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Abstract
To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained 
from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria 
were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. 
These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium 
aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of 
the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected 
for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding 
dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based 
on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic 
zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate 
synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests 
that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The 
presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing 
isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these 
results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains 
in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.
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Introduction

On Earth, the nitrogen (N) cycle has evolved over ~2.7 bil-
lion years through biogeochemical and microbial processes 
that are coupled via robust natural feedbacks and controls 
[1]. N is often a primary limiting nutrient for marine 
microbial growth/metabolism [2]. In coastal and upwelling 
areas, the level of dissolved inorganic N (DIN), such as 
 NO3

− or  NO2
−, is usually sufficient to support microbial 

growth; most tropical and subtropical oceans, however, 
are oligotrophic with undetectable levels of DIN [2, 3]. 
In the oligotrophic tropical ocean, nitrate mainly arises 
from euphotic zone nitrification and the deep ocean [4]. 
The relative flow of  NO3

− which can be used as nitrogen 
source for growth through assimilation and reduction by 
bacteria largely determines the composition of the upper 
ocean’s N pool [5]. Bacteria are more prevalent in the photic 
zone (upper ca. 200 m) of the ocean than in deep waters, 

Zhichen Jiang and Sizhen Liu contributed equally to this work.

 * Dechao Zhang 
 zhangdechao@qdio.ac.cn

1 Laboratory of Marine Organism Taxonomy and Phylogeny, 
Qingdao Key Laboratory of Marine Biodiversity 
and Conservation, Institute of Oceanology, Chinese 
Academy of Sciences, Qingdao 266071, China

2 Laoshan Laboratory, Qingdao 266237, China
3 University of Chinese Academy of Sciences, Beijing 100049, 

China
4 National Key Laboratory of Agricultural Microbiology, 

Huazhong Agricultural University, Wuhan 430070, China
5 Hubei Key Laboratory of Agricultural Bioinformatics, 

College of Informatics, Huazhong Agricultural University, 
Wuhan 430070, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-023-02284-w&domain=pdf


2782 Z. Jiang et al.

1 3

and the total number of bacteria decreases with depth [6]. 
N cycle is driven by complex microbial biogeochemical 
transformations and among them, nitrate-reducing bacte-
ria constitute ca. 50% of microbial population present in 
aquatic environment [7]. Nitrate reduction is involved in 
both assimilatory nitrate reduction (ANR) and dissimila-
tory nitrate reduction. ANR converts nitrate to ammonium 
(via nitrite) which can be subsequently incorporated into 
cell biomass, while dissimilatory nitrate reduction includes 
denitrification, the respiration of nitrate to nitrogen gas, 
and dissimilatory nitrate reduction to ammonia (DNRA) 
[8]. There are three distinct types of nitrate reductases in 
prokaryotes, including periplasmic (Nap), membrane-bound 
(Nar), and assimilatory (Nas) nitrate reductase [9]. Many 
studies have demonstrated the diversity of the nitrate reduc-
tase genes [10–15] and nitrate-reducing community [16–18] 
by using functional molecular markers (e.g., napA, narG, 
narB, and nasA). Previous research has demonstrated that 
denitrification typically prevails in the reduction of nitrate 
when the concentration of nitrate is high and the availabil-
ity of organic carbon is limited [19]. Conversely, DNRA 
becomes the dominant nitrate reduction process when the 
concentration of nitrate is low and organic carbon is abun-
dant [19]. The cycling of sulfur is also crucial in waters, 
as it facilitates the interplay between the generation and 
consumption of hydrogen sulfide  (H2S) [20]. The nitrogen 
and sulfur cycles interconnect through the competition for 
easily degradable forms of organic carbon between nitrate-
reducing and sulfate-reducing bacteria [21]. Although sur-
veys of the diversity of culturable nitrate-reducing bacteria 
have been carried out in oxygen-deficient marine systems 
[22–25], there is relatively limited research on the diversity 
of culturable nitrate-reducing bacteria under N-deficient 
conditions and their role in nitrogen, sulfur, and carbon 
metabolism.

