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Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in 
shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the rela-
tionship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions 
among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity 
systematically peaked in autumn–winter, likely related to low resource availability during this period. BCC showed 
seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, 
and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained 
by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, 
a strong and significant correlation was found between BCC and small-sized eukaryotic community composition 
(ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton 
in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, 
associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic rela-
tionships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic 
interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions 
as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-
sized phytoplankton and bacteria.

Keywords Productive system · Phytoplankton-bacteria interactions · 18S rRNA gene · 16S rRNA gene · Bacterial 
seasonality · Microbial communities

Introduction

Marine microbial communities play key roles in the marine 
food webs and in the regulation of many biogeochemical 
cycles [1, 2]. Marine microplanktonic communities encom-
pass a wide variety of taxonomic and functional groups, like 
protists, bacteria, or archaea. Phytoplankton and bacterio-
plankton are the dominant microorganisms in marine eco-
systems, and they comprise very dynamic and diverse com-
munities [3, 4]. In the last decades, thanks to the advances in 
molecular and computational analyses, it became feasible to 
study the phylogenetic diversity and community composition 
patterns of marine microorganisms through the sequencing 
of the 18S rRNA and 16S rRNA genes [5–7]. The combi-
nation of the sequence data and the detailed characteriza-
tion of the environmental conditions represent an excellent 
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approach to explore the influence of the abiotic factors on 
microbial communities [7].

Earlier studies of bacterioplankton have described their 
diversity and community seasonality in relation to multiple 
environmental variables (e.g., solar radiation, temperature, 
dissolved organic matter (DOM) concentration and quality, 
or nutrients) [e.g., 4, 8, 9]. For instance, DOM and nutri-
ent supply can vary as a result of water column mixing and 
stratification, partly driving seasonal patterns in bacterial 
diversity, composition, and structure [4, 8, 9]. In addition, 
some experimental studies have demonstrated the influ-
ence of compounds released by small-sized phytoplankton 
through exudation or cell breakage (dissolved organic car-
bon from phytoplankton, DOC.p) on bacterial taxonomic 
composition. As an example, the dominance of small phyto-
flagellates or diatoms promoted shifts in bacterioplankton 
composition during microcosms experiments [e.g., 10, 11]. 
DOC.p represents a primary source of organic matter for 
the bacterial metabolism [12], and about half of the phyto-
planktonic organic matter is consumed and remineralized 
by bacteria [13, 14].

Recent studies suggest that apart from the control exerted 
by temporal and spatial fluctuations of abiotic variables, 
biotic factors—in particular the interactions between bacte-
ria and small-sized phytoplankton—are relevant to under-
stand the dynamics of marine microplankton communities 
[4, 15, 16]. A popular approach to explore the potential 
role of biotic interactions is the analysis of microbial asso-
ciations based on correlations [17]. Association analysis 
is based on co-occurrence or co-exclusion patterns among 
different taxa. Co-occurrence patterns, which imply coex-
istence, may result from either positive or negative interac-
tions, such as parasitism (where one-part benefits and the 
other is negatively impacted), mutualism (where both parts 
benefit), commensalism (where one organism benefits and 
the other is neither positively nor negatively influenced) or 
predation (one organism feeds from other) [18, 19]. By con-
trast, co-exclusion patterns could reflect allelopathy (secre-
tion of antimicrobial substances) or competitive exclusion 
among taxa [18, 19]. Many positive or negative microalgae-
bacteria interactions involve the exchange of metabolites. 
For example, the dinoflagellate Prorocentrum cordatum pro-
vides organic carbon and  B3 vitamin to the bacteria Dinoro-
seobacter shibae, and in return the bacteria provide  B1 and 
 B12 to the dinoflagellate [20], both partners benefiting from 
the trade. By contrast, Alteromonas sp. release chitinase or 
β-glucosidase that specifically attacks the cell-wall of Alex-
andrium tamarense [21].

Shelf waters off the Ría de Vigo are seasonally affected by 
upwelling pulses which sustain high levels of productivity 
[22, 23]. A recent work in the area using DNA-fingerprinting 
suggests that seasonality in abiotic conditions plays a major 
role as structuring factor of bacterioplankton communities 

[9]. The phytoplankton community of the Ría de Vigo is 
composed mainly by large diatoms (e.g., Thalassiosira rot-
ula) in early spring, small diatoms (e.g., Pseudo-nitzschia 
spp. or small Chaetoceros spp.), and small flagellates (e.g., 
Ostreococcus spp.) in late spring and summer, and dino-
flagellates (e.g., Tripos furca) in autumn [23, 24]. Over the 
winter, phytoplankton abundance is lower compared with the 
other seasons and benthic species are relatively abundant in 
the plankton (e.g., Navicula spp.) [23]. Yet, a recent study 
in the area, based on 18S rDNA tag sequencing, revealed 
that the seasonal succession of small eukaryote operational 
taxonomic units (OTUs), which were mostly dominated by 
phytoplankton taxa, seems to be only moderately explained 
by the environment [24]. To further explore the role biotic 
interactions may have on microbial dynamics in this produc-
tive region, we used the same sample set as in Hernández-
Ruiz et al. [24] to simultaneously analyze monthly variations 
in bacterial community composition (partial 16S rDNA gene 
sequencing) and function (bacterial biomass, production, 
and respiration) over 2 years in shelf waters off the Ría de 
Vigo. The specific objectives of this investigation were as 
follows: (1) to simultaneously describe, for the first time in 
this area, spatial and temporal patterns in the bacterioplank-
ton community function and taxonomic composition; (2) to 
identify which environmental variables explain the variabil-
ity of the bacterioplankton community composition (BCC); 
(3) to explore the correlation between bacterial and small-
sized eukaryotic community composition (ECC); and (4) to 
detect co-occurring, and thus potentially interacting, pairs of 
small phytoplankton and bacteria species, using correlation 
network analysis. We hypothesize that BCC is coupled with 
ECC, and that small-sized phytoplankton-bacteria interac-
tions play a significant role in the microbial communities 
of this productive ecosystem. Based on previous studies, 
we expect an important influence of environmental factors 
on temporal and seasonal changes in BCC [4, 8, 9] and a 
predominance of positive over negative connections between 
small-sized phytoplankton and bacteria [25, 26].

Methods

Sampling

Seawater sampling was carried out monthly from January 
2014 to December 2015 in a shelf station off the Ría de 
Vigo (Spain), three sampling months were missing because 
of ship technical issues (July and August 2014) or rough 
weather conditions (December 2015). Seawater was col-
lected from two different depths, near surface (ca. 1 m) and 
approximately the base of photic zone (30 m). The annual 
average percentage of photosynthetically active radiation (% 
PAR) at 30 m in this sampling site is 3.3 ± 1.4%, as estimated 
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in a previous study by Teira et al. [27]. Samples were col-
lected with 5 L Niskin bottles on board R/V José Navaz.

Environmental Variables

Environmental conditions during the sampling period were 
previously described in detail by Hernández-Ruiz et al. 
[24]. Briefly, temperature and salinity were obtained with 
SBE-25 CTD equipped with Seapoint in situ fluorometer, 
upwelling index was estimated by calculating the offshore 
Ekman transport from coastal winds, and precipitation 
and solar irradiation data were obtained from the Regional 
Weather Forecast Agency-Meteogalicia (http:// www. meteo 
galic ia. gal). Inorganic nutrients were analyzed by standard 
colorimetric methods with a flow analyzer [28] and size-
fractionated chlorophyll-a (Chla) concentration was deter-
mined from acetone extracts of plankton and measured by 
the fluorometric method [29]. Dissolved organic carbon 
(DOC) and total dissolved nitrogen (TDN) were measured 
in a Shimadzu TOC-V analyzer following the method of 
Álvarez-Salgado and Miller [30]. Dissolved organic matter 
fluorescence (FDOM) was measured, following the work of 
Nieto-Cid et al. [31], at two fixed excitation/emission wave-
lengths: 320 nm/410 nm (peak M), characteristic of marine 
humic-like substances, and 280 nm/350 nm (peak T), char-
acteristic of protein-like materials.

Microbial Metabolic Activity

Prokaryote and eukaryote function-related variables were 
previously described in detail by Hernández-Ruiz et al. [24]. 
In brief, prokaryote biomass (PB) was measured using a 
Becton Dickinson FACSCalibur flow cytometer equipped 
with a laser emitting at 488 nm [32] and prokaryotic cells 
were stained with SybrGreen DNA fluorochrome and identi-
fied on the basis on their fluorescence and light side scatter 
(SSC) signature. Biovolume was determined following the 
empirical calibration described by Calvo-Díaz and Morán 
[33] and converted into biomass using the allometric rela-
tionship from Norland [34]. Heterotrophic prokaryote pro-
duction (HPP) was estimated by  [3H]-leucine incorporation 
method [35], modified as described Smith and Azam [36]. 
A theoretical leucine to carbon conversion factor of 3.1 kg C 
mol  Leu−1 was used [37]. On the other hand, size-fraction-
ated community respiration was calculated using the INT 
((iodo-phenyl)–3-(nitrophenyl)–5-(phenyl) tetrazolium chlo-
ride) reduction rate method, as described Martínez-García 
et al. [38] and as described in Hernández-Ruiz et al. [24], 
and the prokaryote respiration (PR) was defined as pico-
sized community respiration [24]. Primary production (PP) 
was estimated as described in detail by Hernández-Ruiz 
et al. [24] and PP rates were calculated using the method 
described by Marañón et al. [39]. In brief, seawater samples 

were incubated with 10 μCi of  NaH14CO3 and each incu-
bated sample was measured on a Wallac β-scintillation 
counter [24]. Finally, prokaryotic growth efficiency (PGE) 
is the amount of new prokaryotic biomass produced per unit 
of organic C substrate assimilated and was calculated as: 
PGE = (HPP)/(HPP + PR).

