvate carboxylase, malate dehydrogenase, enolase). Furthermore, 45 (25.6%) proteins

Fig. 3 Venn diagrams showing the relationship between common and unique proteins in isolates from the same geographical region. $\mathbf{a} - \mathbf{c}$ Upregulated proteins, $\mathbf{d} - \mathbf{f}$ downregulated proteins. \mathbf{a} and \mathbf{d} the Arctic isolates, \mathbf{b} and \mathbf{e} the Antarctic isolates, \mathbf{c} and \mathbf{f} the temperate isolates

Table 2 List of significantly upregulated proteins under cold stress (fold change, \log_2 ratios of ≥ 1.5) as recorded in Supplementary 1

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
sp1	1,352,887,886	Porin por1	Pseudogymnoascus ver- rucosus	94	6	283	30.3	8.98	1.9
	1,040,536,136	Hypothetical protein VF21_08556	Pseudogymnoascus sp. 05NY08	33	3	529	56	6.19	3.0
	1,040,511,155	Hypothetical protein VE04_08019	Pseudogymnoascus sp. 24MN13	16	6	400	42.1	6.15	2.6
	1,040,523,417	60S ribosomal protein L16	Pseudogymnoascus sp. 23,342–1-I1	37	1	202	23.1	10.51	2.2
	1,040,533,161	Catalase/peroxidase HPI	Pseudogymnoascus sp. 23,342–1-I1	23	5	795	87.3	5.5	3.0
	1,040,528,549	Large subunit ribosomal protein L26e	Pseudogymnoascus sp. 23,342–1-I1	41	11	137	15.7	10.68	1.9
	1,040,533,064	20S proteasome subunit alpha 7	Pseudogymnoascus sp. 23,342–1-I1	43	12	295	31.7	4.91	1.7
	1,040,498,553	Hypothetical protein VE00_08699	Pseudogymnoascus sp. WSF 3629	31	3	583	63.3	5.72	2.9
	1,040,563,505	Translocase of outer mito- chondrial membrane	Pseudogymnoascus ver- rucosus	48	1	356	38.5	6	1.8
	1,040,504,933	Hypothetical protein VE00_02597	Pseudogymnoascus sp. WSF 3629	35	4	323	34.1	5.87	2.7
	1,352,887,735	Hypothetical protein VE01_04516	Pseudogymnoascus ver- rucosus	13	4	541	60.3	7.08	1.9
	1,040,528,536	Hypothetical protein VE03_05557	Pseudogymnoascus sp. 23,342–1-I1	65	7	580	63.1	6.52	1.7
	1,040,532,023	Hypothetical protein VE03_01299	Pseudogymnoascus sp. 23,342–1-I1	21	8	1015	105.6	5.01	3.6
	1,040,505,794	Hypothetical protein VE00_03008	Pseudogymnoascus sp. WSF 3629	28	8	186	21.4	11.18	2.1
	1,069,466,243	Large subunit ribosomal protein L21e	Pseudogymnoascus ver- rucosus	52	12	160	18.2	10.33	1.9
	1,040,526,528	Hypothetical protein VE03_07310	Pseudogymnoascus sp. 23,342–1-I1	25	12	1473	165.1	5.54	2.6
	1,040,525,391	Hypothetical protein VE03_07986	Pseudogymnoascus sp. 23,342–1-I1	21	6	783	81.9	5.11	4.5
	1,026,905,242	Hypothetical protein VC83_04831	Pseudogymnoascus destructans	14	2	1231	128.4	5.34	3.0
	1,040,534,050	Catalase/peroxidase HPI	Pseudogymnoascus sp. 05NY08	26	4	790	86.4	6.01	3.7
	1,040,525,523	Hypothetical protein VE03_08478	Pseudogymnoascus sp. 23,342–1-I1	25	5	790	87.1	5.85	4.5
	440,636,110	Hypothetical protein GMDG_07740	Pseudogymnoascus destructans 20,631–21	17	3	507	54	5.9	2.5
	1,040,502,501	Hypothetical protein VE00_05878	Pseudogymnoascus sp. WSF 3629	20	3	988	105.7	6.46	2.3
	1,040,530,925	Hypothetical protein VE03_02548	Pseudogymnoascus sp. 23,342–1-I1	14	5	1009	110.2	5.43	1.7
	1,040,547,240	Hypothetical protein VE02_07770	Pseudogymnoascus sp. 03VT05	8	3	486	51.9	6.11	1.6
	1,040,530,942	Hypothetical protein VE03_02444	Pseudogymnoascus sp. 23,342–1-I1	8	1	347	36.1	5.81	2.3
	1,040,504,056	Hypothetical protein VE00_03867	Pseudogymnoascus sp. WSF 3629	11	3	611	64.1	5.33	4.1

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,520,853	Hypothetical protein VE04_00056	Pseudogymnoascus sp. 24MN13	31	3	505	54.2	8.24	3.1
	1,040,525,910	Hypothetical protein VE03_07646	Pseudogymnoascus sp. 23,342–1-I1	21	7	441	48.7	7.3	2.5
	1,069,466,961	Hypothetical protein VE01_02450	Pseudogymnoascus ver- rucosus	2	4	2096	226.9	4.91	2.3
	1,040,544,250	Proteasome subunit beta type-2	Pseudogymnoascus sp. 05NY08	19	2	182	20.4	7.49	1.7
	1,040,525,682	Hypothetical protein VE03_07697	Pseudogymnoascus sp. 23,342–1-I1	7	1	611	66.7	6.2	4.3
	1,040,520,567	Hypothetical protein VE04_00626	Pseudogymnoascus sp. 24MN13	9	4	646	71.5	7.3	4.5
	1,026,903,545	Mitochondrial import inner membrane translo- case subunit tim8	Pseudogymnoascus destructans	60	4	89	10.1	6.05	1.6
	1,026,909,249	DASH complex subunit ask1	Pseudogymnoascus destructans	2	1	398	43.8	5.41	3.7
	1,040,507,167	Hypothetical protein VE00_00603	Pseudogymnoascus sp. WSF 3629	34	2	108	11.8	5.74	2.3
	1,040,503,472	Hypothetical protein VE00_03602	Pseudogymnoascus sp. WSF 3629	6	1	497	54	6.06	4.4
	1,040,531,469	Hypothetical protein VE03_02830	Pseudogymnoascus sp. 23,342–1-I1	7	3	713	76.9	6.49	2.0
sp2	1,040,547,996	ATP synthase subunit beta, mitochondrial	Pseudogymnoascus sp. 03VT05	87	3	516	55.4	5.68	2.4
	1,040,531,119	Glyceraldehyde 3-phos- phate-dehydrogenase	Pseudogymnoascus sp. 23,342–1-I1	86	3	339	36.5	6.95	2.9
	1,040,553,812	Heat shock protein SSB1	Pseudogymnoascus sp. 03VT05	48	2	767	84.1	8.43	2.5
	1,040,537,109	ATP synthase subunit alpha, mitochondrial	Pseudogymnoascus sp. 05NY08	64	4	555	59.7	9.1	2.5
	1,040,529,266	Hypothetical protein VE03_04296	Pseudogymnoascus sp. 23,342–1-I1	13	4	4080	451.6	6.43	2.0
	1,040,523,711	hsp70-like protein	Pseudogymnoascus sp. 23,342–1-I1	65	10	676	73.5	5.74	2.4
	440,639,856	Tubulin beta chain	Pseudogymnoascus destructans 20,631–21	76	37	446	49.6	4.93	2.6
	1,040,524,485	Pyruvate carboxylase	Pseudogymnoascus sp. 23,342–1-I1	47	3	1190	130.3	6.35	1.5
	1,040,506,608	Actin	Pseudogymnoascus sp. WSF 3629	77	29	375	41.5	5.69	2.6
	1,026,904,149	Malate dehydrogenase, cytoplasmic	Pseudogymnoascus destructans	80	6	339	35.2	8.92	3.7
	1,040,560,294	Translation initiation fac- tor eIF4A	Pseudogymnoascus ver- rucosus	67	26	398	44.9	5.24	1.7
	1,040,532,273	Ketol-acid reductoisomer- ase, mitochondrial	Pseudogymnoascus sp. 23,342–1-I1	69	2	400	44.5	7.05	2.1
	1,352,888,949	Phosphatidylinositol transfer protein csr1	Pseudogymnoascus ver- rucosus	63	1	221	24	9.39	3.0
	1,040,528,425	Hypothetical protein VE03_04962	Pseudogymnoascus sp. 23,342–1-I1	23	6	514	53.8	4.94	4.6
	1,040,530,832	Hypothetical protein VE03_02453	Pseudogymnoascus sp. 23,342–1-I1	45	6	462	48.7	8.29	2.6

(Geographic	al [Diversity	of I	Proteomic	Resp	onses	to	Col	d :	Stress	in t	he	Fungal	Genus.	