The Western North Pacific Ocean (WNPO) is one of the 
world’s largest oligotrophic regions; it is characterized by 
low primary production, and thus is regarded as an ideal 
region for studying the metabolism of microorganisms under 
N-deficient conditions [2, 26]. Previous studies on prokary-
otes of the water column in the North Pacific Ocean were 
conducted using culture-independent methods, such as ribo-
somal tag pyrosequencing, real-time qPCR, and metapro-
teomic analyses [2, 27–31]. One significant disadvantage 
of molecular techniques that rely on genomic DNA is their 
inability to differentiate between DNA sourced from non-
viable cells, viable cells that are not cultivable, and metabol-
ically viable cells [29]. Admittedly, culture-based methods 
have some limitations, such as the inability to culture the 
majority of organisms; or organisms that have mutualisms 
with others cannot live in isolation. However, when it comes 
to ecological exploration, culture-based studies can enable 
researchers to perform physiological tests using culturable 

microorganisms, and thereby infer the detailed ecological 
roles of the microorganisms [25]. Studying the diversity 
of nitrate-reducing bacteria is crucial because nitrogen is 
frequently a key nutrient that limits microbial growth and 
metabolism. Meanwhile, nitrate-reducing bacteria also par-
ticipate in biogeochemical process of the carbon and sulfur 
cycles, which can contribute to maintain ecosystem stability 
[32]. Here, we sought to isolate nitrate-reducing bacteria 
from the photic zone of WNPO by using selective media 
and nitrate reduction tests, and then apply genomic analyses 
to elucidate their metabolisms. This study provides insights 
into the physiological traits of nitrate-reducing bacteria 
inhabiting these areas, detailing their metabolic role in bio-
geochemical cycles of nitrogen, sulfur, and carbon.

Materials and Methods

Study Areas and Sample Collection

From March to May 2021, a 46-day expedition in the WNPO 
was carried out by the Institute of Oceanology, Chinese 
Academy of Sciences, on the scientific research ship, Sci-
ence (Fig. 1). A total of 154 seawater samples were collected 
from 5 to 200 m at 22 stations with Niskin bottles attached to 
a rosette sampling system equipped with a Sea-Bird SBE911 
CTD. The chlorophyll a (Chl-a) were measured using a Wet 
Star fluorometer attached to the Sea-Bird SBE911 CTD 
(Table S1). On board the boat, seawater sample (200 μL) was 
plated on nitrate agar medium (NAM; 0.2%  KNO3, 0.02% 
 MgSO4·7H2O, 0.08%  K2HPO4·3H2O, 2%  NaKC4H4O6, 1% 

Fig. 1  The 22 sampling locations in the Western North Pacific Ocean. 
The pink dots represent the sampling location. The red rectangle rep-
resents the sampling region
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NaCl, 2% agar). After samples were incubated at 25°C in a 
constant temperature incubator for 7–14 days, single colo-
nies were selected, cultured in medium (0.1%  KNO3, 1% 
peptone, 2% agar, sterile seawater), and stored as a suspen-
sion in 20% (w/v) glycerol at −80°C.

Phylogenetic Analysis of Nitrate‑Utilizing Bacteria

For DNA extraction, all isolates were grown for 3–5 days in 
5 mL liquid medium (0.1%  KNO3, 1% peptone, sterile sea-
water) and incubated at 25 °C. Genomic DNA was extracted 
using an UltraClean Microbial DNA isolation kit (Mo Bio 
Laboratories) according to the manufacturer’s protocol. The 
gene encoding for the 16S rRNA was amplified by PCR with 
the forward primer 27F AGA GTT TGA TCC TGG CTC AG 
and reverse primer 1541R AAG GAG GTG ATC CAG CCG 
CA [33]. Strains were assigned to species with a cutoff of 
98% similarity in 16S rRNA gene sequences [34]. To clarify 
the taxonomic status and evolutionary relationship among 
different nitrate-utilizing bacteria, 16S rRNA sequence of 
different species was aligned by MAFFT v7.4.8 [35]. A phy-
logenetic tree based on this alignment was constructed using 
IQ-tree v2.0.3 [36] with 1000 bootstrap replicates, employ-
ing the TIM3+F+R5 model; Interactive Tree Of Life (iTOL) 
was used to visualize the phylogenetic tree [37].