Microbial Community Composition

Approximately 2–3 L of water samples were sequentially 
filtered through 20 and 3 μm pore size polycarbonate filters 
and 0.2 μm pore size Sterivex Filter Units, and immediately 
frozen in liquid nitrogen and stored at − 80 °C until DNA 
extraction. DNA retained in 20 μm and 3 μm filters repre-
sented microeukaryotes and nanoeukaryotes, respectively. 
Picoeukaryotes and prokaryotes were collected in the 0.2 μm 
pore size Sterivex filters. Changes in the ECC during the 
period of study were assessed by sequencing the V4 region 
of the 18S rRNA gene and is described in Hernández-Ruiz 
et al. [24]. Nonetheless, in order to compare temporal and 
spatial changes in bacterial and eukaryotic community com-
position, eukaryote sequence raw data were reanalyzed for 
this study in order to incorporate corrections to account for 
compositional effects (i.e., centered log ratio transformation, 
clr), not considered in Hernández-Ruiz et al. [24].

In all, 42 DNA samples were amplified for partial 16S 
rRNA gene sequencing. DNA from pico-sized plankton 
(< 3 μm diameter) was extracted using PowerSoil ® DNA 
isolation Kit (MoBio Laboratories Inc., CA, USA) according 
to the manufacturer’s instructions. The DNA concentration 
was quantified using a Qubit® 2.0 fluorometer and Qubit 
dsDNA HS Assay Kit (Thermo Fischer Scientific Inc, Mas-
sachusetts, USA). The extracted DNA was amplified using 
the primers 515F-Y (5′-GTG YCA GCMGCC GCG GTAA-3′) 
and 926R (5′-CCG YCA ATTYMTTT RAG TTT-3′). These 
primers target the V4-V5 hypervariable regions of the 16S 
rRNA gene [40]. Amplified regions were sequenced with 
Illumina MiSeq platform (paired-end reads; 2 × 300 bp). 
Sequence reads were analyzed as described in Logares 
[41]. In short, raw reads were corrected by Bayes Ham-
mer [42] following the Schirmer et al. [43] method. Sub-
sequently, paired-end reads were merged with PEAR [44] 
and the longer sequences (> 200 bp) were quality-checked 
and dereplicated using USEARCH [45]. OTU abundances 
were acquired by mapping back reads to OTUs at 99% simi-
larity. BLAST [46] was used for taxonomic assignment of 
16S OTUs, against SILVA 123 database. OTUs assigned to 
chloroplasts, mitochondria, or eukaryotes were removed. As 
archaea were poorly represented in our sample set, archaeal 
OTUs were also excluded for this study. Finally, after the 
computing analysis we subsampled the OTU table to the 
lowest number of reads, which was 5274. The subsampling 
was carried out with the “vegan” R-package. The sequence 
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abundances of the subsampled OTU table were transformed 
by the clr. The clr transformation was performed to address 
compositionality data and obtain more realistic data fitted 
within an Euclidean space [47]. Clr transformation was con-
ducted with the “compositions” R-package. Before the clr 
transformation, zeroes were replaced by the minimum value 
divided by 2 according to Fernandes et al. [48].

The diversity indices that we calculated in each time point 
and depth were richness and alpha diversity. Bacterial rich-
ness was calculated by the number of distinct OTUs per sam-
ple, and alpha diversity was measured by Shannon index, 
H. They were calculated with the “diversity” function in the 
“vegan” R-package.

Statistical Analyses

Differences in prokaryote function-related variables between 
depths and seasons were analyzed by the non-parametric 
Kruskal–Wallis (K-W) and Mann–Whitney (M-W) tests. 
We used these tests because PB, HPP, and PGE had non-
normal distributions even after transformation. On the other 
hand, Student t test and ANOVA were performed to com-
pare differences between richness and Shannon index among 
depths, years and seasons. Diversity indices followed a nor-
mal distribution. Normal distribution was tested by Shap-
iro–Wilk test. All of the tests were executed with the “stats” 
R-package.

All data used for multivariate statistical analyses were 
previously transformed. The read abundances of eukaryote 
and bacteria OTUs were transformed using clr transforma-
tion. Environmental (solar radiation (Irr), precipitation (Pre), 
water temperature (Twat), dissolved organic carbon (DOC), 
total dissolved nitrogen (TDN), dissolved organic matter 
fluorescence (FDOM), phosphate  (PO4), ratio dissolved inor-
ganic nitrogen and phosphate (DIN.P), silicate  (SIO2), and 
upwelling index (UI)) and functional variables (pico-, nano-, 
and micro-sized primary production (PP.p, PP.n, PP.m); het-
erotrophic prokaryote production (HPP); prokaryote biomass 
(PB); pico-, nano-, and micro-sized chlorophyll-a (Chla.p, 
Chla.n, Chla.m); and pico-, nano-, and micro-sized commu-
nity respiration (CR.p, CR.n, CR.m)) were normalized using 
the following equation: Xn = ( Xi—X)/Sx. Here, Xi represents 
the original variable value, X represents the mean of the 
original variable, and S

x
 represents the standard deviation 

of the original variable.
The multivariate redundancy analysis (RDA) was applied 

to extract and summarize the variation in a set of response 
variables (in this case eukaryotic and bacterial community 
composition in the different samples) that can be explained 
by a set of explanatory environmental variables. PER-
MANOVA was performed to evaluate significant differences 
in BCC between different depths and sampling seasons. The 
significance of the explanatory variables was examined by 

permutation analysis (permutations = 999) [49]. RDA and 
statistical tests were performed with the R-package “vegan” 
and RDA plots were constructed using “ggplot2” and 
“ggord” R-packages. To evaluate and describe associations 
between the relative abundance of major bacteria taxa and 
environmental and functional variables, we constructed a 
heatmap using Spearman correlations. Heatmap clustering 
was based on Euclidean distances. Spearman correlations 
were calculated using “Hmisc” R-package and heatmaps 
were constructed using “ComplexHeatmap” R-package.

A partial Mantel test was used to study the relationship 
between the Euclidean distance matrices built from (a) normal-
ized environmental variables, (b) normalized functional vari-
ables, (c) clr abundance of small-sized eukaryotes (< 20 μm), 
and (d) clr abundance of bacteria. Partial Mantel correlation 
uses partial correlation conditioned on a third matrix, and the 
Mantel coefficient is algebraically equivalent to the Pearson 
correlation coefficient (permutations = 999, p < 0.05). Partial 
Mantel tests were computed using “vegan” R-package.

Network Analysis

In order to explore the potential interactions between bacte-
ria and eukaryotes, we built a co-occurrence network based 
on Spearman correlation between the 50 most abundant and 
frequent (present in more than 50% of the samples) bac-
teria and eukaryote OTUs. We used the habitat filtering 
(HF) algorithm to correct for the effects that the different 
environmental conditions of the two sampling depths may 
have on the microbial correlation network analysis. The HF 
algorithm was proposed by Brisson et al. [50] and essentially 
corrects the abundance of each OTU in each sample by the 
mean abundance of that OTU in its habitat. Benjamini and 
Hochberg correction was applied to control for false posi-
tives [51], and the co-occurrence network between eukary-
ote and bacteria OTUs was built including only correlations 
with a significance cutoff of p < 0.01 [50].

In our study, we focused on the relationships between bac-
teria in the size fraction < 3 μm and eukaryotes in the size 
fraction < 20 μm. Since most bacteria < 3 μm are free-living, 
most of the detected potential connections will not imply inti-
mate interactions such as those occurring in parasitic (except 
those parasites that present free-living stages) or symbiotic 
relationships. The small plankton (< 20 μm size fraction) is 
a significant fraction of the microbial plankton and largely 
contribute to the total microbial plankton biomass in shelf 
waters of NW-Spain [52]. Yet, the taxonomic composition of 
this small plankton fraction was described for the first time in 
the related study by Hernández-Ruiz et al. [24].

Node degree and neighborhood connectivity were cal-
culated using the network analyzer tool in Cytoscape 3.8.2. 
The network was visualized with “igraph” and “ggplot2” 
R-packages.
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Results

Environmental and Phytoplankton Function‑Related 
Variables

As previously described in Hernández-Ruiz et al. [24], sur-
face temperature was higher (average: 15.2 ± 2.5 °C) than 
at 30 m temperature (average: 14.4 ± 2.4 °C), with warmer 
surface waters during late summer and autumn in 2014 than 
in 2015 [24]. In both years, upwelling conditions dominated 
from March to August, while downwelling conditions dom-
inated in January and February [24]. Dissolved inorganic 
nitrogen (DIN) concentration in surface waters was higher 
in winter than in summer, and higher in 2014 than in 2015 
[24]. DOC and DON were higher in surface waters (aver-
age DOC: 82 ± 7.8 µmol  L−1; average DON: 7.9 ± 2.7 µmol 
 L−1) than at 30 m depth (average DOC: 69.3 ± 5.3 µmol  L−1; 
average DON: 7 ± 2.2 µmol  L−1) and showed relatively low 
variation between years [24]. The fluorescence of protein-
like DOM (FDOM.T) displayed much higher values in 2015 
than in 2014, and in spring and early autumn than in winter 
and summer in 2015 [24].

PP and Chla were broadly higher in surface waters 
(average PP: 67.5 ± 112. 3  µg C  L−1   day−1; average 
Chla: 2.9 ± 3  µg  L−1) than at 30  m depth (average PP: 
13.2 ± 18.7 µg C  L−1  day−1; average Chla: 1.5 ± 2.2 µg  L−1) 
[24]. PP and Chla had similar seasonal trends, with higher 
values in spring and late summer and lower during winter 
and summer at both depths [24]. Particularly outstanding 
were the PP and Chla peaks in May 2014 at both depths and 
in September 2015 in surface waters [24].

(M-W test, n = 40, p > 0.05). Interestingly, there was a strong 
increase in HPP in June–August 2015, particularly relevant 
in surface waters, followed by a sharp decrease in Septem-
ber 2015 (Fig. 1b). PGE throughout the whole study period 
averaged 28.7 ± 12.4% and 19.7 ± 14.4% in surface waters 
and at 30 m depth, respectively (Fig. 1c). PGE was signifi-
cantly higher in surface waters than at 30 m depth (M-W test, 
n = 40, p < 0.05) and did not differ between 2014 and 2015 
(M-W test, n = 40, p > 0.05). PGE registered the highest val-
ues in December 2014, and the lowest values in September 
2015, at both depths (Fig. 1c).