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log
	1,040,529,726	Cell division control protein 48	Pseudogymnoascus sp. 23,342–1-I1	60	53	823	89.9	5.05	2.7
	1,040,518,845	Fatty acid synthase subu- nit alpha	Pseudogymnoascus sp. 24MN13	30	1	1790	196.3	6.05	2.1
	1,040,530,016	Mitochondrial-processing peptidase subunit beta	Pseudogymnoascus sp. 23,342–1-I1	62	27	478	52.5	5.74	2.0
	1,040,501,521	Heat shock protein SSB1	Pseudogymnoascus sp. WSF 3629	62	5	614	66.5	5.44	4.5
	1,040,531,120	NADH-ubiquinone oxidoreductase 78 kDa subunit, mitochondrial	Pseudogymnoascus sp. 23,342–1-I1	59	4	741	80.6	6.57	2.1
	1,040,529,066	Hypothetical protein VE03_05085	Pseudogymnoascus sp. 23,342–1-I1	66	28	441	50.4	6.71	2.7
	1,040,530,740	Hypothetical protein VE03_03497	Pseudogymnoascus sp. 23,342–1-I1	51	13	572	60.8	5.26	1.6
	1,040,542,063	Hypothetical protein VF21_01051	Pseudogymnoascus sp. 05NY08	55	2	327	34.3	8.32	1.6
	1,026,906,053	erg10, acetyl-CoA C-acetyltransferase	Pseudogymnoascus destructans	79	5	399	41.2	6.8	2.1
	1,040,531,100	Plasma membrane ATPase	Pseudogymnoascus sp. 23,342–1-I1	41	2	931	100.8	5.15	2.3
	1,040,525,605	60S ribosomal protein L12	Pseudogymnoascus sp. 23,342–1-I1	57	2	165	17.7	9.33	2.2
	1,040,499,942	Hypothetical protein VE00_08276	Pseudogymnoascus sp. WSF 3629	26	8	473	49.1	5.82	2.7
	1,040,524,717	Transketolase	Pseudogymnoascus sp. 23,342–1-I1	35	7	685	74.8	5.97	2.6
	1,040,511,267	Hypothetical protein VE04_09537	Pseudogymnoascus sp. 24MN13	11	6	1822	202	6.47	2.4
	1,040,529,249	hypothetical protein VE03_04396	Pseudogymnoascus sp. 23,342–1-I1	65	2	468	51.3	5.54	2.2
	1,040,525,568	Hypothetical protein VE03_07513	Pseudogymnoascus sp. 23,342–1-I1	66	2	365	39.1	6.14	2.0
	1,069,466,751	Saccharopine dehydro- genase	Pseudogymnoascus ver- rucosus	47	3	503	55.2	5.71	2.5
	1,040,533,483	Hypothetical protein VE03_00182	Pseudogymnoascus sp. 23,342–1-I1	51	3	253	27.4	7.12	2.0
	1,040,528,274	Diphosphomevalonate decarboxylase	Pseudogymnoascus sp. 23,342–1-I1	48	16	385	40.8	6.55	2.8
	1,040,506,765	Glycine hydroxymethyl- transferase	Pseudogymnoascus sp. WSF 3629	42	0	539	58.9	8.56	3.0
	1,040,529,880	Hypothetical protein VE03_04169	Pseudogymnoascus sp. 23,342–1-I1	30	10	1085	118.8	4.63	3.0
	1,040,505,261	Succinate dehydrogenase flavoprotein subunit, mitochondrial	Pseudogymnoascus sp. WSF 3629	60	26	646	70.8	6.49	1.8
	1,040,506,012	Hypothetical protein VE00_01435	Pseudogymnoascus sp. WSF 3629	16	25	2127	234.2	6.46	1.7
	1,040,500,818	Aldehyde dehydrogenase	Pseudogymnoascus sp. WSF 3629	67	1	496	53.4	5.95	1.7
	440,634,311	Catalase	Pseudogymnoascus destructans 20,631–21	60	2	505	57.4	7.3	1.5

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,517,350	2,3-Bisphosphoglycerate- independent phospho- glycerate mutase	Pseudogymnoascus sp. 24MN13	49	8	522	57.7	5.4	2.2
	1,026,902,306	Hypothetical protein VC83_09257	Pseudogymnoascus destructans	50	4	545	60.5	6.11	4.3
	1,040,527,086	N-Acetyl-gamma- glutamyl-phosphate reductase/acetylgluta- mate kinase	Pseudogymnoascus sp. 23,342–1-11	27	2	880	96.3	7.17	4.3
	1,040,503,795	Hypothetical protein VE00_03509	Pseudogymnoascus sp. WSF 3629	51	2	317	34.9	5.36	2.3
	1,040,538,418	Clathrin, heavy polypep- tide	Pseudogymnoascus sp. 05NY08	15	1	1682	190.1	5.4	2.5
	1,040,543,888	T-complex protein 1 subu- nit gamma	Pseudogymnoascus sp. 05NY08	17	1	541	59	5.99	3.7
	1,040,504,412	Hypothetical protein VE00_02312	Pseudogymnoascus sp. WSF 3629	60	5	282	31.3	4.45	4.2
	1,040,531,360	Hypothetical protein VE03_02918	Pseudogymnoascus sp. 23,342–1-I1	32	6	210	22.8	4.87	2.0
	1,352,888,607	Target of Sbf	Pseudogymnoascus ver- rucosus	12	1	448	46.1	5.5	4.4
	1,040,530,118	Hypothetical protein VE03_04536	Pseudogymnoascus sp. 23,342–1-I1	19	9	542	60.3	7.61	3.3
	1,040,526,016	Plasma-membrane proton- efflux P-type ATPase	Pseudogymnoascus sp. 23,342–1-I1	13	2	990	108.4	5.39	2.1
	1,040,526,348	Dihydroxy-acid dehy- dratase	Pseudogymnoascus sp. 23,342–1-I1	32	8	592	63.2	7.12	2.9
	1,040,524,212	Hypothetical protein VE03_09540	Pseudogymnoascus sp. 23,342–1-I1	27	14	820	86.1	5.15	3.9
	1,040,501,074	Hypothetical protein VE00_07280	Pseudogymnoascus sp. WSF 3629	43	5	313	32.6	6.16	4.7
	1,040,501,360	40S ribosomal protein S17	Pseudogymnoascus sp. WSF 3629	39	3	148	17	9.8	4.6
	1,040,515,629	Hypothetical protein VE04_03766	Pseudogymnoascus sp. 24MN13	51	5	403	44.9	5.35	4.2
	1,040,501,480	Acetyl-CoA C-acetyl- transferase	Pseudogymnoascus sp. WSF 3629	62	2	399	41.2	6.8	2.2
	1,069,464,671	Guanine nucleotide-bind- ing protein subunit beta	Pseudogymnoascus ver- rucosus	55	3	355	39.1	7.4	1.5
	1,352,886,849	Proteasome regulatory particle base subunit rpt5	Pseudogymnoascus ver- rucosus	47	16	462	51.6	5.01	2.2
	1,040,504,856	ATP synthase F1, delta subunit	Pseudogymnoascus sp. WSF 3629	33	4	273	29	9.67	1.6
	1,040,532,080	26S protease regulatory subunit 6B	Pseudogymnoascus sp. 23,342–1-I1	38	2	421	47.1	6	2.7
	1,040,499,252	hsp70-like protein	Pseudogymnoascus sp. WSF 3629	63	4	682	73.9	5.19	3.6
	1,040,538,336	Hypothetical protein VF21_06756	Pseudogymnoascus sp. 05NY08	8	2	443	48.4	5.85	2.6
	440,640,697	Hypothetical protein GMDG_04885	Pseudogymnoascus destructans 20,631–21	10	2	666	70.3	5.26	2.7
	1,040,529,285	Hypothetical protein VE03_04902	Pseudogymnoascus sp. 23,342–1-I1	31	4	198	21.3	6.79	3.9

Isolate Accession no. Description of protein Coverage [%] # Unique # AAs MW [kDa] calc. pI log₂ Species of origin protein identiidentified peptides fied 1,040,548,610 Hypothetical protein Pseudogymnoascus sp. 6 2 577 64 6.79 3.8 VE02_07270 03VT05 Hypothetical protein Pseudogymnoascus sp. 2 1,040,530,835 4 581 63.1 4.78 4.4 VE03_02559 23,342-1-I1 2 440.637.926 Hypothetical protein Pseudogymnoascus 18 334 35.7 5.6 1.5 GMDG 00466 destructans 20,631-21 1,040,540,357 Hypothetical protein Pseudogymnoascus sp. 9 1 468 49.6 5.95 4.4 VF21_04798 05NY08 1,040,526,301 Arginase Pseudogymnoascus sp. 2 330 35.4 5.62 2.2 13 23,342-1-I1 4 1.8 1,040,520,684 Hypothetical protein Pseudogymnoascus sp. 41 462 48.6 8.9 VE04_00111 24MN13 1,040,547,997 NADH-ubiquinone Pseudogymnoascus sp. 56 1 741 80.6 6.57 4.0 oxidoreductase 78 kDa 03VT05 subunit, mitochondrial 1,040,529,431 3 1 309 32.8 2.7 Hypothetical protein Pseudogymnoascus sp. 5.66 VE03 03597 23,342-1-I1 1,026,904,985 Hypothetical protein Pseudogymnoascus 22 2 239 26.1 5.62 2.7 VC83_06014 destructans 2 433 3.3 1,040,526,507 Hypothetical protein Pseudogymnoascus sp. 21 46.4 6.57 VE03_07003 23,342-1-I1 9 2 282 5.54 2.2 1.040.518.253 Hypothetical protein Pseudogymnoascus sp. 31.3 VE04_03452 24MN13 1,001,844,792 Pyridoxal biosynthesis Streptomyces albidoflavus 4 1 306 32.1 5.33 2.4 lyase pdxS 2 1,040,539,921 Hypothetical protein Pseudogymnoascus sp. 13 415 46.8 5.41 2.5 VF21_03606 05NY08 Inositol-1-phosphate 1.7 1,001,842,424 Streptomyces albidoflavus 3 1 360 39.5 5.11 synthase Pseudogymnoascus sp. 1,040,532,999 Hypothetical protein 14 4 469 50.7 5.36 2.1 VE03_00521 23,342-1-I1 2 1.7 1,040,553,304 Hypothetical protein Pseudogymnoascus sp. 9 319 34.6 5.99 VE02_01894 03VT05 Hypothetical protein 3 1,040,502,810 Pseudogymnoascus sp. 20 811 91.3 6.51 2.6 VE00_05825 WSF 3629 9 3 1.9 1,040,564,605 Vacuolar protein 8 Pseudogymnoascus ver-557 60.6 4.97 rucosus 1,040,539,273 Catalase Pseudogymnoascus sp. 1 505 57.3 7.47 4.7 54 05NY08 2 1,040,527,824 Catalase Pseudogymnoascus sp. 56 505 57.2 7.08 3.6 23,342-1-I1 1,040,541,436 250 27.3 6.32 1.5 Hypothetical protein Pseudogymnoascus sp. 44 1 VF21_04301 05NY08 1,370,888,902 Hypothetical protein Pseudogymnoascus 80 2 330 34.1 6.39 2.1 VC83_07881 destructans Pseudogymnoascus ver-1,352,888,836 Protein disulfide-isomer-37 1 432 47.3 7.88 3.0 ase erp38 rucosus 1,069,467,799 Hypothetical protein Pseudogymnoascus ver-4 1 1126 123.7 6.21 1.6 VE01_03600 rucosus 1,040,537,170 7 2 273 28.9 5.9 4.1 Urease accessory protein Pseudogymnoascus sp. 05NY08 2 201 22.3 5.87 3.2 1,040,532,480 GTP-binding protein rho2 Pseudogymnoascus sp. 12