Screening of Nitrate‑Reducing Bacteria

Nitrate-reducing bacteria were screened from nitrate-utiliz-
ing strains by checking their ability to reduce nitrate accord-
ing to previously described procedures [25, 38]. Briefly, 
nitrate-utilizing strains were transferred to the liquid medium 
(0.1%  KNO3, 1% peptone, sterile seawater) and incubated at 
25°C for 7 days, and then 2 drops each of Griess A reagent 
(sulfanilamide with 5 mol/L acetic acid) and Griess B rea-
gent (N-(1-naphthyl) ethylenediamine with 5 mol/L acetic 
acid) were sequentially added to the liquid medium. The 
negative control tube only contained sterile nitrate liquid 
medium. If the test sample turned red, pink, or orange, there 
was nitrite in the tube and the isolate was scored as a nitrate 
reducer. If no color appeared, zinc dust was added. The lack 
of any color change at this point was taken as indicating that 
there was no residual nitrate in the liquid medium, meaning 
that the strain could completely reduce nitrate. If the liquid 
medium changed at this point from colorless to red, pink, or 
orange (as seen for the control), the strain was considered to 
be unable to reduce nitrate.

The Ability to Oxidize Thiosulfate 
for Nitrate‑Reducing Bacteria

To validate the potential ability to oxidize thiosulfate, 
we incubated nitrate-reducing strains in modified DSMZ 

(Deutsche Sammlung von Mikroorganismen und Zellkul-
turen GmbH) 142 liquid medium (0.1%  (NH4)2SO4, 0.15% 
 MgSO4·7H2O, 0.42%  CaCl2.2H2O, 0.05%  K2HPO4, 0.1% 
 Na2S2O3.5H2O, vitamins, trace elements, sterile seawater) 
containing phenol red (0.3 mg/L) at 25°C for 3–5 days, and 
monitored changes in pH values. The reduced sulfur source 
for autotrophic growth was sodium thiosulfate. When the 
liquid turned from red to yellow, the change was taken as 
indicating that the pH value decreased and the strain effec-
tively oxidized thiosulfate.

Genome Sequencing, Assembly, and Annotation 
of Nitrate‑Reducing Bacteria

Genomic DNA of nitrate-reducing strains representing dif-
ferent species was extracted as described above. A paired-
end library with an insert size of 350 bp was constructed 
for each genome, and sequencing was performed by using 
Illumina NovaSeq 6000 platform [39]. The raw reads of each 
genome were processed for removal of low-quality bases and 
adaptors to obtain the clean reads, using Trimmomatic v0.36 
[40]. The resulting 150 bp paired-end reads with about 200× 
were quality checked and assembled using FastQC (v0.11.9) 
and SPAdes genome assembler v3.15.2 [41]. The quality of 
each assembly was evaluated by BUSCO (5.0.0) [42]. Gene 
prediction and genome annotation were performed using 
Prokka v1.14.6 [43].

Nucleotide Sequence Data

The sequence data generated in this study have been depos-
ited to GenBank under the accession numbers OP835944-
OP836037 for 16S rRNA gene sequences of 94 nitrate-
utilizing strains and under BioProjectID PRJNA882570 for 
genome sequences of 29 nitrate-reducing strains.

Functional Annotation of Genes for Different 
Metabolism Types

Carbohydrate-active enzymes (CAZymes) were annotated 
using dbCAN (v2.0.11) [44] against the CAZyme database 
v9. To identify genes encoding proteases, all of the pre-
dicted genes were searched against the peptidase database, 
MEROPS [45], using DIAMOND [46] BLASTP (E-value 
 10−12). Genes belonging to different carbohydrate-active 
enzymes or protease families were classified using in-house 
python scripts. The python scripts used have been uploaded 
to the code hosting platform github https:// github. com/ liusi 
zhens sh/ cazy_ class ifica tion.