Bacterial Diversity and Composition

Richness and Shannon index (H) did not differ between 
depths (richness: t-test, n = 42, p > 0.05; Shannon index: 
t-test, n = 42, p > 0.05), and both indices were signifi-
cantly different among seasons, with higher values in 
winter and autumn than in spring and summer (richness: 
ANOVA, n = 42, p < 0.0001; H: ANOVA, n = 42, p <  10−5) 
(Fig. 2a and b). At both depths, OTU richness and H 
were lower in 2015 than in 2014 and displayed a sharp 
minimum of both values in April 2015 (Fig. 2a and b). 
Bacterial richness averaged 711.9 ± 155.1, 761.6 ± 61.3, 
546 ± 90.2, and 602.2 ± 97.9 in winter, autumn, spring, 
and summer, respectively, while alpha-diversity (meas-
ured by H) averaged 5.6 ± 0.3, 5.6 ± 0.2, 4.9 ± 0.5, and 
5.2 ± 0.3 in winter, autumn, spring, and summer, respec-
tively (Table S1).

The BCC showed temporal variability and differed 
between depths (Fig. 3a and b). Approximately 80% of 
the sequences were affiliated with Alphaproteobacteria, 
Flavobacteria, and Gammaproteobacteria at both depths. 
The average percentage of these classes in surface waters 
was ~ 37% for Alphaproteobacteria, ~ 27% for Flavobacte-
ria and ~ 24% for Gammaproteobacteria. In surface waters, 
Rhodobacteraceae were the dominant family (relative 
abundance: ~ 19%), followed by Flavobacteriaceae (rela-
tive abundance: ~ 17%), and SAR11 clade (relative abun-
dance: ~ 13%) (Fig. 3a). Rhodobacteraceae were more abun-
dant in summer and spring and in 2015 compared to 2014. In 
April 2015, most Rhodobacteraceae belonged to the genus 
Amylibacter sp. (~ 83% of Rhodobacteraceae reads). The 
relative abundance of SAR11 increased during summer and 
decreased during winter in both years and they were rela-
tively more abundant in spring 2014 than in spring 2015. 
Cyanobacteria, Gammaproteobacteria and SAR406 became 
more abundant across autumn and winter in surface waters 
(Fig. 3a).

At 30 m depth, the dominant bacteria class was Alp-
haproteobacteria (relative abundance: ~ 44%), dominated 
by the SAR11 clade (relative abundance: ~ 26%) and 

Prokaryote Function‑Related Variables

PB, HPP, and PGE displayed more temporal variability in 
surface waters than at 30 m depth and registered, in general, 
fluctuations between seasons and years (Fig. 1).

PB throughout the whole period of study averaged 
4.1 ± 3.5 mg C  m−3 and 2.4 ± 1.6 mg C  m−3 in surface waters 
and at 30 m depth, respectively, and 1.3 ± 0.7 mg C  m−3 
and 4.9 ± 2.9 mg C  m−3 during 2014 and 2015, respectively 
(Fig. 1a). PB showed significantly higher values in 2015 than 
in 2014 (M-W test, n = 40, p < 0.01), but there were not sig-
nificant differences between surface and 30 m depth (M-W 
test, n = 40, p > 0.05). PB displayed significant changes 
along seasons (K-W test, n = 40, p < 0.05), with higher val-
ues in early spring and summer than in winter and autumn, 
and a remarkable increase in August 2015 (Fig. 1a). HPP 
throughout the whole period of study averaged 6.1 ± 3.7 and 
2.4 ± 2.2 mg C  m−3  day−1 in surface waters and at 30 m 
depth, respectively (Fig. 1b). Surface HPP was higher than 
at 30 m depth (M-W test, n = 40, p < 0.01). There were not 
significant differences between HPP during 2014 and 2015 
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Rhodobacteraceae (relative abundance: ~ 9%), followed 
by Gammaproteobacteria (relative abundance: ~ 17%) 
and Flavobacteria (relative abundance: ~ 16%) (Fig. 3b). 
The SAR11 clade was more abundant at 30 m depth than 
in surface waters and its relative abundance was quite 
constant throughout the period of study except for a 
sharp decrease in April 2015 (relative abundance: ~ 5%) 
and a subsequent increase in May 2015 (relative abun-
dance: ~ 62%). Rhodobacteraceae were less abundant 
at 30 m depth than in surface waters and their relative 
abundance increased in 2015 compared to 2014, being 
the dominant group in April 2015 (relative abundance 
of ~ 69% in surface waters and ~ 57% at 30 m depth). As 
in surface waters, at 30 m depth most Rhodobacteraceae 
in April 2015 belonged to Amylibacter sp. (~ 90% of 
Rhodobacteraceae reads). Salinisphaerales, Rhodobac-
teraceae, and Flavobacteriaceae were less abundant at 
30 m depth than in surface waters (Fig. 3b).

Spatial and Temporal Patterns in Microbial 
Community Composition in Relation 
to Environmental and Functional Variables

RDA was performed to study the patterns of tempo-
ral (intra- and interannual) and spatial (depth) vari-
ability of BCC. RDA revealed that BCC was signifi-
cantly inf luenced by depth (PERMANOVA, n = 42, 
p = 0.001) and by the sampling season (PERMANOVA, 
n = 42, p = 0.001). The first two canonical axes jointly 
explained 61.6% of the total variance of BCC, with 
the first axis alone explaining 41.2%. The significant 
variables that explained the variability in this model 
were: Twat, DOC, FDOM.M, FDOM.T, Irr, and TDN. 
The RDA plot showed that changes in TDN and Twat 
mostly explained differences in BCC between autumn 
and winter samples. On the other hand, DOC, FDOM.M, 
FDOM.T, and Irr partially explained differences in BCC 
between surface and 30 m depth samples (Fig. 4). For 
the sake of comparison, we repeated the analysis made in 
Hernández-Ruiz et al. [24] but using the clr transforma-
tion applied in the present work (Fig. S1) and we found 
that 48.6% of the variability in the ECC of the small 
size-fraction (0.2–20 μm cell-size) was explained by 
environmental variables (Fig. S1). The RDA performed 

using clr-transformed ECC data showed two clear com-
munities, one in spring–summer which was explained by 
the Irr, UI, and Chla, and another one in autumn–winter 
related to DOC, Chla.p, Pre, and FDOM.M (Fig. S1).

Four different clusters of bacterial taxa (A, B, C, and 
D) were obtained based on their correlation with environ-
mental and functional variables (Fig. 5). Overall, cluster 
A (including SAR406 and Deltaproteobacteria, among 
others) showed negative correlations with Irr, UI, CR, 
Chla.m, HPP, PP, DOC, and DOM (n = 42, p < 0.05). 
Furthermore, cluster A showed strong positive correla-
tions with salinity (Sal), and richness and H of bacteria 
and small-sized eukaryotes (n = 42, p < 0.05) (Fig. 5). 
Conversely, cluster D (including Rhodobacteraceae and 
Cryomorphaceae, among others) showed strong posi-
tive correlations with Irr, UI, CR, Chla.m, HPP, PP and 
FDOM.T and FDOM.M (n = 42, p < 0.05). This cluster 
was negatively correlated with DIN.P, richness and H 
of bacteria and small-sized eukaryotes (n = 42, p < 0.05) 
(Fig. 5). On the other hand, cluster B (including Prochlo-
rococcus and Synechococcus, among others) and C 
(including SAR11, and Oceanospirillales among others) 
showed, in general, lower number of correlations than 
the cluster A and D. Overall, cluster B showed negative 
correlations with Chla.m and positive correlations with 
Twat, richness and H of bacteria and small-sized eukary-
otes (Fig. 5). Cluster C showed weak correlations with 
environmental variables, with the exception of OCS116 
and SAR11 clades, which showed strong negative cor-
relations with most variables and positive correlations 
with Sal and, in the case of OCS116 with Irr too (Fig. 5).

Spearman correlations of the different eukaryotic taxa 
(small size-fraction, 0.2–20 μm cell-size) studied with 
environmental and functional variables were weaker than 
those of bacteria (Fig. S2). Within phytoplankton taxa, 
Cryptophyceae was the group showing more significant 
correlations with environmental and functional variables 
(Fig. S2). By contrast, Bacillariophyceae only showed 
two positive correlations with  PO4 and UI (Fig. S2).

Links Between Bacterial Community, Eukaryotic 
Community, Environmental Factors, and Functional 
Variables

The Mantel test revealed a significant correlation 
between ECC of the small size fraction (0.2–20 μm cell-
size) and BCC (n = 38, r = 0.4, p < 0.01), as well as a sig-
nificant partial correlation between ECC of the small size 
fraction (0.2–20 μm cell size) and BCC after controlling 
for the effects of environmental factors (n = 38, r = 0.41, 
p < 0.01) or the effects of functional variables (n = 38, 

Fig. 1  a Prokaryote biomass (PB), b heterotrophic prokaryote pro-
duction (HPP), and c prokaryotic growth efficiency over January 
2014 and December 2015 in surface waters (triangles and black line) 
and at 30 m depth (circles and grey line). Colored shades represent 
the seasonal trend in winter (blue), spring (green), summer (white), 
and autumn (brown)

◂
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r = 0.41, p < 0.01) (Fig. 6). BCC had a significant cor-
relation with environmental factors (n = 38, r = 0.35, 
p < 0.01); but not with functional variables (n = 38, 
r = 0.05, p > 0.05). By contrast, ECC of the small size 
fraction (0.2–20 μm cell size) did not have a significant 

correlation with the functional (n = 38, r =  − 0.09, 
p > 0.05) nor with the environmental variables (n = 38, 
r = 0.07, p > 0.05). On the other hand, the environmental 
and functional variables did not show a significant rela-
tionship between them (n = 38, p > 0.05) (Fig. 6).