23,342-1-I1

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
sp3	1,040,506,877	Enolase	Pseudogymnoascus sp. WSF 3629	85	43	438	47.7	5.41	1.5
	1,040,525,877	60S acidic ribosomal protein P0	Pseudogymnoascus sp. 23,342–1-I1	33	10	312	33.4	5.15	2.2
	1,040,513,597	20S proteasome subunit alpha 4	Pseudogymnoascus sp. 24MN13	55	12	267	29.2	7.4	1.6
	1,352,886,940	Hypothetical protein VE01_00604	Pseudogymnoascus ver- rucosus	20	3	249	26.2	6.61	1.6
	1,026,907,433	Cytochrome b-c1 complex subunit 7	Pseudogymnoascus destructans	25	4	123	14.4	9.07	2.6
	1,352,887,810	Hypothetical protein VE01_04771	Pseudogymnoascus ver- rucosus	8	3	329	36.1	6.33	2.0
	1,040,527,667	Hypothetical protein VE03_05893	Pseudogymnoascus sp. 23,342–1-I1	3	1	351	38.8	9.17	2.0
sp4	1,040,531,119	Glyceraldehyde 3-phos- phate-dehydrogenase	Pseudogymnoascus sp. 23,342–1-I1	86	3	339	36.5	6.95	3.1
	1,040,553,812	Heat shock protein SSB1	Pseudogymnoascus sp. 03VT05	48	2	767	84.1	8.43	1.8
	1,040,560,294	Translation initiation fac- tor eIF4A	Pseudogymnoascus ver- rucosus	67	26	398	44.9	5.24	2.3
	1,040,552,218	40S ribosomal protein S14	Pseudogymnoascus sp. 03VT05	79	12	150	16	10.87	2.2
	440,632,652	Large subunit ribosomal protein L4e	Pseudogymnoascus destructans 20,631–21	55	2	373	39.7	11.33	2.1
	1,040,529,726	Cell division control protein 48	Pseudogymnoascus sp. 23,342–1-I1	60	53	823	89.9	5.05	2.9
	1,040,526,037	Pyruvate kinase, variant	Pseudogymnoascus sp. 23,342–1-I1	55	5	562	61.1	7.72	1.8
	1,040,550,635	Small subunit ribosomal protein S2e	Pseudogymnoascus sp. 03VT05	55	17	273	29.2	10.27	2.9
	1,069,468,697	O-acetylhomoserine (thiol)-lyase	Pseudogymnoascus ver- rucosus	48	3	459	48.4	5.77	2.0
	1,069,465,551	Guanine nucleotide- binding protein subunit beta-like protein	Pseudogymnoascus ver- rucosus	66	3	316	35	7.03	2.2
	1,040,510,730	Hypothetical protein VE04_07723	Pseudogymnoascus sp. 24MN13	70	27	383	43.3	5.27	3.9
	1,040,560,461	Hypothetical protein VE01_06128	Pseudogymnoascus ver- rucosus	43	14	384	44.2	8.73	1.9
	1,026,906,053	erg10, acetyl-CoA C-acetyltransferase	Pseudogymnoascus destructans	79	5	399	41.2	6.8	2.1
	1,026,905,733	Hypothetical protein VC83_05243	Pseudogymnoascus destructans	39	5	169	18.7	4.67	1.7
	1,040,524,717	Transketolase	Pseudogymnoascus sp. 23,342–1-I1	35	7	685	74.8	5.97	1.7
	1,040,532,244	Hypothetical protein VE03_02026	Pseudogymnoascus sp. 23,342–1-I1	49	5	346	37	5.52	3.1
	1,040,529,249	Hypothetical protein VE03_04396	Pseudogymnoascus sp. 23,342–1-I1	65	2	468	51.3	5.54	2.1
	1,069,466,751	Saccharopine dehydro- genase	Pseudogymnoascus ver- rucosus	47	3	503	55.2	5.71	1.6
	1,040,502,157	Hypothetical protein VE00_04658	Pseudogymnoascus sp. WSF 3629	59	17	342	38.9	7.84	1.8

Table 2 (continued)

Geographical Diversity of Prot	eomic Responses to Cold St	tress in the Fungal Genus
--------------------------------	----------------------------	---------------------------

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,529,736	Guanine nucleotide-bind- ing protein subunit beta	Pseudogymnoascus sp. 23,342–1-I1	46	2	355	39.1	7.4	1.5
	440,638,868	GTP-binding protein ypt1	Pseudogymnoascus destructans 20,631–21	47	8	201	22.2	5.44	3.3
	1,370,882,703	Delta(24)-sterol C-meth- yltransferase	Pseudogymnoascus destructans	22	2	377	42.5	6.38	1.9
	1,069,464,671	Guanine nucleotide-bind- ing protein subunit beta	Pseudogymnoascus ver- rucosus	55	3	355	39.1	7.4	1.8
	1,040,526,609	Hypothetical protein VE03_06110	Pseudogymnoascus sp. 23,342–1-I1	32	2	71	7.4	6.79	1.5
	1,040,499,366	Hypothetical protein VE00_09247	Pseudogymnoascus sp. WSF 3629	33	5	158	17.8	5.08	1.9
	1,026,909,249	DASH complex subunit ask1	Pseudogymnoascus destructans	2	1	398	43.8	5.41	2.2
	1,040,530,204	dTDP-glucose 4,6-dehy- dratase	Pseudogymnoascus sp. 23,342–1-I1	64	2	423	47.4	6.18	1.7
C106	1,026,908,689	60S ribosomal protein L35	Pseudogymnoascus destructans	46	1	125	14.4	11	1.8
	1,040,526,755	Hypothetical protein VE03_06971	Pseudogymnoascus sp. 23,342–1-I1	3	3	2518	275.9	5.55	3.5
	1,040,537,179	Hypothetical protein VF21_06185	Pseudogymnoascus sp. 05NY08	1	1	1161	124	6.24	2.7
	1,001,843,575	Catalase	Streptomyces albidoflavus	3	1	487	55.8	5.57	4.8
	1,040,511,525	Malate synthase, glyoxy- somal	Pseudogymnoascus sp. 24MN13	1	1	542	60.5	7.72	1.8
<i>C107</i>	1,352,887,886	Porin por1	Pseudogymnoascus ver- rucosus	94	6	283	30.3	8.98	2.1
	1,040,557,179	60S ribosomal protein L10a	Pseudogymnoascus ver- rucosus	47	11	218	24.2	9.83	2.5
	1,040,502,912	60S ribosomal protein L20	Pseudogymnoascus sp. WSF 3629	35	1	184	22	10.76	1.5
	1,040,515,250	Hypothetical protein VE04_06692	Pseudogymnoascus sp. 24MN13	7	1	752	80.7	5.73	1.6
	1,370,880,553	Hypothetical protein VC83_03778	Pseudogymnoascus destructans	15	4	233	26.1	9.8	2.1
	1,040,560,581	Hypothetical protein VE01 06723	Pseudogymnoascus ver- rucosus	8	2	289	31	8.73	2.0
	1,026,909,729	Hypothetical protein VC83_01760	Pseudogymnoascus destructans	23	4	228	25.7	7.09	2.4
	1,040,503,482	Hypothetical protein VE00_03591	Pseudogymnoascus sp. WSF 3629	1	1	517	56.3	8.68	4.1
	1,040,502,988	4-nitrophenyl phosphatase	Pseudogymnoascus sp. WSF 3629	10	4	306	33.4	5.31	3.2

were highly abundant with a fold change of \geq 3.0. Surprisingly, only the Arctic *sp2* and Antarctic *sp4* isolates showed a significant increase in abundance of heat shock proteins and hsp-like protein species (i.e., heat shock protein SSB1 and hsp70-like proteins).