Annotation of the predicted proteins was performed using 
eggNOG-mapper (v2.0.1) [47] with the DIAMOND map-
ping mode, based on the eggnog 5.0 orthology data. Genes 
belonging to different types of nitrogen and sulfur metabolism 

https://github.com/liusizhenssh/cazy_classification
https://github.com/liusizhenssh/cazy_classification


2784 Z. Jiang et al.

1 3

were classified by manual selection according to the results 
of eggNOG-mapper. To identify dimethylsulfoniopropionate 
(DMSP) synthesis and cleavage genes, alignments of ratified 
sequences of all genes of interest [48, 49] were analyzed by 
BLASTP searches against the RefSeq database with param-
eters E-value ≤10−12 and identity ≥70%, and manual annota-
tion was used to verify the top hits.

Results and Discussion

Diversity and Distribution of the Culturable 
Nitrate‑Reducing Strains

A total of 728 nitrate-utilizing bacteria were isolated from 
154 seawater samples. After removing duplicate bacterial 
strains from the same water sample using a 100% identity 
cutoff in 16S rRNA gene sequences, 634 nitrate-utilizing 
strains belonging to 94 species were obtained (Fig. S1). 
295/634 nitrate-utilizing bacteria belonging to 19 genera 
and 29 species were positive for nitrate reduction. The dis-
tribution and abundance of 29 nitrate-reducing strains rep-
resenting different species with the ability to reduce nitrate 
in different seawater layers and at different stations are pre-
sented in Fig. S2. The nitrate-reducing strains were found in 
the highest proportion at station E163-01 (17/295), station 
E163-05 (17/295), and station E163-08 (17/295), while the 
minimum number of nitrate-reducing strains was observed 
at station QB-08 (7/295) (Table S2). In terms of vertical 
distribution, the number of nitrate-reducing strains showed 
an increasing trend with depth, followed by a decreasing 
trend. They were most frequently detected in the middle of 
the photic zone (100 m) (52/295) (Table S3).

Remarkably, Qipengyuania f lava (formerly called 
Erythrobacter flavus), Roseibium aggregatum (formerly 
called Stappia aggregate), Erythrobacter aureus, Vibrio 
campbellii, and Stappia indica were found in all of the 
sampled seawater layers and at almost all of the stations 
where the isolates were obtained. Q. flava has been iso-
lated from marine environments and a member of this 
species was reported to produce sulfur-containing carot-
enoids whose main functions are light harvesting and 
photoprotection during photosynthesis in the photic zone 
[50–52]. In this study, Q. flava was widely distributed at 
almost all stations (21/22) and in the whole water column 
(especially 5–50m). Stappia isolates can respire nitrate 
or perform denitrification; this facilitates their partici-
pation in nitrogen cycling under aerobic and anaerobic 
processes in marine environments [53]. S. indica recently 
has been reported as a human pathogen causing peri-
tonitis [54] and was mostly found in the layers deeper 
than 75m in this study. R. aggregatum IAM  12614T could 
reduce nitrate to gas [55] and was mainly isolated from 

deeper layers (100–200m) in this study. Variable results 
have been reported for tests of nitrate reduction among 
Erythrobacter strains [50, 56]. V. campbellii is widely 
distributed in tropical and temperate marine environ-
ments; V. campbellii BAA-1116 reportedly harbors a 
functional proteorhodopsin and retinal biosynthesis gene 
cluster that enables it to exploit light as an energy source 
in the photic zone [57, 58]. Photosynthetic microorgan-
isms are able to thrive in the euphotic zone, including 
Prochlorococcus [59] or aerobic anoxygenic phototrophic 
bacteria [60]. Only enzymes associated with the ATP 
synthase complex were detected in this study, whereas 
enzymes involved in other photosynthetic pathways were 
not present, suggesting that nitrate-reducing strains were 
incapable of performing photosynthesis (Fig. S3). Previ-
ous research has reported that specific oceanic bacteria, 
like Methylococcales, had the ability to utilize methane 
as both an energy and carbon source [61]. These bacteria 
converted methane into carbon dioxide through meth-
ane monooxygenase. We found that all nitrate-reducing 
strains did not contain methane monooxygenase or other 
enzymes involved in complete methane conversion to 
carbon dioxide (Fig. S4). Therefore, these nitrate-reduc-
ing strains did not possess the capability for methane 
metabolism in the marine environment.