Fig. 2  Shannon index and richness from bacteria over 2014 and 2015 in surface waters (a) and at 30 m depth (b). Colored shades represent the 
seasonal trend in winter (blue), spring (green), summer (white), and autumn (brown)



785Role of Bacterial Community Composition as a Driver of the Small‑Sized Phytoplankton Community…

1 3

Co‑occurrence Networks Between Bacteria 
and Eukaryotes

It is important to note that only eukaryote-bacteria connec-
tions were considered in this analysis. Small size fraction 
(0.2–20 μm cell size) eukaryote and free-living bacteria 
(< 3 µm size fraction) network with HF correction included 
a total of 92 significant relationships (n = 41, p < 0.01), of 
which 60 were positive and 32 negative (Fig. 7). Eukary-
ote OTUs had, on average, more connections with bacteria 
(3.8 ± 3.0) than bacterial OTUs with eukaryotes (2.2 ± 1.4) 
(Table S2 and Table S3) and, conversely, averaged neighbor-
hood connectivity, which is the average number of neighbors 
of the connected nodes, was higher for bacteria (6.1 ± 2.6) 
than for eukaryotes (3.2 ± 1.4) (Table S2 and Table S3). 
The most connected eukaryotic node was MALV-III_2 
(Dinophyceae) (degree = 11), followed by Dinophyceae_10 
(degree = 9), and the most connected bacterial nodes were 
ZD0417_marine_group (Salinisphaerales) (degree = 6) 
and SAR11_clade_4 (degree = 6). The network showed that 
most potential interactions occurred between Dinophyceae, 
and Rhodobacteraceae or SAR11_clade (Fig. 7). Moreo-
ver, Dinophyceae, MALV-II and MALV-III groups showed 
many different negative interactions with bacteria, particu-
larly with Amylibacter sp. (Rhodobacteraceae), SAR11, and 
NS9_marine_group (Flavobacteria). Crypthophyta showed 
strong and positive associations with Synechococcus, 
SAR406 and Flavobacteria. Chlorophyta showed repeated 
positive associations with Flavobacteria and Synechococ-
cus. Within the Bacillariophyceae, Pseudo-nitzschia sp. pre-
sented many negative correlations with SAR11 and OC116 
(Alphaproteobacteria), and showed only one positive cor-
relation with Amylibacter sp. (Rhodobacteraceae) (Fig. 7). 
By contrast, Strombidiidae (Ciliophora) showed strong 
and positive correlations with Rhodobacteraceae and Fla-
vobacterium. The strongest positive correlations observed 
occurred between Dinophyceae_12 and SAR406_clade_2 
and between Geminigera cryophila_2 (Cryptophyta) and 
Synechococcus sp._1 (Cyanobacteria), while the strongest 
negative correlation was found between Dinophyceae_12 
and Roseovarius (Rhodobacteraceae) (Fig. 7).

Discussion

This study provides the first detailed description of bacte-
rial community composition and prokaryote function-related 
variables (biomass, production, and growth efficiency) over 
2 years in shelf waters in the upwelling system off the Ría 
de Vigo (NW-Spain). Our results reveal a close connection 
between bacterial community composition and environmen-
tal factors, and the key role of bacteria as a structuring factor 

of the eukaryotic community, mostly driven by positive con-
nections between phytoplankton and bacteria.

Temporal and Vertical Patterns in Bacterial Diversity 
and Composition

Alphaproteobacteria, dominated by SAR11 clade and Rho-
dobacteraceae family, Gammaprotebacteria, and Flavo-
bacteriia (Bacteroidetes), were the most abundant classes 
at both depths, in agreement with these bacterial taxa being 
widely distributed in marine epipelagic waters [7, 53, 54].

Our results suggest a certain degree of seasonality in the 
diversity of marine bacterial communities in this ecosystem, 
in accordance with previous studies in temperate and (sub)-
tropical areas [e.g., 54–56]. The higher diversity of bacterial 
communities in autumn–winter compared to other months 
was previously described by Hernando-Morales et al. [9] in 
the area and is probably related with the lower availability of 
resources (e.g., phytoplankton-derived DOM) in winter com-
pared to the rest of the seasonal cycle. The upwelling condi-
tions in summer, provide nutrients that can be quickly uti-
lized by some phytoplankton species which may bloom and 
contribute to the pool of bioavailable substrates for bacterial 
growth [e.g., 9, 57]. The increased availability of DOM may 
trigger the bloom of some bacterial populations which may 
become dominant, and, consequently, decrease the diversity 
of the community. As an example, the sharp decrease in rich-
ness and H of the bacterial community observed in April 
2015 coincided with a bloom of Amylibacter sp.

BCC showed vertical and seasonal variability probably 
related with changes in water temperature, solar radiation 
or resources (i.e., DOM), in agreement with previous time-
series studies in the area [9] and in other regions like in San 
Pedro Channel off the coast of Southern California [54], in 
the Western English Channel located off the southern coast 
of the UK [55] and in Bermuda Atlantic time-series(BATS) 
station in the west of the Atlantic Ocean [58]. BCC similari-
ties between both depths in winter and autumn samples are 
probably related with the homogenization of the communi-
ties due to water column vertical mixing [9, 54]. Moreover, 
our results strongly suggest that BCC variability is mostly 
modulated by the quantity and quality of the available DOM 
(i.e., by DOC, TDN, FDOM.T, and FDOM.M), as proposed 
in previous investigations [e.g., 11, 59, 60].

The dominance of SAR11 clade in stratified summer 
waters, was likely associated to low nutrient availability 
[24], in line with SAR11 being adapted to oligotrophic con-
ditions [53, 54]. This is coherent with the negative correla-
tion of this group with PP. Similarly, the generalized absence 
of Synechococcus (Cyanobacteria) during upwelling 
months (i.e., March to September; [24]) is in accordance 
with previous studies in Monterey Bay, California, where 
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Synechococcus were negatively correlated with chlorophyll 
levels during upwelling period [61, 62]. By contrast, the 
sporadic presence of Prochlorococcus (Cyanobacteria) 
in autumn, coinciding with the transition period between 
upwelling and downwelling conditions [24] suggests that 
ocean currents introduced this typically oceanic taxa [63] 
into shelf waters, as also observed in the southern Bay of 
Biscay [33].

The significantly positive correlations between the rela-
tive abundances of the groups of the cluster D and phyto-
plankton-related variables (e.g., PP or Chla.n and Chla.m) 
suggest a link between these bacterial taxa and phytoplank-
ton bloom dynamics in this productive temperate ecosystem. 
These results are coherent with the conception of bacterial 
species succession being linked to the availability of DOM 
derived from primary producers [e.g., 16, 64]. On the other 

hand, the negative correlations between Rhodospirillales, 
Deltaproteobacteria, SAR406 and Planctomycetes (cluster 
A) with phytoplankton related-variables agrees with their 
preference for autumn–winter conditions (particularly at 
30 m depth).

Links Between Bacterial and the Eukaryote 
Communities

While BCC in this temperate ecosystem appeared to be 
significantly related with environmental variables, ECC of 
the small size fraction (0.2–20 μm cell size) was not sig-
nificantly explained by environmental variables. This result 
suggests that environmental factors may be more important 
for structuring the bacteria than the eukaryotic community. 
Moreover, multivariate analyses consistently showed that the 
composition of the small-sized eukaryotic community (dom-
inated by phytoplankton taxa) was better predicted from the 
composition of the associated bacterial communities than 
from environmental contextual variables, as previously 
reported in the study area [65] and elsewhere [e.g., 66, 67]. 
This result is coherent with the notion that biotic interactions 
may play a more critical role than previously assumed as 

Fig. 3  a Temporal variation in the relative contribution of reads to the 
major taxonomic groups of bacteria in surface waters over 2024 and 
2015. The last bar represents averaged composition over the sampled 
period. b Temporal variation in the relative contribution of reads to 
the major taxonomic groups of bacteria at 30 m depth over 2024 and 
2015. The last bar represents averaged composition over the sampled 
period

◂

Fig. 4  Redundancy analysis 
(RDA) of bacterial community. 
Filled and open symbols rep-
resent samples from 2014 and 
2015, respectively. Circles rep-
resent samples from 30 m and 
triangles from surface. Colored 
ellipses highlight the divergence 
of the samples in summer (yel-
low), fall (brown), winter (blue), 
and spring (green). The arrows 
represent the significant vari-
ables that explained variability 
in the structure of the com-
munity. Abbreviations: Twat 
(temperature of water), DOC 
(dissolved organic carbon), 
FDOM.M (humic-like dissolved 
organic matter fluorescence), 
FDOM.T (protein-like dissolved 
organic matter fluorescence), 
Irr (solar radiation), and TDN 
(dissolved total nitrogen)
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microbial community structuring factors [e.g., 15, 25, 26]. It 
could be thus hypothesized that the seasonal succession pat-
terns described by Hernández-Ruiz et al. [24] for the small 
eukaryotes in this region could be mostly driven by seasonal 
changes in the BCC.

In aquatic ecosystems, eukaryote-bacterioplankton posi-
tive connections are expected to dominate over negative 
connections, and typically involve the exchange of extracel-
lular molecules like vitamins, hormones, sugars, or amino 

acids [15, 20, 21]. Our network showed mostly positive 
connections between bacteria and small eukaryotes, as also 
observed with similar approaches by Lima-Méndez et al. 
[25] or Pacheco and Segrè [26]. Nevertheless, the predomi-
nance of the positive connections over the negative ones 
could arise because negative associations are more difficult 
to detect from the observational data as they may imply 
that one of the interacting pairs is excluded or in very low 
abundance, while positive correlations are easier to find 

Fig. 5  Spearman correlation of bacteria with environmental and 
functional variables: salinity (Sal); solar radiation (Irr); temperature 
of water (Twat); upwelling index (UI); dissolved inorganic nitrogen 
and phosphate ratio (DIN.P); precipitation (Pre); eukaryote and bac-
teria Shannon index (Shannon_euk and Shannon_bac); phosphate 
 (PO4); humic-like dissolved organic matter fluorescence (FDOM.M); 
protein-like dissolved organic matter fluorescence (FDOM.T); silicate 
 (SIO2); total dissolved nitrogen (TDN); dissolved inorganic nitrogen 
(DIN); pico-, nano-, and micro-sized chlorophyll-a (Chla.p, Chla.n, 

and Chla.m); pico-, nano-, and micro-sized community respiration 
(CR.p, CR.n, and CR.m); prokaryote biomass (PB); heterotrophic 
prokaryote production (HPP); prokaryotic growth efficiency (PGE); 
pico-, nano-, and micro-sized primary production (PP.p, PP.n, and 
PP.m) and dissolved organic carbon (DOC). Dendrograms represent 
clustering of bacteria based on their correlations with abiotic and 
biotic variables (Euclidean distance). Asterisks symbolism the sig-
nificant correlations (p < 0.05)
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among the abundant and frequent taxa selected for the anal-
ysis because both taxa will be present in the samples [68]. 
Eukaryotes displayed more links (edges) with bacteria than 
bacteria with eukaryotes in our network, which might indi-
cate that small-sized eukaryotes may need many different 
bacteria to fulfil growth requirements [69].