GO enrichment analysis was carried out for all 176 significantly increased RA proteins in response to cold stress using KOBAS v2.0 to search for over-represented categories of molecular pathways in the databases Kyoto Encyclopedia of Genes and Genomes (KEGG), Panther, BioCyc, and Reactome. A complete list of enriched pathways with p values ≤ 0.05 for each isolate is given in Supplementary 2. The top 10 pathways and their respective p values for each isolate are presented in Fig. 4. Surprisingly, the increased RA proteins represented a high variety of pathways. Still, no common pathways were shared between pairs of isolates from

Fig. 4 GO enrichment analysis of significantly upregulated proteins of *Pseudogymnoascus* spp. in response to cold stress (top 10 pathways). The Arctic isolates: \mathbf{a} sp1 and \mathbf{b} sp2; Antarctic isolates \mathbf{c} sp3 and \mathbf{d} sp4; and temperate isolates: \mathbf{e} C106 and \mathbf{f} C107

the same geographical region. For instance, in the Arctic sp1 and temperate P. pannorum C107 isolates, the majority of enriched pathways were related to various translation processes, including the SRP-dependent co-translational protein targeting to membrane, cap-dependent translation initiation, eukaryotic translation initiation, various nonsense-mediated decay (NMD) processes, and ribosomal-related pathways (i.e., the formation of a pool of free 40S subunits, GTP hydrolysis and joining of the 60S ribosomal subunits) (Fig. 4a, f). On the other hand, in the Arctic sp2 and temperate P. pannorum C106 isolates, metabolic-related pathways were enriched, including tryptophan, carbon, glyoxylate, and dicarboxylate metabolism pathways, and biosynthesis of secondary metabolites (Fig. 4b, e). In addition, the Arctic *sp2* isolate showed enrichment of cellular responses to stress, biosynthesis of antibiotics, and activation of the innate immune system (Fig. 4b). In contrast, the temperate P. pannorum C106 isolate also demonstrated enrichment of some additional pathways, such as methane metabolism, peroxisomal protein import, longevity regulating pathway and detoxification of reactive oxygen species (ROS) (Fig. 4e). A more distinct profile was observed in the Antarctic sp3 isolate with the majority of enriched pathways related to energy production, such as the glycolysis, gluconeogenesis, and respiratory electron transport (ETC), and flavin/riboflavin metabolism pathways (Fig. 4c). However, the Arctic *sp3* isolate showed the same enriched methane metabolism pathway, as the temperate *P. pannorum C106* isolate. On the other hand, in the Antarctic *sp4* isolate, the enriched pathways showed similarities with both the Arctic and temperate isolates (Fig. 4d). The increased RA proteins in that isolate showed enrichment of various metabolic pathways, mainly the biosynthesis of secondary metabolites, antibiotics, and amino acids. Moreover, the Arctic *sp4* isolate also showed enrichment of protein and carbon metabolism pathways and various translation processes such as ribosomal scanning and start codon recognition, cap-dependent, and eukaryotic translation initiation pathways.

Gene Ontology Enrichment Analysis of the Proteins Significantly Decreased in Abundance (with a Fold Change of ≥ -1.5)

Significantly decreased RA proteins (with a fold change of ≥ -1.5) recorded in isolates of *Pseudogymnoascus* spp. in response to cold stress are listed in Table 3. A total of 148 proteins were significantly decreased in abundance across all six isolates, with 77 (52.0%) identified as hypothetical proteins. Forty-six (31.1%) of the proteins were decreased in abundance with a fold change of at least -3.0-fold. Arctic isolates (i.e., *sp1* and *sp2*) showed many significantly decreased RA proteins (54 and 55, respectively). In contrast, one of the Antarctic isolates (i.e., *sp3*) had the lowest number of significantly decreased RA proteins (5), all were

Table 3	List of significantly	downregulated proteins u	inder cold stress (fold change	, \log_2 ratios of ≥ -1.5) rec	orded in Supplementary 1
	0 5		\`U		11 2

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
sp1	1,040,543,410	Elongation factor 1-alpha	Pseudogymnoascus sp. 05NY08	75	11	459	49.9	9.13	-2.8
	1,040,531,119	Glyceraldehyde 3-phos- phate-dehydrogenase	Pseudogymnoascus sp. 23,342–1-I1	86	3	339	36.5	6.95	-2.2
	1,040,553,812	Heat shock protein SSB1	Pseudogymnoascus sp. 03VT05	48	2	767	84.1	8.43	-3.0
	1,040,525,455	Hypothetical protein VE03_07380	Pseudogymnoascus sp. 23,342–1-I1	63	4	231	25.6	6.42	-3.8
	1,040,502,460	Molecular chaperone HtpG	Pseudogymnoascus sp. WSF 3629	69	1	703	79.5	4.92	-2.5
	1,040,529,266	Hypothetical protein VE03_04296	Pseudogymnoascus sp. 23,342–1-I1	13	4	4080	451.6	6.43	-3.0
	1,040,523,711	hsp70-like protein	Pseudogymnoascus sp. 23,342–1-I1	65	10	676	73.5	5.74	- 1.9
	440,639,856	Tubulin beta chain	Pseudogymnoascus destructans 20,631–21	76	37	446	49.6	4.93	-2.1
	1,040,499,891	Hypothetical protein VE00_07973	Pseudogymnoascus sp. WSF 3629	41	8	196	21.4	7.88	-3.0
	1,040,528,567	ATP-citrate synthase subunit 1	Pseudogymnoascus sp. 23,342–1-I1	74	8	668	72.4	8.34	-2.7
	1,040,540,892	Elongation factor EF-3	Pseudogymnoascus sp. 05NY08	58	3	1064	117.6	6.27	-2.4
	1,040,531,987	Serine hydroxymethyl- transferase, cytosolic	Pseudogymnoascus sp. 23,342–1-I1	51	1	484	53.3	7.78	-3.1
	1,040,532,273	Ketol-acid reductoi- somerase, mitochon- drial	Pseudogymnoascus sp. 23,342–1-I1	69	2	400	44.5	7.05	-3.2
	1,040,532,121	Fatty acid synthase subu- nit beta	Pseudogymnoascus sp. 23,342–1-I1	43	7	2109	233.4	5.72	-1.8
	1,040,552,218	40S ribosomal protein S14	Pseudogymnoascus sp. 03VT05	79	12	150	16	10.87	-2.8
	1,352,887,002	Hypothetical protein VE01_00786	Pseudogymnoascus ver- rucosus	41	1	292	31.6	8.92	-2.3
	1,040,537,116	Argininosuccinate synthase	Pseudogymnoascus sp. 05NY08	58	5	416	46.4	5.48	-2.8
	440,637,842	Phosphoglycerate kinase	Pseudogymnoascus destructans 20,631–21	62	1	417	44.4	6.47	-2.3
	1,040,531,120	NADH-ubiquinone oxidoreductase 78 kDa subunit, mitochondrial	Pseudogymnoascus sp. 23,342–1-I1	59	4	741	80.6	6.57	-2.4
	1,069,462,575	Small subunit ribosomal protein S12e	Pseudogymnoascus ver- rucosus	59	11	148	16.4	4.94	-2.4
	1,040,548,810	Succinyl-CoA ligase subunit beta, mitochon- drial	Pseudogymnoascus sp. 03VT05	51	4	445	47.9	5.48	-2.6
	1,040,533,135	ATP synthase F1, gamma subunit	Pseudogymnoascus sp. 23,342–1-I1	48	6	298	32.1	8.34	-3.3
	1,040,504,430	40S ribosomal protein S20	Pseudogymnoascus sp. WSF 3629	38	5	116	13.1	9.63	-1.5
	1,040,527,945	Triosephosphate isomer- ase	Pseudogymnoascus sp. 23,342–1-I1	74	7	249	26.8	5.76	-3.2
	1,040,525,856	Eukaryotic translation Initiation factor 3 subunit B	Pseudogymnoascus sp. 23,342–1-I1	30	1	744	84.5	5.01	-3.6

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,507,376	40S ribosomal protein S22	Pseudogymnoascus sp. WSF 3629	58	8	130	14.5	9.89	- 1.9
	440,631,821	Hypothetical protein GMDG_00116	Pseudogymnoascus destructans 20,631–21	56	1	231	25.4	4.48	-3.4
	1,040,532,244	Hypothetical protein VE03_02026	Pseudogymnoascus sp. 23,342–1-I1	49	5	346	37	5.52	-3.6
	1,026,905,771	Intracellular distribution of mitochondria	Pseudogymnoascus destructans	10	10	1291	142.5	5.72	-1.5
	1,040,532,770	V-type proton ATPase subunit B	Pseudogymnoascus sp. 23,342–1-I1	60	24	516	57.5	5.74	-3.0
	1,040,526,111	Glutamine synthetase	Pseudogymnoascus sp. 23,342–1-I1	64	19	366	40.6	5.8	-1.9
	1,069,477,437	40S ribosomal protein S13	Pseudogymnoascus ver- rucosus	46	7	151	16.8	10.32	-1.6
	1,040,504,427	T-complex protein 1, zeta subunit	Pseudogymnoascus sp. WSF 3629	29	12	541	59	6.49	-1.8
	1,040,497,161	pyrABCN	Pseudogymnoascus sp. WSF 3629	10	4	2245	246.8	6	-2.3
	1,040,506,854	Glutamine-fructose- 6-phosphate transami- nase	Pseudogymnoascus sp. WSF 3629	31	11	1087	120.8	6.49	-2.4
	1,040,538,646	Isocitrate dehydrogenase, mitochondrial	Pseudogymnoascus sp. 05NY08	43	1	459	51.5	8.76	-2.1
	1,040,545,371	Hypothetical protein VE02_09611	Pseudogymnoascus sp. 03VT05	25	10	510	56	9.31	-3.1
	1,040,504,491	Hypothetical protein VE00_02345	Pseudogymnoascus sp. WSF 3629	34	1	357	39.5	5.49	-2.2
	1,040,532,437	Acetolactate synthase I/ II/III large subunit	Pseudogymnoascus sp. 23,342–1-I1	14	7	694	75.3	8.82	-3.9
	1,040,564,667	Importin alpha subunit (Karyopherin alpha subunit)	Pseudogymnoascus ver- rucosus	25	11	552	60.2	5.11	-3.3
		(Serine-rich RNA polymerase I suppressor protein)							
	1,040,504,412	Hypothetical protein VE00_02312	Pseudogymnoascus sp. WSF 3629	60	5	282	31.3	4.45	-2.6
	1,040,504,451	Hypothetical protein VE00_02372	Pseudogymnoascus sp. WSF 3629	4	1	271	29.1	6.55	-1.6
	1,040,533,074	Hypothetical protein VE03_00632	Pseudogymnoascus sp. 23,342–1-I1	42	11	219	22.9	5.27	-1.8
	1,040,506,454	Phosphoribosylamine- glycine ligase/phospho- ribosylformylglycinami- dine cyclo-ligase	Pseudogymnoascus sp. WSF 3629	23	3	785	83.7	5.4	-2.1
	1,040,522,863	Hypothetical protein VE03_10908, partial	Pseudogymnoascus sp. 23,342–1-I1	9	3	1176	126.6	6.89	-3.8
	1,040,528,502	Riboflavin synthase, alpha subunit	Pseudogymnoascus sp. 23,342–1-I1	19	3	230	24.4	4.93	-3.4
	1,040,520,742	T-complex protein 1 subunit alpha	Pseudogymnoascus sp. 24MN13	31	10	568	61.8	6.64	-2.0
	1,352,887,691	Hypothetical protein VE01_04967	Pseudogymnoascus ver- rucosus	15	6	415	44.5	7.11	- 1.5