Nitrogen Metabolism of Nitrate‑Reducing Strains

Among 295 nitrate-reducing bacteria, 29 strains repre-
senting different species were selected for further meta-
bolic study (Fig. S5). Here, we annotated the genomes 
of the 29 nitrate-reducing isolates, with the goal of fur-
ther understanding their metabolic potentials based on 
the presence or absence of key genes for the pathways 
of nitrogen metabolism (Fig. 2). Whole-genome analysis 
indicated that all 29 nitrate-reducing isolates possessed 
genes responsible for dissimilatory nitrate reduction or 
ANR, which is consistent with their ability to reduce 
nitrate to nitrite. Of the 29 nitrate-reducing isolates, 
62% (18/29) and 3% (1/29) contained genes for reducing 
nitrate to ammonia by DNRA (napA, napB, narGHI, nirB, 
nirD, nrfA) and ANR (nasA, NR, narB, nirA), respec-
tively. Nitrate can be retained as ammonium via DNRA or 
as organic nitrogen via ANR. Both processes can contrib-
ute to maintaining a balance in the global nitrogen cycle 
by reducing the loss of nitrogen from ecosystems [62]. 
For example, DNRA played a significant role in conserv-
ing nitrogen in paddy soils, contributing up to 18% of the 
total nitrogen conservation [63]. In the photic zone of 
WNPO, inorganic N nutrients are usually insufficient to 
support microbial growth. Thus, these DNRA and ANR 
bacteria which represent a nitrogen-retaining pattern can 
be important for of biogeochemical cylce nitrogen. It has 
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been reported that DNRA can be coupled with anammox 
by providing ammonium [64]. Our study indicated that 
DNRA was probably involved in conversion of nitrate 
to ammonia for nitrate-reducing bacteria and might be 
also a potential way to supply ammonium for non-nitrate-
reducing microbes and ammonia-oxidizing microbes in 
euphotic zone of oligotrophic open ocean.

Interestingly, our genome sequence analysis revealed 
that Marinobacter nauticus XTF-138, Halomonas lito-
penaei XTF-114, and R. aggregatum XTF-10 possessed 
genes involved in the final three steps of the denitrifica-
tion pathway (nirS, norBC, and nosZ), and thus may func-
tion in a manner beyond ANR or DNRA. In our nitrate 
reduction tests, the successive addition of Griess reagents 
and zinc dust to the nitrate culture medium followed by 
incubation at 25°C for 5 days did not lead to any color 
development by these three strains, indicating that nitrate 
was completely reduced (Fig. S5). Based on the genome 
sequence data and the ability of these strains to com-
pletely reduce nitrate, we speculate that they may use 
denitrification to reduce nitrate to molecular nitrogen via 
nitrite, nitric oxide (NO), and nitrous oxide  (N2O).

Sulfur Metabolism of Nitrate‑Reducing Strains

During the assimilatory sulfate reduction (ASR) path-
way, sulfate is initially activated to generate adeno-
sine monophosphate (AMP), which is then converted to 
3′-phosphoadenosine-5′-phosphosulfate sulfite (PAPS) and 
sulfide through a series of enzymatic steps involving sat, 
cysND, cysC, cycH, cysJI, and other enzymes [65]. All of the 
nitrate-reducing isolates identified herein contained genes 
involved in the ASR pathway (Fig. 2), which is utilized to 
synthesize sulfur-containing amino acids from sulfate [65]. 
Bacterial denitrification and sulfate reduction can often 
coexist in natural water systems [66]. Given that there were 
also heterotrophic denitrifiers, we speculate that denitrifica-
tion and sulfate reduction processes may co-occur in the 
seawater of the photic zone.