The built network revealed interesting connections 
between microbial groups in this productive ecosys-
tem, such as those suggesting mutualistic relationships 
between Dinophyceae and Rhodobacteraceae. Previ-
ous works have described that auxotrophic diatoms and 
dinoflagellate, requiring  B12,  B1, and/or  B7 to grow, can 
obtain these compounds from bacteria belonging to the 
Rhodobacteraceae family [20, 70–72]. Dinophyceae 
may provide organic carbon and/or vitamins (i.e.,  B3) 
to Rhodobacteraceae, and, in return, Rhodobacteraceae 
would supply B-vitamins  (B1 or  B12) to Dinophyceae [20, 
73, 74]. The significant co-occurrence between Pseudo-
nitzschia sp. and Chaetoceros sp. with Rhodobacteraceae 
(Amylibacter sp. and Roseovarius sp., respectively) could 
also represent mutualism or commensalism involving 
exchange of B vitamins, as both diatoms are B vitamin 
auxotrophs [71, 72, 75]. A previous study [76] also found 
specific interactions between diatoms and bacteria during 

spring a summer blooms in the Southern Ocean. Another 
example of potential mutualism/commensalism in our 
network would be between Chlorophyta and Cryptophyta 
with Synechococcus. In this case, this potential interac-
tion could be mediated by the supply of pseudocobala-
min (a chemical variant of  B12) by Synechococcus, which 
could be remodeled by Chlorophyta and Cryptophyta to 
obtain cobalamin [77, 78]. The strong positive corre-
lation found between SAR406 and Dinophyceae could 
be related to the recently described heme auxotrophy of 
this not-yet cultured bacteria [79]. Interestingly, SAR11 
showed many positive relationships with Dinophyceae 
and MALV groups. SAR11 bacteria have an unusual 
requirement for a wide range of substrates for growth as 
a result of their reduced genomes, which might be met 
by establishing complex interactions with other eukar-
yotes [53, 80, 81]. Flavobacteriia, in general, showed 
positive connections with Dinophyceae, Strombidiidae 
(Ciliophora), Geminigera cryophila (Cryptophyta), 
and Chlorophyta, which may reflect either metabolic 
exchange or predation. Even though predation has been 
commonly associated with co-exclusion patterns [82], 
predator–prey dynamics may also result in positive cor-
relations, particularly when both predator and prey are 

Fig. 6  Mantel analysis between the distance matrices of clr abun-
dance of bacteria, clr abundance of small size (0.2–20 μm size frac-
tion) eukaryotes, environmental variables (solar radiation, precipita-
tion, upwelling index, temperature of water, dissolved organic carbon, 
total dissolved nitrogen, humic-like dissolved organic matter fluores-
cence, dissolved inorganic nitrogen and phosphate ratio, protein-like 
dissolved organic matter fluorescence, phosphate and silicate), and 

functional variables (pico-, nano-, and micro-sized chlorophyll-a; 
pico-, nano-, and micro-sized community respiration; prokaryote 
biomass; prokaryote production; pico-, nano-, and micro-sized pri-
mary production). Numbers adjacent to arrows are Mantel statistic r 
and dotted arrows represent the effect of the third distance matrix on 
the relationship. Significance levels are as follows: * p ≤ 0.05 and ** 
p ≤ 0.01
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rare and the predator effectively tracks the prey, result-
ing in significant co-occurrence patterns (see review by 
Thurman et al. [83]).

Our results also suggest potential negative relation-
ships between eukaryotic and prokaryotic microplankton 
in this system, which might involve competition, between 
bacteria and eukaryotes for limiting nutrients, predation 
or antagonistic interactions, mediated by the release of 
bactericides or algaecides [15, 18, 19, 84]. The strong-
est negative connection observed in this ecosystem over 
the period of study occurred between Dinophyceae and 
Roseovarius sp., which might be an example of bacterial 
algicidal activity. Some species of this bacterial genus can 
produce several algicides, like N-9-hexadecenoylalanine 
methyl (build from a fatty acid and an amino acid) isolated 

from Roseovarius lutimaris, that inhibit the growth of 
diatoms [84]. On the other hand, there was an important 
number of negative connections between Pseudo-nitzschia 
sp. and SAR11 and OCS116 could be related with the 
ability of Pseudo-nitzschia cells to produce domoic acid 
and inhibit the growth of specific bacteria [85–87]. Lastly, 
the negative connections could also result from preda-
tor–prey relationships, as many predator–prey dynamics 
result in negative abundance correlations, due to time-
delays between both populations. In marine planktonic 
systems, protists are a major source of mortality for both 
heterotrophic and autotrophic bacteria [88]. In the case 
of the negative connections with Flavobacteriia, the fact 
that Ciliophora, Cryptophyta, and Dinophyceae have been 
previously shown as heterotrophic or mixotrophic groups 

Fig. 7  Small size (0.2–20 μm size fraction) eukaryotes and free-liv-
ing bacteria (< 3 µm size fraction) co-occurrence network with habi-
tat filtering correction. Edge color refers to the type of relationship 
with significant connection between bacterial and eukaryotic OTUs, 
red for positive and blue for negative. The size of the nodes is pro-

portional to node degree and the width of edges is proportional to 
Spearman correlation coefficient. Square and circular nodes represent 
eukaryotes and bacteria, respectively. Bacterial nodes are colored 
according to color scheme in Fig. 3
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that may behave as bacterivores [e.g., 66, 89, 90], would 
support the hypothesis of predation. In this study many 
negative connections were found between SAR11 and 
Dynophyceae, SAR86 and Picobiliphyta, or Amilybacter 
sp. and MALV. Several experimental studies suggest that 
the prey size and the physiological state could be impor-
tant selective factors for bacterivores in the water column 
[91, 92]. Even though Picobiliphyta have very small cell 
size (< 5 μm) and could preferentially prey on small-sized 
bacteria, bacterivory in these small protists has not been 
demonstrated so far [93]. MALV have been described as 
parasites with an ephemeral free-living stage, however, 
to the best of our knowledge, bacterivory has not been 
described within this group. Therefore, most of the afore-
mentioned negative connections are likely reflecting either 
competitive or antagonist interactions.

Taken together, correlation and co-occurrence analyses 
revealed a strong and significant connection between free-living 
bacteria and small-sized eukaryotes, which provided support for 
the potential role of biotic interactions as community structur-
ing forces even beyond the phycosphere scale. The abundant 
associations among bacteria and small-sized eukaryotes, likely 
reflecting mutualism, commensalism or competition, could 
play a stabilizing role of microbial plankton communities in 
this productive ecosystem. Despite some limitations in the tem-
poral coverage, the results reported here contribute to better 
understand the factors modulating phytoplankton succession 
and highlight the role of bacteria as pivotal elements. Further 
laboratory co-culture experiments are needed to demonstrate 
the biotic interactions predicted by the co-occurrence analyses.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 022- 02125-2.

Acknowledgements We thank all the people involved in the DIMEN-
SION project, in particular to E. Barber-Lunch, A. Prieto, G. Casas, 
A. Miranda, M.P. Lorenzo, and A. Fuentes-Lema. From IIM-CSIC, V. 
Vieitez and M.J. Pazo for their analyses of the organic and inorganic 
nutrients. We thank the crew of the R/V J.M. Navaz for their help dur-
ing the work at the sea. We also thank to C. R. Giner, R. Massana and 
V. Balagué for their assistance in sequence analysis.

Author Contribution E.Teira and S.Martínez-García conceived and 
designed the study; M.Hernández-Ruíz, performed samplings and 
measurements; R.Logares and M.Hernández-Ruíz performed the 
sequence analysis; C.Costas-Selas conducted the bioinformatic, sta-
tistical and network analyses; C.Costas-Selas, E.Teira and S.Martínez-
García drafted the manuscript; R.Logares revised the manuscript. 
E.Teira and S.Martínez-García applied for fundings.

Funding Open Access funding provided thanks to the Universi-
dade de Vigo/CISUG agreement with Springer Nature. This work 
was supported by project DIMENSION (grant EM2013/023) 
from Xunta de Galicia, project INTERES (CTM2017-83362-R) 
from Spanish Ministry of Economy and Competitivity and project 
TRAITS (PID2019-110011RB-C33) from Spanish Ministry of Sci-
ence and Innovation. C. C-S was funded by a predoctoral fellowship 
(ED481A-2019/290) from Xunta de Galicia, co-funded by FSE Galicia 

(2014–2020). S. M-G was funded by a Distinguised Researcher con-
tract from Xunta de Galicia (ED431I 2020/03). Open Access funding 
provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data Availability Not applicable.

Declarations 

Conflict of Interest The authors declare no competing interests.