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,026,908,370	Hypothetical protein VC83 03291	Pseudogymnoascus destructans	3	1	246	28.3	5.97	-2.7
	1,040,505,097	Hypothetical protein VE00_01915	Pseudogymnoascus sp. WSF 3629	13	1	496	51.6	5.6	-2.7
	1,040,526,837	Nitrite reductase	Pseudogymnoascus sp. 23,342–1-I1	3	3	1111	123.1	6.62	-3.7
	1,040,516,031	Hypothetical protein VE04_03877	Pseudogymnoascus sp. 24MN13	19	1	326	35.7	4.98	-2.4
	1,040,533,107	Glutamine-fructose- 6-phosphate transami- nase	Pseudogymnoascus sp. 23,342–1-I1	27	2	706	78.3	6.43	-2.3
	1,040,506,083	Orotidine 5'-phosphate decarboxylase	Pseudogymnoascus sp. WSF 3629	4	1	357	38.9	5.19	-1.5
sp2	1,352,887,886	Porin por1	Pseudogymnoascus ver- rucosus	94	6	283	30.3	8.98	-2.1
	1,040,506,096	Adenosylhomocysteinase	Pseudogymnoascus sp. WSF 3629	55	1	450	48.7	5.68	-1.8
	1,040,501,747	Hypothetical protein VE00_06979	Pseudogymnoascus sp. WSF 3629	29	4	383	39.7	5.95	-4.5
	1,040,547,813	Dihydrolipoyl dehydro- genase	Pseudogymnoascus sp. 03VT05	56	2	509	54	7.03	-2.2
	1,040,536,136	Hypothetical protein VF21_08556	Pseudogymnoascus sp. 05NY08	33	3	529	56	6.19	-2.1
	1,040,496,401	60S ribosomal protein L11	Pseudogymnoascus sp. WSF 3629	40	8	172	19.8	10.17	-2.4
	1,040,530,310	Hypothetical protein VE03_03010	Pseudogymnoascus sp. 23,342–1-I1	31	5	294	31.5	6.64	-3.0
	1,040,529,999	60S ribosomal protein	Pseudogymnoascus sp. 23,342–1-I1	57	6	109	11.8	9.95	-1.7
	1,040,541,287	40S ribosomal protein S27	Pseudogymnoascus sp. 05NY08	27	3	82	8.8	9.26	- 1.9
	1,040,528,747	Hypothetical protein VE03_03290	Pseudogymnoascus sp. 23,342–1-I1	11	6	487	47.1	4.46	-1.8
	440,640,338	Dihydrolipoyl dehydro- genase	Pseudogymnoascus destructans 20,631–21	54	2	509	54.1	6.89	-2.7
	1,040,507,376	40S ribosomal protein S22	Pseudogymnoascus sp. WSF 3629	58	8	130	14.5	9.89	-1.6
	1,040,539,732	Hypothetical protein VF21_05012	Pseudogymnoascus sp. 05NY08	12	2	568	58.4	5.34	-3.6
	1,040,530,977	Hypothetical protein VE03_01549	Pseudogymnoascus sp. 23,342–1-I1	53	5	315	32.7	9.31	-1.8
	1,069,477,643	Vacuolar protease A	Pseudogymnoascus ver- rucosus	49	2	395	42.9	5.02	-2.2
	1,040,533,064	20S proteasome subunit alpha 7	Pseudogymnoascus sp. 23,342–1-I1	43	12	295	31.7	4.91	-1.5
	1,040,536,470	Hypothetical protein VF21_07858	Pseudogymnoascus sp. 05NY08	36	1	613	68.4	6	-3.7
	440,635,254	60S ribosomal protein L23	Pseudogymnoascus destructans 20,631–21	45	8	139	14.6	10.21	-2.0
	1,040,517,192	Aspartate-semialdehyde dehydrogenase	Pseudogymnoascus sp. 24MN13	43	2	364	38.9	6.77	-1.8
	1,040,513,597	20S proteasome subunit alpha 4	Pseudogymnoascus sp. 24MN13	55	12	267	29.2	7.4	-1.8

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,527,436	Large subunit ribosomal protein L7Ae	Pseudogymnoascus sp. 23,342–1-I1	52	18	264	29.3	10.29	-2.0
	1,040,528,493	Hypothetical protein VE03_04938	Pseudogymnoascus sp. 23,342–1-I1	48	6	336	37.4	9.09	-2.1
	1,040,556,291	Proteasome subunit YC7alpha/Y8 (protease yscE subunit 7)	Pseudogymnoascus ver- rucosus	67	2	254	28	6.38	- 1.9
	1,040,525,350	Hypothetical protein VE03_08618	Pseudogymnoascus sp. 23,342–1-I1	15	3	441	47.1	4.59	- 1.9
	1,040,519,485	Hypothetical protein VE04_01330	Pseudogymnoascus sp. 24MN13	25	3	598	64.8	5.9	-3.1
	1,040,525,391	Hypothetical protein VE03_07986	Pseudogymnoascus sp. 23,342–1-I1	21	6	783	81.9	5.11	-3.1
	1,026,905,242	Hypothetical protein VC83_04831	Pseudogymnoascus destructans	14	2	1231	128.4	5.34	-2.7
	1,040,534,050	Catalase/peroxidase HPI	Pseudogymnoascus sp. 05NY08	26	4	790	86.4	6.01	-1.6
	1,040,504,793	Acetyl-CoA hydrolase	Pseudogymnoascus sp. WSF 3629	8	3	528	58.6	6.58	-1.9
	1,040,530,925	Hypothetical protein VE03_02548	Pseudogymnoascus sp. 23,342–1-I1	14	5	1009	110.2	5.43	-2.3
	1,040,516,362	Hypothetical protein VE04_05577	Pseudogymnoascus sp. 24MN13	35	4	140	15.4	8.12	-2.2
	1,040,510,845	Large subunit ribosomal protein L4e	Pseudogymnoascus sp. 24MN13	38	2	356	37.8	10.93	-4.0
	1,040,547,240	Hypothetical protein VE02_07770	Pseudogymnoascus sp. 03VT05	8	3	486	51.9	6.11	-1.8
	1,040,523,481	Hypothetical protein VE03_09986	Pseudogymnoascus sp. 23,342–1-I1	26	1	300	32.3	6.44	-2.7
	1,040,504,056	Hypothetical protein VE00_03867	Pseudogymnoascus sp. WSF 3629	11	3	611	64.1	5.33	-3.0
	1,040,535,243	Hypothetical protein VF21_09386	Pseudogymnoascus sp. 05NY08	15	1	324	34.5	6.07	-3.2
	1,040,531,382	Hypothetical protein VE03_02803	Pseudogymnoascus sp. 23,342–1-I1	7	2	617	64.4	5.31	-3.0
	1,040,539,900	Hypothetical protein VF21_03593	Pseudogymnoascus sp. 05NY08	9	1	116	13.1	11.09	-3.4
	1,352,887,341	Hypothetical protein VE01_02784	Pseudogymnoascus ver- rucosus	47	8	211	23.5	9.55	-1.6
	1,040,507,457	Hypothetical protein VE00_00106	Pseudogymnoascus sp. WSF 3629	1	1	799	85.4	6.64	-3.7
	1,040,506,170	Hypothetical protein VE00_01618	Pseudogymnoascus sp. WSF 3629	4	4	1255	140.5	6.98	-2.1
	1,352,885,447	Hypothetical protein VC83_06581	Pseudogymnoascus destructans	21	1	808	89.3	7.01	-4.0
	1,040,526,014	Hypothetical protein VE03_07417	Pseudogymnoascus sp. 23,342–1-I1	9	1	650	69.1	5	-4.9
	1,040,515,456	Glucosamine-phosphate N-acetyltransferase	Pseudogymnoascus sp. 24MN13	21	3	180	20.1	5.87	-2.2
	1,040,528,090	Hypothetical protein VE03_04733	Pseudogymnoascus sp. 23,342–1-I1	3	2	945	99.8	10.14	-2.4
	1,040,523,420	Hypothetical protein VE03_10013	Pseudogymnoascus sp. 23,342–1-I1	9	2	507	56.2	6.04	- 3.5