Four proteins in the periplasm, encoded by soxYZ, 
soxXA, soxB, and soxCD, are essential for the sulfur oxi-
dization (SOX) pathway [67]. Interestingly, we detected six 
nitrate-reducing isolates (Thalassospira profundimaris XTF-
160, Pacificitalea manganoxidans XTF-281, Roseibium 
marinum XTF-14, Maritimibacter alkaliphilus XTF-27, S. 

Fig. 2  Corresponding genes of 29 strains representing different species involved in nitrogen and sulfur metabolism. Colored dots indicate pres-
ence while empty dots indicate absence of the genes in the different strains
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indica XTF-106, and R. aggregatum XTF-10) that encoded 
SOX genes (soxXA, soxB, soxC, soxYZ). To validate their 
potential ability to oxidize thiosulfate, we incubated these 
six strains in modified DSMZ Medium142 liquid medium 
at 25°C for 3–5 days. The liquid medium turned from red 
to yellow, indicating that all of the tested strains effectively 
oxidize thiosulfate (Fig. S6). The thiosulfate oxidation which 
provides energy facilitates nitrate or nitrite reduction [68]. 
Together, the results showed that nitrate-reducing thiosul-
fate-oxidizing bacteria exist in the photic zone of the West-
ern North Pacific Ocean.

DMSP is ubiquitous in the euphotic layers of the marine 
system, with a wide variation in concentrations ranging from 
nanomolar to micromolar [69]. DMSP, which is released 
into the environment through lysis, provides a substantial 
source of carbon and reduced sulfur for heterotrophic bac-
terial communities [48]. Among the isolates, we found that 
T. profundimaris XTF-160 and Tritonibacter mobilis XTF-
65 contained a methionine methyltransferase gene (mmtN), 
which is a marker for bacterial synthesis of DMSP via the 
methionine methylation pathway [70] (Table S4). R. mari-
num XTF-14, R. aggregatum XTF-10, and M. alkaliphilus 
XTF-27 contained the DMSP synthesis gene, dsyB, which 
encodes the key methyltransferase enzyme and is a reliable 
reporter for bacterial DMSP synthesis in marine Alphapro-
teobacteria [71]. Therefore, these five nitrate-reducing iso-
lates each contained a DMSP synthesis gene (dsyB or mmtN) 
in their available genomes.

We also found some nitrate-reducing isolates that may 
be involved in the DMSP cleavage pathway. For example, 
H. litopenaei XTF-114 contained the gene dddD, T. mobilis 
XTF-65 contained the gene dddP, and R. marinum XTF-14 
and R. aggregatum XTF-10 contained the gene dddL. These 
three genes mediate the cleavage of DMSP to dimethyl-
sulfide (DMS), and thus are important for the ocean-atmos-
phere sulfur flux [72]. In the photic zone of the oligotrophic 
ocean, DMSP concentrations in seawater vary from 1 to 100 
nM, and are normally highest in the Chl-a maximum layers 
[48]. Of the six isolates found to be involved in the synthesis 
and/or cleavage of DMSP, we found that they located near 
the Chl-a maximum layer (Table S5) and may participate 
in synthesizing and catabolizing DMSP in photic seawater.

Organic Carbon Metabolism of Nitrate‑Reducing 
Strains

To identify the potential for nitrate-reducing bacterial deg-
radation and metabolism of complex carbohydrates in the 
water column of the photic zone, we performed functional 
annotation of the identified genes by comparison to the 
carbohydrate-active enzymes (CAZymes) database. A total 
of 2197 genes belonging to five CAZyme superfamilies 
were identified from the genomes of the 29 nitrate-reducing 

strains; of them, 40%, 36%, 5%, 3.8%, 1.7%, and 12.8% 
corresponded to GT (glycosyltransferase), GH (glycoside 
hydrolase), CE (carbohydrate esterase), AA (auxiliary activ-
ity), PL (polysaccharide lyase), and CBMs (carbohydrate-
binding modules), respectively (Fig. S7A; Table S6).