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Falkowski PG (1994) The role of phytoplankton photosynthesis 
in global biogeochemical cycles. Photosynth Res 39:235–258. 
https:// doi. org/ 10. 1007/ BF000 14586

 2. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) 
Primary production of the biosphere: integrating terrestrial and 
oceanic components. Science 281:237–240. https:// doi. org/ 10. 
1126/ scien ce. 281. 5374. 237

 3. Sarmento H, Gasol JM (2012) Use of pythoplankton-derived 
dissolved organic carbon by different types of bacterioplank-
ton. Environ Microbiol 14:2348–2360. https:// doi. org/ 10. 1111/j. 
1462- 2920. 2012. 02787.x

 4. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial 
community dynamics and their ecological interpretation. Nat Rev 
Microbiol 13:133–146. https:// doi. org/ 10. 1038/ nrmic ro3417

 5. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of 
natural microbial populations by ribosomal RNA sequences. In: 
Marshall KC (eds) Advances in microbial ecology. Advances 
in Microbial Ecology, vol 9. Springer, Boston, pp 1–55. https:// 
doi. org/ 10. 1007/ 978-1- 4757- 0611-6_1

 6. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-
throughput microbial community analysis on the Illumina HiSeq 
and MiSeq platforms. ISME J 6:1621–1624. https:// doi. org/ 10. 
1038/ ismej. 2012.8

 7. Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and 
function of the global ocean microbiome. Science 348:1261359. 
https:// doi. org/ 10. 1126/ scien ce. 12613 59

 8. Bunse C, Pinhassi J (2017) Marine bacterioplankton seasonal 
succession dynamics. Trends Microbiol 25:494–505. https:// doi. 
org/ 10. 1016/j. tim. 2016. 12. 013

 9. Hernando-Morales V, Varela M, Needham DM, Cram J, Fuhr-
man JA, Teira E (2018) Vertical and seasonal patterns control 
bacterioplankton communities at two horizontally coherent 

https://doi.org/10.1007/s00248-022-02125-2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF00014586
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1111/j.1462-2920.2012.02787.x
https://doi.org/10.1111/j.1462-2920.2012.02787.x
https://doi.org/10.1038/nrmicro3417
https://doi.org/10.1007/978-1-4757-0611-6_1
https://doi.org/10.1007/978-1-4757-0611-6_1
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1126/science.1261359
https://doi.org/10.1016/j.tim.2016.12.013
https://doi.org/10.1016/j.tim.2016.12.013


792 C. Costas-Selas et al.

1 3

coastal upwelling sites off Galicia (NW Spain). Microb Ecol 
76:866–884. https:// doi. org/ 10. 1007/ s00248- 018- 1179-z

 10. Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, 
Marrasé C (2004) Changes in bacterioplankton composition under 
different phytoplankton regimens. Appl Environ Microbiol 70:6753–
6766. https:// doi. org/ 10. 1128/ AEM. 70. 11. 6753- 6766. 2004

 11. Sarmento H, Morana C, Gasol JM (2016) Bacterioplankton 
niche partitioning in the use of phytoplankton-derived dissolved 
organic carbon: quantity is more important than quality. ISME 
J 10:2582–2592. https:// doi. org/ 10. 1038/ ismej. 2016. 66

 12. Baines SB, Pace ML (1991) The production of dissolved organic 
matter by phytoplankton and its importance to bacteria: pat-
terns across marine and freshwater systems. Limnol Oceanogr 
36:1078–1090. https:// doi. org/ 10. 4319/ lo. 1991. 36.6. 1078

 13. Ducklow HW, Kirchman DL, Quinby HL, Carlson CA, Dam HG 
(1993) Stocks and dynamics of bacterioplankton carbon during 
the spring bloom in the eastern North Atlantic Ocean. Deep Sea 
Res Part II: Top Stud Oceanogr 40:245–263. https:// doi. org/ 10. 
1016/ 0967- 0645(93) 90016-G

 14. Lau WW, Keil RG, Armbrust EV (2007) Succession and diel 
transcriptional response of the glycolate-utilizing component of 
the bacterial community during a spring phytoplankton bloom. 
Appl Environ Microbiol 73:2440–2450. https:// doi. org/ 10. 1128/ 
AEM. 01965- 06

 15. Amin SA, Parker MS, Armbrust EV (2012) Interactions between 
diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684. 
https:// doi. org/ 10. 1128/ MMBR. 00007- 12

 16. Buchan A, LeCleir GR, Gulvik CA, González JM (2014) Master 
recyclers: features and functions of bacteria associated with phy-
toplankton blooms. Nat Rev Microbiol 12:686–698. https:// doi. 
org/ 10. 1038/ nrmic ro3326

 17. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes 
J, Huttenhower C (2012) Microbial co-occurrence relationships in 
the human microbiome. PLOS Comput Biol 8:e1002606. https:// 
doi. org/ 10. 1371/ journ al. pcbi. 10026 06

 18. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and 
association networks among lake bacterioplankton taxa. ISME J 
6:330–342. https:// doi. org/ 10. 1038/ ismej. 2011. 113

 19 Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, 
Pitz KJ, Smith H (2020) Auxotrophic interactions: a stabilizing 
attribute of aquatic microbial communities? FEMS Microbiol 
Ecol 96:fiaa115. https:// doi. org/ 10. 1093/ femsec/ fiaa1 15

 20. Wagner-Döbler I, Ballhausen B, Berger M et al (2010) The com-
plete genome sequence of the algal symbiont Dinoroseobacter 
shibae: a hitchhiker’s guide to life in the sea. ISME J 4:61–77. 
https:// doi. org/ 10. 1038/ ismej. 2009. 94

 21. Wang X, Li Z, Su J, Tian Y, Ning X, Hong H, Zheng T (2010) 
Lysis of a red-tide causing alga, Alexandrium tamarense, caused 
by bacteria from its phycosphere. Biol Control 52:123–130. 
https:// doi. org/ 10. 1016/j. bioco ntrol. 2009. 10. 004

 22. Fraga F (1981) Upwelling off the Galician coast, northwest Spain. 
Coastal upwelling 1:176–182

 23. Figueiras FG, Labarta U, Reiriz MF (2002) Coastal upwelling, 
primary production and mussel growth in the Rías Baixas of Gali-
cia. In Sustainable increase of marine harvesting: fundamental 
mechanisms and new concepts. Springer, Dordrecht, pp 121–131. 
https:// doi. org/ 10. 1023/A: 10213 09222 459

 24. Hernández-Ruiz M, Barber-Lluch E, Prieto A, Álvarez-Salgado 
XA, Logares R, Teira E (2018) Seasonal succession of small 
planktonic eukaryotes inhabiting surface waters of a coastal 
upwelling system. Environ Microbiol 20:2955–2973. https:// doi. 
org/ 10. 1111/ 1462- 2920. 14313

 25 Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo 
F et al (2015) Ocean plankton. Determinants of community struc-
ture in the global plankton interactome. Science 348:1262073. 
https:// doi. org/ 10. 1126/ scien ce. 12620 73

 26 Pacheco AR, Segrè D (2019) A multidimensional perspective on 
microbial interactions. FEMS Microbiol Lett 366:fnz125. https:// 
doi. org/ 10. 1093/ femsle/ fnz125

 27. Teira E, Hernando-Morales V, Fernández A, Martínez-García S, 
Álvarez-Salgado XA, Bode A, Varela MM (2015) Local differ-
ences in phytoplankton-bacterioplankton coupling in the coastal 
upwelling off Galicia (NW Spain). Mar Ecol Prog Ser 528:53–69. 
https:// doi. org/ 10. 3354/ meps1 1228

 28. Grasshoff K, Ehrhardt M, Kremling K, Anderson LG (1999) 
Methods of seawater analysis. Wiley-VCH, Weinheim

 29. Parson TR, Maita Y, Lalli CM (1984) A manual of chemical & 
biological methods for seawater analysis. Elsevier, Oxford

 30. Álvarez-Salgado XA, Miller AEJ (1998) Simultaneous determina-
tion of dissolved organic carbon and total dissolved nitrogen in 
seawater by high temperature catalytic oxidation: Conditions for 
precise shipboard measurements. Mar Chem 62:325–333. https:// 
doi. org/ 10. 1016/ S0304- 4203(98) 00037-1

 31. Nieto-Cid M, Álvarez-Salgado XA, Pérez FF (2006) Microbial 
and photochemical reactivity of fluorescent dissolved organic mat-
ter in a coastal upwelling system. Limnol Oceanogr 51:1391–
1400. https:// doi. org/ 10. 4319/ lo. 2006. 51.3. 1391

 32. Gasol JM, Del Giorgio PA (2000) Using flow cytometry for count-
ing natural planktonic bacteria and understanding the structure of 
planktonic bacterial communities. Sci Mar 64:197–224. https:// 
doi. org/ 10. 3989/ scimar. 2000. 64n21 97

 33. Calvo-Díaz A, Morán XAG (2006) Seasonal dynamics of pico-
plankton in shelf waters of the southern Bay of Biscay. Aquat 
Microb Ecol 42:159–174. https:// doi. org/ 10. 3354/ ame04 2159

 34. Norland S (1993) The relationship between biomass and volume 
of bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Hand-
book of methods in aquatic microbial ecology. Lewis Publishers, 
Boca Raton, pp 303–308

 35 Kirchman D, K’nees E, Hodson R (1985) Leucine incorporation 
and its potential as a measure of protein synthesis by bacteria 
in natural aquatic systems. Appl Environ Microbiol 49:599–607. 
https:// doi. org/ 10. 1128/ aem. 49.3. 599- 607. 1985

 36. Smith D, Azam F (1992) A simple, economical method for meas-
uring bacterial protein synthesis rates in seawater using 3H-leu-
cine. Mar Microb food webs 6:107–114

 37. Simon M, Cho BC, Azam F (1992) Significance of bacterial biomass 
in 81 lakes and the ocean: comparison to phytoplankton biomass and 
biogeochemical implications. Mar Ecol Prog Ser 86:103–110

 38. Martínez-García S, Fernández E, Aranguren-Gassis M, Teira E (2009) 
In vivo electron transport system activity: a method to estimate respi-
ration in marine microbial planktonic communities. Limnol Oceanogr 
Methods 7:459–469. https:// doi. org/ 10. 4319/ lom. 2009.7. 459

 39. Marañón E, Holligan PM, Barciela R, González N, Mouriño B, 
Pazó MJ, Varela M (2001) Patterns of phytoplankton size struc-
ture and productivity in contrasting open-ocean environments. Mar 
Ecol Prog Ser 216:43–56. https:// doi. org/ 10. 3354/ meps2 16043

 40. Parada EA, Needham DM, Furhman JA (2016) Every base mat-
ters: assessing small subunit rRNA primers for marine microbi-
omes with mock communities, time series and global field sam-
ples. Environ Microbiol 18:1403–1414. https:// doi. org/ 10. 1111/ 
1462- 2920. 13023