Isolate Accession no. Coverage [%] # Unique # AAs MW [kDa] calc. pI log₂ Description of protein Species of origin identified peptides protein identified 1,040,529,367 Hypothetical protein Pseudogymnoascus sp. 21 5 485 52.8 5.6 -4.9 VE03_04870 23,342-1-I1 Hypothetical protein 209 1,040,499,918 Pseudogymnoascus sp. 11 4 23.2 5.24 -2.3VE00_07980 WSF 3629 2 1.040.503.265 Hypothetical protein Pseudogymnoascus sp. 19 132 14.7 5.15 -1.6VE00_05135 WSF 3629 440,636,209 Hypothetical protein Pseudogymnoascus 40 1 132 14.3 4.74 -2.9GMDG 02002 destructans 20,631-21 1,370,887,271 Leucine aminopeptidase Pseudogymnoascus 14 1 434 47.7 5.54 -1.81 destructans 2 1,040,539,268 Hypothetical protein Pseudogymnoascus sp. 7 528 54.5 5.55 -2.305NY08 VF21_05590 1,040,503,305 hypothetical protein Pseudogymnoascus sp. 4 1 757 83.9 5.58 -1.8VE00_05156 WSF 3629 1,040,547,051 Hypothetical protein 7 3 524 Pseudogymnoascus sp. 53.8 5.64 -2.6VE02_08445 03VT05 1,040,535,582 Endoribonuclease L-PSP Pseudogymnoascus sp. 49 1 128 13.8 6 -4.405NY08 sp3 1,040,528,747 Hypothetical protein Pseudogymnoascus sp. 11 6 487 47.14.46 -2.5VE03_03290 23,342-1-I1 1,040,530,957 Hypothetical protein Pseudogymnoascus sp. 17 3 632 68.7 5.11 -2.4VE03 01500 23.342-1-I1 9 1,040,526,014 Hypothetical protein Pseudogymnoascus sp. 1 650 69.1 5 -2.4VE03_07417 23,342-1-I1 1,370,880,003 Hypothetical protein Pseudogymnoascus 8 2 304 30.7 8.05 -3.1destructans VC83_03064 1,040,527,834 Hypothetical protein Pseudogymnoascus sp. 2 2 727 77.8 6.99 -4.3 VE03_06437 23,342-1-I1 1,040,501,747 Hypothetical protein Pseudogymnoascus sp. 29 4 383 39.7 5.95 -2.8sp4 VE00_06979 WSF 3629 1,040,554,290 Aminopeptidase 2 Pseudogymnoascus sp. 2 891 99.5 5.4 -1.9 56 03VT05 Pseudogymnoascus sp. 8 1015 105.6 5.01 -2.21,040,532,023 Hypothetical protein 21 VE03 01299 23,342-1-I1 Hypothetical protein Pseudogymnoascus sp. 19 2 627 67.7 8.37 -2.31,040,543,638 VF21_01105 05NY08 Hypothetical protein 8 707 1,040,530,062 Pseudogymnoascus sp. 77.2 5.31 -2.026 VE03_04519 23,342-1-I1 Hypothetical protein Pseudogymnoascus sp. 2 375 1,040,528,450 17 40.3 5.81 -4.0VE03_04986 23,342-1-I1 Hypothetical protein 1 1423 161.5 7.93 -3.4 1,370,872,825 Pseudogymnoascus 1 VC83_00609 destructans 1,040,517,617 Hypothetical protein Pseudogymnoascus sp. 15 3 305 31.9 4.64 -2.1VE04_03781 24MN13 1,040,536,276 Hypothetical protein Pseudogymnoascus sp. 7 3 575 60.8 4.83 -2.2VF21_08313 05NY08 1,069,469,765 Hypothetical protein Pseudogymnoascus ver-31 1 159 18.8 6.96 -2.0VE01_04555 rucosus 1,370,880,003 Hypothetical protein 8 2 304 30.7 8.05 Pseudogymnoascus -1.8VC83_03064 destructans 1,069,462,037 Hypothetical protein Pseudogymnoascus ver-33 1 462 48.6 8.75 -1.6VE01_00458 rucosus

Isolate	Accession no. protein identi- fied	Description of protein identified	Species of origin	Coverage [%]	# Unique peptides	# AAs	MW [kDa]	calc. pI	log ₂
	1,040,524,869	Hypothetical protein VE03_08655	Pseudogymnoascus sp. 23,342–1-I1	7	2	415	46.9	6.67	-2.8
C106	1,040,525,455	Hypothetical protein VE03_07380	Pseudogymnoascus sp. 23,342–1-I1	63	4	231	25.6	6.42	-4.3
	1,352,888,949	Phosphatidylinositol transfer protein csr1	Pseudogymnoascus ver- rucosus	63	1	221	24	9.39	-3.7
	1,040,526,037	Pyruvate kinase, variant	Pseudogymnoascus sp. 23,342–1-I1	55	5	562	61.1	7.72	-2.0
	1,040,531,100	Plasma membrane ATPase	Pseudogymnoascus sp. 23,342–1-I1	41	2	931	100.8	5.15	-3.4
	1,040,533,135	ATP synthase F1, gamma subunit	Pseudogymnoascus sp. 23,342–1-I1	48	6	298	32.1	8.34	-5.0
	1,040,526,437	Hypothetical protein VE03_08106	Pseudogymnoascus sp. 23,342–1-I1	14	9	707	74.5	7.33	-2.4
	1,040,505,261	Succinate dehydrogenase flavoprotein subunit, mitochondrial	Pseudogymnoascus sp. WSF 3629	60	26	646	70.8	6.49	-3.6
	440,634,311	Catalase	Pseudogymnoascus destructans 20,631–21	60	2	505	57.4	7.3	-2.9
	1,040,527,086	N-acetyl-gamma- glutamyl-phosphate reductase/acetylgluta- mate kinase	Pseudogymnoascus sp. 23,342–1-I1	27	2	880	96.3	7.17	-3.5
	1,040,531,151	Hypothetical protein VE03_02408	Pseudogymnoascus sp. 23,342–1-I1	56	9	103	11.4	11.36	-3.1
	1,040,519,866	T-complex protein 1 subunit epsilon	Pseudogymnoascus sp. 24MN13	33	12	548	59.7	5.5	-3.7
	1,040,504,839	Hypothetical protein VE00_01830	Pseudogymnoascus sp. WSF 3629	48	9	192	20.7	8.62	-1.6
	1,040,541,679	Hypothetical protein VF21_02713	Pseudogymnoascus sp. 05NY08	51	1	323	34.1	6.58	-4.6
	1,040,501,615	Hypothetical protein VE00_06167	Pseudogymnoascus sp. WSF 3629	33	2	408	42.4	7.75	-2.4
C107	1,040,506,608	Actin	Pseudogymnoascus sp. WSF 3629	77	29	375	41.5	5.69	-1.5
	1,370,880,945	Methionine-synthesizing 5-methyltetrahydropter- oyltriglutamate-homo- cysteine methyltransferase	Pseudogymnoascus destructans	49	1	768	86.2	6.58	-2.6
	1,040,517,350	2,3-Bisphosphoglycerate- independent phospho- glycerate mutase	Pseudogymnoascus sp. 24MN13	49	8	522	57.7	5.4	-1.8
	1,040,530,081	Hypothetical protein VE03_04439	Pseudogymnoascus sp. 23,342–1-I1	11	4	1819	201.3	6.27	-2.3
	1,040,538,684	Hypothetical protein VF21_06127	Pseudogymnoascus sp. 05NY08	17	1	474	49.9	8.06	-1.5
	1,040,550,136	Hypothetical protein VE02_06045	Pseudogymnoascus sp. 03VT05	17	3	275	29.5	6.04	-4.1
	1,040,524,038	Hypothetical protein VE03_09547	Pseudogymnoascus sp. 23,342–1-I1	15	1	559	61.4	6.57	-3.5

identified as hypothetical proteins. In general, the significantly decreased RA proteins included various enzymes in energy production processes such the TCA cycle, glycolysis and gluconeogenesis, glyceraldehyde 3-phosphate-dehydrogenase, ATP-citrate synthase subunit 1, phosphoglycerate kinase, succinyl-CoA ligase subunit beta, isocitrate dehydrogenase, acetyl Co-A hydrolase, fatty acid synthase subunit beta, and pyruvate kinase. Heat shock proteins or hsp-like proteins were only significantly decreased in abundance in the Arctic *sp1* isolate (heat shock protein SSB1 and hsp70like protein).

GO enrichment analysis of all 148 significantly decreased RA proteins showed a variety of metabolic and biosynthesis pathways enriched in all isolates (Fig. 5). Metabolic pathways related to protein homeostasis, such as protein metabolism and the biosynthesis of amino acids, were enriched in the Arctic sp1, Antarctic sp4 and both temperate isolates (C106 and C107) (Fig. 5a, d-f). The biosynthesis of secondary metabolites was also enriched in the Arctic sp1 isolate and temperate isolates (C106 and C107) (Fig. 5a, e-f). Carbon metabolism and biosynthesis of antibiotics were enriched in the Arctic *sp1* and temperate *C106* isolates (Fig. 5a, e), and glycogen degradation II in the Antarctic sp4 and temperate C107 isolate (Fig. 5d, f). The decreased protein pathways in the Antarctic sp4 isolate also involved the wingless-related integration site (wnt) signaling pathway, neutrophil degranulation, respiratory electron transport (ETC), urea cycle, and activation of antigen pathway (Fig. 5d). In the Arctic sp2 isolate, the majority of decreased protein pathways were related to translation processes such as the eukaryotic and cap-dependent translation initiation, nonsense-mediated decay (NMD) processes, and the formation of a pool of free 40S subunits (Fig. 5b). Pyruvate metabolism was also decreased in the Arctic sp2 isolate. In the Antarctic sp3 isolate, most decreased protein pathways were related to phospholipid metabolism involving pathways such as the phospho-PLA2, hydrolysis of lysophosphatidylcholine (LPC), acyl chain remodeling of cardiolipin (CL), phosphatidylcholine (PC), and phosphatidylinositol (PI). This isolate also showed downregulation of starch and sucrose metabolism and COPI-independent Golgi-to-ER retrograde traffic and signal amplification pathways (Fig. 5c).