Six classes of enzymes for complex polysaccharide 
degradation were predicted from the genomes (Fig. S7B; 
Table S6). The highest number of genes was found in the 
class of chitin degradation, for which family GH23 showed 
the highest abundance, followed by CBM5 (chitin-binding), 
and GH18 (chitinase). GH is often found with a CBM, which 
facilitates the efficient binding of the enzyme to carbohy-
drates [73]. Other classes of CAZymes in this study were 
associated with the degradation of lichenin, cellulose, pectin, 
starch, and trehalose. Chitin is widely found in fungi, and 
certain viruses of the photic zone in the marine environment, 
and chitinases possess the extraordinary ability to hydrolyze 
highly insoluble chitin polymer directly to lower molecular 
weight chitooligomers [74, 75]. Chitin is the most abundant 
aminopolysaccharide and interacts with both carbon and 
nitrogen cycles in the oceans, and most of the chitin found 
globally is produced near the surface of the aquatic environ-
ment [76]. The presence of multiple genes for chitin degra-
dation may enable most of the nitrate-reducing isolates to 
use chitin as an important source of carbon and nitrogen, and 
thereby survive and reproduce in an oligotrophic condition.

In this work, 563 putatively secreted peptidases were 
identified and assigned to 20 families; of them, 60.8%, 
29.2%, 5.7%, 3.9%, and 3.6% belonged to the metallo, ser-
ine, cysteine, threonine, and aspartic peptidase families, 
respectively (Fig. S7C; Table S7). Among these secreted 
peptidases, the metallo peptidase M38 represented the most 
abundant peptidase. Given proteinaceous compounds are 
important nitrogen nutrients for microorganisms and are 
deficient in the photic zone of WNPO, the extracellular 
peptidases of nitrate-reducing isolates are likely to play cru-
cial roles in degrading organic nitrogen and thereby enabling 
the utilization of precious nitrogen sources.

Conclusions

In the present research, 295/634 nitrate-utilizing isolates 
collected from the photic zone of the Western North Pacific 
Ocean could reduce nitrate to nitrite. Among these nitrate-
reducing bacteria, Q. flava, R. aggregatum, E. aureus, V. 
campbellii, and S. indica were highly abundant in all sea-
water layers and found at almost all stations. Whole-genome 
analysis indicated that, consistent with the results of our 
nitrate-reduction tests, all 29 nitrate-reducing isolates pos-
sessed genes that could sustain dissimilatory nitrate reduc-
tion (three also possessed genes involved in the final three 
steps of the denitrification pathway) or ANR. All of the 
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nitrate-reducing isolates contained genes involved in the 
ASR pathway and six also encoded SOX genes and had the 
ability to oxidize thiosulfate. We found that some nitrate-
reducing isolates sampled from around the Chl-a maximum 
layer contained DMSP biosynthesis genes (mmtN and dsyB) 
and/or DMSP cleavage genes (dddD, dddP, and dddL), sug-
gesting that they may be involved in DMSP metabolism in 
the seawater. Interestingly, the widely distributed R. aggreg-
atum, which was a dominant nitrate reducer in our samples, 
possessed genes involved in the pathways of denitrifica-
tion, sulfur oxidation, and DMSP biosynthesis and cleav-
age, prompting us to speculate that R. aggregatum may be 
a major mediator of nitrogen and sulfur metabolism in the 
photic zone. All of these nitrate-reducing strains were not 
involved in photosynthesis and methane metabolism. The 
presence of multiple genes for chitin degradation may be 
crucial for the survival of most nitrate-reducing isolates, as 
chitin may be an important carbon nutrient in these nutrient-
poor ocean environments. Collectively, the results of this 
study provide important insights into the nitrogen, sulfur, 
and carbon biogeochemical cycles of nitrate-reducing strains 
in the oligotrophic marine photic zone of WNPO.
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