 41. Logares R (2017) Workflow for analysing MiSeq amplicons based 
on Uparse V1, vol. 5 10.5281/zenodo.259579

 42. Nikolenko SI, Korobeynikov AI, Alekseye MA (2013) Bayes-
Hammer: Bayesian clustering for error correction in single-
cell sequencing. BMC Genom 14:S7. https:// doi. org/ 10. 1186/ 
1471- 2164- 14- S1- S7

 43. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Quince C (2015) 
Insight into biases and sequencing errors for amplicon sequenc-
ing with the Illumina MiSeq platform. Nucleic Acids Res 43:e37. 
https:// doi. org/ 10. 1093/ nar/ gku13 41

https://doi.org/10.1007/s00248-018-1179-z
https://doi.org/10.1128/AEM.70.11.6753-6766.2004
https://doi.org/10.1038/ismej.2016.66
https://doi.org/10.4319/lo.1991.36.6.1078
https://doi.org/10.1016/0967-0645(93)90016-G
https://doi.org/10.1016/0967-0645(93)90016-G
https://doi.org/10.1128/AEM.01965-06
https://doi.org/10.1128/AEM.01965-06
https://doi.org/10.1128/MMBR.00007-12
https://doi.org/10.1038/nrmicro3326
https://doi.org/10.1038/nrmicro3326
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1371/journal.pcbi.1002606
https://doi.org/10.1038/ismej.2011.113
https://doi.org/10.1093/femsec/fiaa115
https://doi.org/10.1038/ismej.2009.94
https://doi.org/10.1016/j.biocontrol.2009.10.004
https://doi.org/10.1023/A:1021309222459
https://doi.org/10.1111/1462-2920.14313
https://doi.org/10.1111/1462-2920.14313
https://doi.org/10.1126/science.1262073
https://doi.org/10.1093/femsle/fnz125
https://doi.org/10.1093/femsle/fnz125
https://doi.org/10.3354/meps11228
https://doi.org/10.1016/S0304-4203(98)00037-1
https://doi.org/10.1016/S0304-4203(98)00037-1
https://doi.org/10.4319/lo.2006.51.3.1391
https://doi.org/10.3989/scimar.2000.64n2197
https://doi.org/10.3989/scimar.2000.64n2197
https://doi.org/10.3354/ame042159
https://doi.org/10.1128/aem.49.3.599-607.1985
https://doi.org/10.4319/lom.2009.7.459
https://doi.org/10.3354/meps216043
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1111/1462-2920.13023
https://doi.org/10.1186/1471-2164-14-S1-S7
https://doi.org/10.1186/1471-2164-14-S1-S7
https://doi.org/10.1093/nar/gku1341


793Role of Bacterial Community Composition as a Driver of the Small‑Sized Phytoplankton Community…

1 3

 44. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast 
and accurate Illumina Paired-End reAd mergeR. Bioinformatics 
30:614–620. https:// doi. org/ 10. 1093/ bioin forma tics/ btt593

 45. Edgar RC (2010) Search and clustering orders of magnitude faster 
than BLAST. Bioinformatics 26:2460–2461. https:// doi. org/ 10. 
1093/ bioin forma tics/ btq461

 46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) 
Basic local alignment search tool. J Mol Biol 215:403–410. 
https:// doi. org/ 10. 1016/ S0022- 2836(05) 80360-2

 47. Aitchison J (1999) Logratios and natural laws in compositional 
data analysis. Math Geol 31:563–580. https:// doi. org/ 10. 1023/A: 
10075 68008 032

 48. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell 
DR, Gloor GB (2014) Unifying the analysis of high-throughput 
sequencing datasets: characterizing RNA-seq, 16S rRNA gene 
sequencing and selective growth experiments by composi-
tional data analysis. Microbiome 2:15. https:// doi. org/ 10. 1186/ 
2049- 2618-2- 15

 49. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with 
R. Springer, New York, pp 115–153

 50. Brisson V, Schmidt J, Northen TR, Vogel JP, Gaudin A (2019) A 
new method to correct for habitat filtering in microbial correlation 
networks. Front Microbiol 10:1–10. https:// doi. org/ 10. 3389/ fmicb. 
2019. 00585

 51. Benjamini Y, Hochberg Y (1995) Controlling the false discovery 
rate: a practical and powerful approach to multiple testing. J R 
Stat Soc B 57:289–300. https:// doi. org/ 10. 1111/j. 2517- 6161. 1995. 
tb020 31.x

 52. Espinoza-González O, Figueiras FG, Crespo BG, Teixeira IG, 
Castro CG (2012) Autotrophic and heterotrophic microbial plank-
ton biomass in the NW Iberian upwelling: seasonal assessment of 
metabolic balance. Aquat Microb Ecol 67:77–89. https:// doi. org/ 
10. 3354/ ame01 584

 53. Giovannoni SJ (2017) SAR11 bacteria: the most abundant plank-
ton in the oceans. Ann Rev Mar Sci 9:231–255. https:// doi. org/ 
10. 1146/ annur ev- marine- 010814- 015934

 54. Cram JA, Chow CET, Sachdeva R, Needham DM, Parada AE, 
Steele JA, Fuhrman JA (2015) Seasonal and interannual variabil-
ity of the marine bacterioplankton community throughout the 
water column over ten years. ISME J 9:563–580. https:// doi. org/ 
10. 1038/ ismej. 2014. 153

 55. Gilbert JA, Field D, Swift P, Newbold L, Oliver A, Smyth T et al 
(2009) The seasonal structure of microbial communities in the 
Western English Channel. Environ Microbiol 11:3132–3139. 
https:// doi. org/ 10. 1111/j. 1462- 2920. 2009. 02017.x

 56. Fuhrman JA, Hewson I, Schwalbach MS, Steele JA, Brown MV, 
Naeem S (2006) Annually reoccurring bacterial communities 
are predictable from ocean conditions. Proc Natl Acad Sci USA 
103:13104–13109. https:// doi. org/ 10. 1073/ pnas. 06023 99103

 57. García FC, Alonso-Sáez L, Morán XAG, López-Urrutia Á (2015) 
Seasonality in molecular and cytometric diversity of marine bacterio-
plankton: the re-shuffling of bacterial taxa by vertical mixing. Environ 
Microbiol 17:4133–4142. https:// doi. org/ 10. 1111/ 1462- 2920. 12984

 58. Morris RM, Vergin KL, Cho J, Rappé MS, Carlson CA, Giovan-
noni SJ (2005) Temporal and spatial response of bacterioplankton 
lineages to annual convective overturn at the Bermuda Atlantic 
time-series study site. Limnol Oceanogr 50:1687–1696. https:// 
doi. org/ 10. 4319/ lo. 2005. 50.5. 1687

 59. Pinhassi J, Gómez-Consarnau L, Alonso-Sáez L, Sala MM, Vidal M, 
Pedrós-Alió C, Gasol JM (2006) Seasonal changes in bacterioplankton 
nutrient limitation and their effects on bacterial community composi-
tion in the NW Mediterranean Sea. Aquat Microb Ecol 44:241–252

 60. Rooney-Varga JN, Giewat MW, Savin MC, SoodmS LM, Martin 
JL (2005) Links between phytoplankton and bacterial commu-
nity dynamics in a coastal marine environment. Microbiol Ecol 
49:163–175. https:// doi. org/ 10. 1007/ s00248- 003- 1057-0

 61. Paerl RW, Johnson KS, Welsh RM, Worden AZ, Chavez FP, Zehr 
JP (2011) Differential distributions of Synechococcus subgroups 
across the California current system. Front Microbiol 2:59. https:// 
doi. org/ 10. 3389/ fmicb. 2011. 00059

 62. Robidart JC, Preston CM, Paerl RW, Turk KA, Mosier AC, Fran-
cis CA, Zehr JP (2012) Seasonal Synechococcus and Thaumar-
chaeal population dynamics examined with high resolution with 
remote in situ instrumentation. ISME J 6:513–523. https:// doi. org/ 
10. 1038/ ismej. 2011. 127

 63. Partensky F, Blanchot J, Vaulot D (1999) Differential distribution 
and ecology of Prochlorococcus and Synechococcus in oceanic 
waters: a review. Bull Inst océanogr (Monaco) 19:457–475

 64. Landa M, Blain S, Christaki U, Monchy S, Obernosterer I (2016) 
Shifts in bacterial community composition associated with 
increased carbon cycling in a mosaic of phytoplankton blooms. 
ISME J 10:39–50. https:// doi. org/ 10. 1038/ ismej. 2015. 105

 65. Joglar V, Álvarez-Salgado XA, Gago-Martinez A, Leao JM, 
Pérez-Martínez C, Pontiller B, Lundin D, Pinhassi J, Fernández 
E, Teira E (2021) Cobalamin and microbial plankton dynamics 
along a coastal to offshore transect in the Eastern North Atlan-
tic Ocean. Environ Microbiol 23:1559–1583. https:// doi. org/ 10. 
1111/ 1462- 2920. 15367

 66. Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beis-
ser D, Boenigk J (2020) Factors shaping community patterns 
of protists and bacteria on a European scale. Environ Microbiol 
22:2243–2260. https:// doi. org/ 10. 1111/ 1462- 2920. 14992

 67. Liu Y, Debeljak P, Rembauville M, Blain S, Obernosterer I 
(2019) Diatoms shape the biogeography of heterotrophic prokar-
yotes in early spring in the Southern Ocean. Environ Microbiol 
21:1452–1465. https:// doi. org/ 10. 1111/ 1462- 2920. 14579

 68. Krabberød AK, Deutschmann IM, Bjorbækmo MF, Balagué V, 
Giner CR, Ferrera I, Garcés E, Massana R, Gasol JP, Logares 
R (2022) Long-term patterns of an interconnected core marine 
microbiota. Environ Microbiol 17:1–24. https:// doi. org/ 10. 1186/ 
s40793- 022- 00417-1

 69. Dormann CF (2011) How to be a specialist? Quantifying speciali-
sation in pollination networks. Netw Biol 1:1–20

 70. Droop MR (1970) Vitamin B 12 and marine ecology. Helgol Wiss 
Meeresunters 20:629–636. https:// doi. org/ 10. 1007/ BF016 09935