Discussion

Variation in Proteomic Profiles of Pseudogymnoascus Spp. Isolates in Response to Cold Stress

All *Pseudogymnoascus* spp. isolates investigated in this work originated from environments that naturally experience cold temperatures, though they are exposed to wide variations in mean annual temperatures and distinct seasonal

Fig. 5 GO enrichment analysis of significantly downregulated proteins of *Pseudogymnoascus* spp. isolates in response to cold stress (the top 10 pathways). The Arctic isolates: **a** *sp1* and **b** *sp2*; Antarctic isolates: **c** *sp3* and **d** *sp4*; and temperate isolates: **e** *C106* and **f** *C107*

changes [6, 12]. Thus, all the investigated isolates from polar and temperate regions can be expected to share the same cold-adaptation mechanisms. However, it is worth noting that all six isolates are not of the same species, except for the temperate isolates (*C106* and *C107*), that belong to the species *P. pannorum* (Table 1). Our previous work on these isolates, when exposed to heat stress, showed a diversity of protein profiling with protein homeostasis, energy production, and DNA repair pathways being enriched [2].

Similar patterns of relative protein abundances in cold stress (CS) compared to control (C) conditions (log₂ ratios CS:C) did not demonstrate any apparent geographical differences in cold stress responses among the investigated isolates (Fig. 1). The individual plots of RA for each isolate (Fig. 2) showed similar findings to the distribution patterns of RA as observed in the overall MA plot (Fig. 1), again with no indication of any effect from different geographical origins. However, variation in the total number of significantly increased and decreased RA and visible shifts in proportion between increased and decreased RA (Fig. 2) suggested some likely geographical differences in cold stress responses among *Pseudogymnoascus* spp. isolates. For instance, the temperate isolates had the lowest number of RA, and decreased RA proteins were more abundant than increased RA proteins. The Antarctic isolates had over twice the number of RA than the temperate isolates, and increased RA proteins were dominant. Then, the Arctic isolates provided the highest number of RA, but shifts in the proportion of increased and decreased RA were inconsistent. However, a very small number of shared RA (Fig. 3) indicates the existence of very high variation, even among isolates originating from the same geographical region. From our previous work on temperature-dependent growth analysis of all six isolates, the four polar isolates (*sp1*, *sp2*, *sp3*, and *sp4*) had an optimal growth temperature at 15°C and 25°C with no significant difference between the two temperatures [2]. For the temperate isolates (C106 and C107), the optimal growth temperature was at 20°C. This suggests that the optimal growth temperature of isolates may contribute to the high number of increased and decreased RA proteins of all polar isolates compared to the temperate isolates exposed to cold stress. Therefore, analysis of a higher number of fungal isolates from all regions would be necessary to verify the consistency and significance of patterns apparent in our data.

The numbers of significantly increased and decreased RA proteins varied greatly between isolates, within a range of 5–91 proteins (Tables 2 and 3). It is noteworthy that 161 proteins were identified as hypothetical proteins from significantly increased and decreased RA proteins. These hypothetical proteins are important because they contribute to 49% of the overall significantly regulated proteins in all six isolates of *Pseudogymnoascus* spp. (161 from a total of 324 proteins). Our result suggests that *Pseudogymnoascus* spp.

respond by altering only important proteins to preserve the lack of cumulative energy under cold stress. This is consistent with other studies, demonstrating a generally low number of differentially upregulated proteins. For instance, Flammulina velutipes (Curtis) Singer, a white-rot fungus that has a relatively low vegetative-growth temperature (20–24°C), under cold stress produced only 31 differentially upregulated proteins [27]. Likewise, a psychrophilic fungus Mrakia psychrophila M.X. Xin and P.J. Zhou showed increases in only 27 proteins when exposed to 4°C [32]. Similar findings were also reported for the mesophilic fungi Mortierella isabellina Oudem. M6-22 and Exophiala dermatitidis (Kano) de Hoog showed upregulation of only 29 and 33 proteins, respectively, when exposed to cold stress [21, 33]. However, while all previous studies investigated only single isolates, our work is the first to report the effects of cold stress on the proteome in several isolates of the same fungal genus from different geographical regions.

Gene Ontology Enrichment Analysis

The composition of increased RA proteins in *Pseudogym*noascus spp. exposed to cold stress indicated enrichment of various metabolic and translation-related pathways. This included mostly pathways involved in the metabolism of carbon, glyoxylate, dicarboxylate, methane, and amino acids. In addition, an increment was also observed for translationrelated pathways, such as forming a pool of free 40S subunits, nonsense-mediated decay (NMD), and eukaryotic and cap-dependant translation initiation pathways. Surprisingly, no increment of an identical pathway was identified, even for isolates from the same geographical region. Response mechanisms to cold stress have already been investigated in several cosmopolitan and common fungi, including Saccharomyces cerevisiae, Schizosaccharomyces pombe Lindner, and Aspergillus nidulans. Studies of these "model" fungal species have resulted in the discovery of numerous stressrelated proteins [9, 30]. These include various cold-adapted enzymes and protective molecules that are produced in coldstress conditions to increase fungal cell stability [37].

However, only a limited number of studies reported on fungal cold stress response mechanisms with the application of proteomic profiling, and the majority of these focused on mesophilic fungi [21, 27, 33]. For instance, in *Exophiala dermatitidis*, cold stress-induced upregulation of the beta-oxidation of very long-chain fatty acids, glycolysis/gluconeogenesis, peroxisomal lipid metabolism, and cellular response to stress [33]. *Flammulina velutipes* also showed upregulation of amino acid biosynthesis, signaling pathways, and various energy metabolism pathways, such as the citrate cycle (TCA cycle), pentose phosphate pathway, glyoxylate, and dicarboxylate metabolism [27]. In comparison, the psychrophilic fungus *Mrakia psychrophila* demonstrated upregulation of energy metabolism and production of unsaturated fatty acids that regulate membrane fluidity [32]. In this work, we also showed a significant number of hypothetical proteins, demonstrating that functional studies on these proteins from polar fungi are still lacking. Hence, studying these functionally unknown sequences could provide additional insight into potential mechanisms governing cold adaptation of *Pseudogymnoascus* spp.

Previous studies have also demonstrated that low temperatures do not cause irreversible damage to fungal cells, and fungi respond to cold stress by modifying molecular content in their complex protein networks [27, 32]. Comparison across all six isolates of Pseudogymnoascus spp. studied here revealed no apparent geographical pattern in protein profiles or pathways involved. This was particularly the case for pathways of carbon metabolism, biosynthesis of amino acids, secondary metabolites and antibiotics, and translation-related pathways. Our findings suggest that Pseudogymnoascus spp. modulate various carbon and amino acid metabolism and translation-related pathways to minimize energy use for growth or cell division. We postulated that Pseudogymnoascus spp. adapt to cold stress by utilizing nutrient availability to support cell damage and repair and minimizing protein production for cell growth. Su et al. [32] reported that Mrakia psychrophila showed downregulation of TCA cycle, glycolysis, and ribosomal proteins. Similarly, Exophiala dermatitidis demonstrated downregulation of carbon and pyruvate metabolism and the pentose phosphate pathway [33]. In our study, only the Antarctic sp3 isolate showed a distinctive profile of cold stress response. The upregulated pathways of that isolate included mainly flavin/ riboflavin biosynthesis, glycolysis/gluconeogenesis, respiratory electron transport (ETC), and methane metabolism. It is important to indicate that biogenic methane production is generally only associated with prokaryotic microorganisms such as methanogens and Archaea [11]. However, Lenhart et al. [25] have suggested that terrestrial vegetation and fungi can also be involved in the production of methane. There are a few decreased protein pathways that were identified only in sp3 and not in any others isolates, such as acyl chain remodeling of cardiolipin, phosphatidylcholine, phosphatidylinositol, and the hydrolysis of lysophosphatidylcholine. Phospholipids are key molecules involved in the maintenance of membrane fluidity and are also involved in signaling pathways. The metabolism of fungal phospholipids has been extensively studied in the model organism, S. cerevisiae [29].

Conclusions

When exposed to cold stress, our results showed a variation in increased and decreased protein abundances between different isolates of *Pseudogymnoascus* spp. Several metabolic enzymes and ribosomal proteins were significantly increased and decreased in abundance in all six isolates of Pseudogymnoascus spp. examined. Pathway enrichment analysis also showed diversity in the cold stress response pathways, with metabolic and translationrelated processes being prominent in most isolates. However, the Antarctic isolate sp3 showed a distinctive cold stress response profile involving increased flavin/riboflavin biosynthesis and methane metabolism. The Antarctic sp3 isolate is also the only one that showed decreased phospholipid metabolism when exposed to cold stress. Our results suggest that *Pseudogymnoascus* spp. adapt to cold stress by utilizing nutrient availability to support cell damage and repair with minimal need for cell growth. The cold stress response of the *Pseudogymnoascus* spp. isolates examined, while showing wide variation in the pathways enriched, did not show any obvious association with the biogeographical regions of origins of the isolates. The data obtained in this study provides new information on how Pseudogymnoascus spp. respond to temperature variations in their environments. This work also improves our understanding of their responses and adaptions toward varying environmental temperatures that may affect their survival in soil ecosystems. We would like to emphasize the need for whole genome analysis of *Pseudogymnoascus* spp. for future works to support functional annotation of unknown sequences of various hypothetical proteins, thus providing additional insight into potential mechanisms governing cold adaptation of *Pseudogymnoascus* spp.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00248-023-02311-w.

Acknowledgements We would like to thank the Malaysian Ministry of Higher Education (MOHE) through their funding programme—Higher Institution Centre of Excellence (HiCoE) (grant number IOES-2014G and IOES-2023E), and the Universiti Malaya Research Programme (UMRP) (grant number RP026A-18SUS), and postgraduate sponsorship for Nurlizah Abu Bakar from the Majlis Amanah Rakyat Malaysia (MARA Scholarship Programme). We would like to thank Dr. Paul A. Rowley for help with proofreading this manuscript.