 71. Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. 
Eukaryot Cell 5:1175–1183. https:// doi. org/ 10. 1128/ EC. 00097- 06

 72. Tang Y, Koch F, Gobler CJ (2010) Most harmful algal bloom 
species are vitamin B1 and B12 auxotrophs. Proc Natl Acad Sci 
107:20756–20761. https:// doi. org/ 10. 1073/ pnas. 10095 66107

 73. Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall 
R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp. 
nov., a new aerobic phototrophic bacterium isolated from dino-
flagellates. Int J Syst Evol Microbiol 55:1089–1096. https:// doi. 
org/ 10. 1099/ ijs.0. 63511-0

 74. Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, 
Wheeler GL, Smith AG (2019) Cross-exchange of B-vitamins 
underpins a mutualistic interaction between Ostreococcus tauri 
and Dinoroseobacter shibae. ISME J 13:334–345. https:// doi. org/ 
10. 1038/ s41396- 018- 0274-y

 75. Borowitzka MA (2016) Chemically-mediated interactions in 
microalgae. In : Borowitzka MA, Beardall J and Raven J (eds.) 
The physiology of microalgae. Springer, Cham pp 321–357. 
https:// doi. org/ 10. 1007/ 978-3- 319- 24945-2_ 15

 76. Liu Y, Blain S, Crispi O, Rembauvil M, Obernosterer I (2020) 
Seasonal dynamics of prokaryotes and their associations with 
diatoms in the Southern Ocean as revealed by an autonomous 
sampler. Environ Microbiol 22:3968–3984. https:// doi. org/ 10. 
1111/ 1462- 2920. 15184

 77. Helliwell KE (2017) The roles of B vitamins in phytoplankton 
nutrition: new perspectives and prospects. New Phytol 216:62–68. 
https:// doi. org/ 10. 1111/ nph. 14669

https://doi.org/10.1093/bioinformatics/btt593
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1023/A:1007568008032
https://doi.org/10.1023/A:1007568008032
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.3389/fmicb.2019.00585
https://doi.org/10.3389/fmicb.2019.00585
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.3354/ame01584
https://doi.org/10.3354/ame01584
https://doi.org/10.1146/annurev-marine-010814-015934
https://doi.org/10.1146/annurev-marine-010814-015934
https://doi.org/10.1038/ismej.2014.153
https://doi.org/10.1038/ismej.2014.153
https://doi.org/10.1111/j.1462-2920.2009.02017.x
https://doi.org/10.1073/pnas.0602399103
https://doi.org/10.1111/1462-2920.12984
https://doi.org/10.4319/lo.2005.50.5.1687
https://doi.org/10.4319/lo.2005.50.5.1687
https://doi.org/10.1007/s00248-003-1057-0
https://doi.org/10.3389/fmicb.2011.00059
https://doi.org/10.3389/fmicb.2011.00059
https://doi.org/10.1038/ismej.2011.127
https://doi.org/10.1038/ismej.2011.127
https://doi.org/10.1038/ismej.2015.105
https://doi.org/10.1111/1462-2920.15367
https://doi.org/10.1111/1462-2920.15367
https://doi.org/10.1111/1462-2920.14992
https://doi.org/10.1111/1462-2920.14579
https://doi.org/10.1186/s40793-022-00417-1
https://doi.org/10.1186/s40793-022-00417-1
https://doi.org/10.1007/BF01609935
https://doi.org/10.1128/EC.00097-06
https://doi.org/10.1073/pnas.1009566107
https://doi.org/10.1099/ijs.0.63511-0
https://doi.org/10.1099/ijs.0.63511-0
https://doi.org/10.1038/s41396-018-0274-y
https://doi.org/10.1038/s41396-018-0274-y
https://doi.org/10.1007/978-3-319-24945-2_15
https://doi.org/10.1111/1462-2920.15184
https://doi.org/10.1111/1462-2920.15184
https://doi.org/10.1111/nph.14669


794 C. Costas-Selas et al.

1 3

 78. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote- Maestas W, 
Hmelo LR et al (2017) Two distinct pools of B12 analogs reveal 
community interdependencies in the ocean. Proc Natl Acad Sci 
USA 114:364–369. https:// doi. org/ 10. 1073/ pnas. 16084 62114

 79. Kim S, Kang I, Lee JW, Jeon CO, Giovannoni SJ, Cho JC (2021) 
Heme auxotrophy in abundant aquatic microbial lineages. Proc Natl 
Acad Sci USA 118:47. https:// doi. org/ 10. 1073/ pnas. 21027 50118

 80. Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, 
Giovannoni SJ (2008) SAR11 marine bacteria require exogenous 
reduced sulphur for growth. Nature 452:741–744. https:// doi. org/ 
10. 1038/ natur e06776

 81. Tripp HJ, Schwalbach MS, Meyer MM, Kitner JB, Breaker 
RR, Giovannoni SJ (2009) Unique glycine-activated riboswitch 
linked to glycine-serine auxotrophy in SAR11. Environ Microbiol 
11:230–238. https:// doi. org/ 10. 1111/j. 1462- 2920. 2008. 01758.x

 82. Morales-Castilla I, Matias MG, Gravel D, Araújo MB (2015) 
Inferring biotic interactions from proxies. Trends Ecol Evol 
30:347–356. https:// doi. org/ 10. 1016/j. tree. 2015. 03. 014

 83. Thurman LL, Barner AK, Garcia TS, Chestnut T (2019) Testing 
the link between species interactions and species co-occurrence 
in a trophic network. Ecography 42:1658–1670. https:// doi. org/ 
10. 1111/ ecog. 04360

 84. Meyer N, Bigalke A, Kaulfuß A, Pohnert G (2017) Strategies 
and ecological roles of algicidal bacteria. FEMS Microbiol Rev 
41:880–899. https:// doi. org/ 10. 1093/ femsre/ fux029

 85. Stewart JE, Marks LJ, Gilgan MW, Pfeiffer E, Zwicker BM (1998) 
Microbial utilization of the neurotoxin domoic acid: blue mussels 
(Mytilus edulis) and soft shell clams (Mya arenaria) as sources of 
the microorganisms. Can J Microbial 44:456–464

 86. Guannel ML, Horner-Devine MC, Rocap G (2011) Bacterial com-
munity composition differs with species and toxigenicity of the 

diatom Pseudo-nitzschia. Aquat Microb Ecol 64:117–133. https:// 
doi. org/ 10. 3354/ ame01 513

 87. Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP 
(2018) Pseudo-nitzschia, Nitzschia, and domoic acid: New 
research since 2011. Harmful Algae 79:3–43. https:// doi. org/ 10. 
1016/j. hal. 2018. 06. 001

 88. Sherr EB, Sherr BF (2002) Significance of predation by protists in 
aquatic microbial food webs. Antonie Van Leeuwenhoek 81:293–
308. https:// doi. org/ 10. 1023/A: 10205 91307 260

 89. Hirakata Y, Oshiki M, Kuroda K, Hatamoto M, Kubota K, 
Yamaguchi T et al (2016) Effects of predation by protists on 
prokaryotic community function, structure, and diversity in 
anaerobic granular sludge. Microbes Environ 31:279–287. 
https:// doi. org/ 10. 1264/ jsme2. ME160 67

 90. Grujčić V, Nuy JK, Salcher MM, Shabarova T, Kasalicky V, 
Boenigk J et al (2018) Cryptophyta as major bacterivores in fresh-
water summer plankton. ISME J 12:1668–1681. https:// doi. org/ 
10. 1038/ s41396- 018- 0057-5

 91. Simek K, Hartman P, Nedoma J, Pernthaler J, Springmann D, 
Vrba J et al (1997) Community structure, picoplankton grazing 
and zooplankton control of heterotrophic nanoflagellates in a 
eutrophic reservior during the summer phytoplankton maximum. 
Aquat Microb Ecol 12:49–63

 92. Pernthaler J (2005) Predation on prokaryotes in the water column 
and its ecological implications. Nat Rev Microbiol 3:537–546. 
https:// doi. org/ 10. 1038/ nrmic ro1180

 93. Moreira D, López-García P (2014) The rise and fall of Picobili-
phytes: how assumed autotrophs turned out to be heterotrophs. 
BioEssays 36:468–474. https:// doi. org/ 10. 1002/ bies. 20130 0176

https://doi.org/10.1073/pnas.1608462114
https://doi.org/10.1073/pnas.2102750118
https://doi.org/10.1038/nature06776
https://doi.org/10.1038/nature06776
https://doi.org/10.1111/j.1462-2920.2008.01758.x
https://doi.org/10.1016/j.tree.2015.03.014
https://doi.org/10.1111/ecog.04360
https://doi.org/10.1111/ecog.04360
https://doi.org/10.1093/femsre/fux029
https://doi.org/10.3354/ame01513
https://doi.org/10.3354/ame01513
https://doi.org/10.1016/j.hal.2018.06.001
https://doi.org/10.1016/j.hal.2018.06.001
https://doi.org/10.1023/A:1020591307260
https://doi.org/10.1264/jsme2.ME16067
https://doi.org/10.1038/s41396-018-0057-5
https://doi.org/10.1038/s41396-018-0057-5
https://doi.org/10.1038/nrmicro1180
https://doi.org/10.1002/bies.201300176

	Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System
	Abstract
	Introduction
	Methods
	Sampling
	Environmental Variables
	Microbial Metabolic Activity
	Microbial Community Composition
	Statistical Analyses
	Network Analysis

	Results
	Environmental and Phytoplankton Function-Related Variables
	Prokaryote Function-Related Variables
	Bacterial Diversity and Composition
	Spatial and Temporal Patterns in Microbial Community Composition in Relation to Environmental and Functional Variables
	Links Between Bacterial Community, Eukaryotic Community, Environmental Factors, and Functional Variables
	Co-occurrence Networks Between Bacteria and Eukaryotes

	Discussion
	Temporal and Vertical Patterns in Bacterial Diversity and Composition
	Links Between Bacterial and the Eukaryote Communities

	Anchor 21
	Acknowledgements 
	References