Author Contributions All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by Nurlizah Abu Bakar. The LC–MS analysis was performed by Benjamin Yii Chung Lau. The experimental work and analysis were supervised by Saiful Anuar Karsani and Siti Aisyah Alias. The first draft of the manuscript was written by Nurlizah Abu Bakar, and all authors commented on previous versions. All authors read and approved the final manuscript.

Funding This work was supported by the Malaysian Ministry of Higher Education (MOHE) through their funding programme—Higher Institution Centre of Excellence (HiCoE) (grant number IOES-2014G and HICoE IOES-2023E), and the Universiti Malaya Research Programme (UMRP) (grant number RP026A-18SUS), and postgraduate sponsorship for Nurlizah Abu Bakar from the Majlis Amanah Rakyat Malaysia (MARA Scholarship Programme).

Data Availability All data analyzed are provided in the manuscript and supplemental files. The raw datasets generated and analyzed during the study are available from the corresponding author upon reasonable request.

Declarations

This study did not involve human subjects, and all reported work is original, and prevailing local, national, and international regulations and conventions and normal scientific ethical practices have been respected. Consent is given by all authors for publication in Microbial Ecology if accepted.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- AbdLatip MA, Abdul Hamid AA, Nordin NFH (2019) Microbial hydrolytic enzymes: in silico studies between polar and tropical regions. Polar Sci 20:9–18. https://doi.org/10.1016/j.polar.2019. 04.003
- Abu Bakar N, Lau BYC, Smykla J, Karsani SA, Alias SA (2022) Protein homeostasis, regulation of energy production and activation of DNA damage-repair pathways are involved in the heat stress response of Pseudogymnoascus spp. Environ Microbiol 24(4):1849–1864. https://doi.org/10.1111/1462-2920.15776
- Antal K, Gila BC, Pócsi I, Emri T (2020) General stress response or adaptation to rapid growth in Aspergillus nidulans? Fungal Biol 124(5):376–386. https://doi.org/10.1016/j.funbio.2019.10.009
- Bai Y, Wang S, Zhong H, Yang Q, Zhang F, Zhuang Z, Yuan J, Nie X, Wang S (2015) Integrative analyses reveal transcriptomeproteome correlation in biological pathways and secondary metabolism clusters in *Aspergillus flavus* in response to temperature. Sci Rep 5:14582. https://doi.org/10.1038/srep14582
- Barratt SR, Ennos AR, Greenhalgh M, Robson GD, Handley PS (2003) Fungi are the predominantmicroorganismss responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J Appl Microbiol 95(1):78–85. https://doi.org/10.1046/j.1365-2672.2003.01961.x
- Belda M, Holtanová E, Halenka T, Kalvova J (2014) Climate classification revisited: from Köppen to Trewartha. Climate Res 59:1–13. https://doi.org/10.3354/cr01204
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi. org/10.1006/abio.1976.9999

- Brandl J, Andersen MR (2017) Aspergilli: models for systems biology in filamentous fungi. Curr Opin Syst Biol 6:67–73. https:// doi.org/10.1016/j.coisb.2017.09.005
- Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D (2020) Stress-induced translation inhibition through rapid displacement of scanning initiation factors. Mol Cell 80(3):470-484.e478. https://doi.org/10.1016/j.molcel.2020. 09.021
- Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292. https://doi.org/10.1111/j.1758-2229.2009. 00038.x
- Convey P, Coulson SJ, Worland MR, Sjöblom A (2018) The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol 41(8):1587–1605. https://doi.org/10. 1007/s00300-018-2299-0
- Correa T, Abreu F (2020) Chapter 20 Antarcticmicroorganismss as sources of biotechnological products. In: Salwan R, Sharma V (eds) Physiological and Biotechnological Aspects of Extremophiles. Academic Press, 269–284 https://doi.org/10. 1016/B978-0-12-818322-9.00020-4
- Crawford RA, Pavitt GD (2019) Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 36(1):5– 21. https://doi.org/10.1002/yea.3349
- Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M (2020) The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 80:101063. https:// doi.org/10.1016/j.plipres.2020.101063
- Fenice M (2016) The psychrotolerant antarctic fungus Lecanicillium muscarium CCFEE 5003: a powerful producer of coldtolerant chitinolytic enzymes. Molecules 21 (4) https://doi.org/ 10.3390/molecules21040447
- 17. Gao B, Mao Y, Zhang L, He L, Wei D (2016) A novel saccharifying α-amylase of Antarctic psychrotolerant fungi Geomyces pannorum: gene cloning, functional expression, and characterization. Starch Stärke 68(1–2):20–28. https://doi.org/10.1002/ star.201500077
- Hallsworth JE (2018) Stress-free microbes lack vitality. Fungal Biol 122(6):379–385. https://doi.org/10.1016/j.funbio.2018.04. 003
- 19 Han X, Gao H, Lai H, Zhu W, Wang Y (2023) Anti-Aβ42 aggregative polyketides from the antarctic psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-3578. J Natural Prod 86(4):882–890. https://doi.org/10.1021/acs.jnatprod.2c01101
- Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Bio/Technol 15(2):147–172. https://doi.org/ 10.1007/s11157-016-9395-9
- Hu B, Luo M, Ji X, Lin L, Wei Y, Zhang Q (2016) Proteomic analysis of Mortierella isabellina M6-22 during cold stress. Arch Microbiol 198(9):869-876. https://doi.org/10.1007/ s00203-016-1238-0
- Kostadinova N, Vassilev S, Spasova B, Angelova M (2011) Cold stress in Antarctic fungi targets enzymes of the glycolytic pathway and tricarboxylic acid cycle. Biotechnol Biotechnol Equip 25(SUPPL. 4):50–57. https://doi.org/10.5504/BBEQ.2011.0122
- Kulkarni M, Stolp ZD, Hardwick JM (2019) Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 162:71–78. https://doi.org/10.1016/j.bcp.2019.01.012
- Lau BYC, Othman A (2019) Evaluation of sodium deoxycholate as solubilization buffer for oil palm proteomics analysis. PLoS One 14(8):e0221052. https://doi.org/10.1371/journal.pone. 0221052
- 25. Lenhart K, Bunge M, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012)

Evidence for methane production by saprotrophic fungi. Nat Commun 3(1):1046. https://doi.org/10.1038/ncomms2049

- Li S, Yu H, Liu Y, Zhang X, Ma F (2019) The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes. Process Biochem 76:85–94. https://doi.org/ 10.1016/j.procbio.2018.11.005
- Liu JY, Men JL, Chang MC, Feng CP, Yuan LG (2017) iTRAQbased quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteomics 156:75–84. https://doi.org/10.1016/j.jprot.2017.01.009
- Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39(2):144–167
- 29. Pan J, Hu C, Yu J-H (2018) Lipid biosynthesis as an antifungal target. J Fungi 4(2):50. https://doi.org/10.3390/jof4020050
- Santiago AM, Gonçalves DL, Morano KA (2020) Mechanisms of sensing and response to proteotoxic stress. Exp Cell Res 395(2):112240. https://doi.org/10.1016/j.yexcr.2020.112240
- Shi TA-O, Yu YY, Dai JJ, Zhang YT, Hu WP, Zheng L, Shi DY (2021) New polyketides from the antarctic fungus Pseudogymnoascus sp. HSX2#-11. LID - https://doi.org/10.3390/md190 30168 [doi] LID - 168. (1660–3397 (Electronic))
- 32. Su Y, Jiang X, Wu W, Wang M, Hamid MI, Xiang M, Liu X (2016) Genomic, transcriptomic, and proteomic analysis provide insights into the cold adaptation mechanism of the obligate psychrophilic fungus Mrakia psychrophila. G3: Genes|Genomes|Genetics 6(11):3603–3613. https://doi.org/10.1534/g3.116.033308
- Tesei D, Marzban G, Marchetti-Deschmann M, Tafer H, Arcalis E, Sterflinger K (2015) Proteome of tolerance fine-tuning in the human pathogen black yeast *Exophialadermatitidis*. J Proteomics 128:39–57. https://doi.org/10.1016/j.jprot.2015.07.007
- 34. Varrella S, Barone G, Tangherlini M, Rastelli E, Dell'Anno A, Corinaldesi C (2021) Diversity, ecological role and

biotechnological potential of antarctic marine fungi. J Fungi 7 (5) https://doi.org/10.3390/jof7050391

- 35. Villanueva P, Vásquez G, Gil-Durán C, Oliva V, Díaz A, Henríquez M, Álvarez E, Laich F, Chávez R, Vaca I (2021) Description of the first four species of the genus Pseudogymnoascus from Antarctica. (1664–302X (Print))
- Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Xiang M, Liu X (2015) Psychrophilic fungi from the world's roof. Persoonia 34:100–112. https://doi.org/10.3767/003158515X685878
- Wang M, Tian J, Xiang M, Liu X (2017) Living strategy of coldadapted fungi with the reference to several representative species. Mycology 8(3):178–188. https://doi.org/10.1080/21501203.2017. 1370429
- Wilson MB, Held BW, Freiborg AH, Blanchette RA, Salomon CE (2017) Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLOS One 12(6):e0178968. https:// doi.org/10.1371/journal.pone.0178968
- 39. Wong HJ (2019) Physiological changes and DNA damage repair in Arctic and Antarctic *Pseudogymnoascus* spp. in response to ultraviolet-B radiation. Dissertation, University of Malaya Kuala Lumpur
- 40. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C-Y, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. 39 (web server issue) (1362–4962 (Electronic)):316–322 https://doi.org/10.1093/ nar/gkr483