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Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and 
more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. 
Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among 
pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically 
engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the 
isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods 
for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The 
review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further 
rapid development.
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Introduction

Viruses are ubiquitous microorganisms that are obligate intracel-
lular parasites on all known types of cells – prokaryotes, eukary-
otes, protozoa, fungi, yeast, and Archaea. They are the smallest 
life forms on Earth, ranging in size from ~ 20 to 400 nm [1, 2]. 
One of the classes of viruses that has held a lot of interest in the 
scientific community is bacteriophages. Bacteriophages exclu-
sively infect bacteria and do not pose a direct threat to humans 
or plants. They infect and replicate in bacteria predominantly 
through lytic and lysogenic life cycles. Virulent bacteriophages 
lyse the host bacteria soon after infection, while temperate bac-
teriophages either integrate with the host genome or remain as 
independent prophages [3].

Bacteriophages have been instrumental in aiding ground-
breaking discoveries in the fundamentals of molecular biol-
ogy and development of genetic engineering tools since 
their discovery. They are naturally antibacterial and hence 
have also been explored for their applications in therapy [4, 
5] gene delivery [6], food preservation [7, 8], biocontrol 
of plant pathogens [9, 10], surface disinfection [11], phage 
display [12, 13], bacterial biosensors [14, 15], and vaccine 
carriers [16]. They are increasingly proving to be attractive 
alternative antibacterials [17–20]. Bacteriophages have also 
been used in human therapy since 1920s, with clinical trials 
progressing since 2009 [21–45].

Bacteriophages are isolated from environmental sources 
like freshwater, marine water, soil, air, and wastewater [46–49]. 
For therapy, they are commonly isolated from water samples, 
especially sewage, that are reservoirs of bacteriophages against 
human pathogens like ESKAPE (Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) 
pathogens [50–56]. An abundance of diverse bacteriophages is 
also seen in soil and air with possibilities of finding unique bac-
teriophages suitable for various applications.

Having vast diversity and simpler genomes, bacteriophages 
hold great potential to be engineered for different applications 
[57]. While encouraging, the use of genetically engineered 
bacteriophages may be concerning considering the possible 
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variations in bacterial community dynamics and microbial 
genome evolution due to uncontrolled escape of such bacte-
riophages during various applications [58].

Exploring the natural environment for bacteriophages with 
properties suitable for different applications is a better alterna-
tive. Bacteriophages have their own niche, specificity, protein 
components, and bactericidal activities [59, 60]. Isolation of 
specific bacteriophages is the first challenge towards success-
ful application; this step being associated with most variable 
time requirements and likelihoods of finding success.

In this review, we discuss the known methods of bacterio-
phage isolation from water, sewage, soil, and air environments.

Approaches to Bacteriophage Detection

Bacteriophages are broadly distributed into two groups 
– virulent (or lytic) bacteriophages and temperate (or lyso-
genic) bacteriophages. Lytic bacteriophages start replicating 
after host infection and form new bacteriophages that burst 
out of the host cell by rupturing or lysing it. This lysis is 
responsible for their antibacterial property. Since temperate 
bacteriophages integrate their genome into the host genome 
post-infection, they are not preferred as antibacterial agents.

Interestingly, it is the lytic life cycle of bacteriophages 
that helps in their detection by standard microbiological, cul-
ture-based methods. Prevalent methods of detection are cul-
ture lysis method, plaque assay, and spot testing [61, 62]. In 
these methods however, a bias is created towards lytic bac-
teriophages that are viable or fitter, as against other phages 
in culture that may be weaker, non-infective, or non-lytic.

Molecular methods like metagenomics and bacteriophage 
genome analysis can be employed for in silico detection of 
temperate or under sampled bacteriophages [63]. It is impor-
tant to understand though that metagenomics can only help 
detection of phage genomic signatures in the DNA samples 
and is not really a phage isolation method. Metagenomic 
approaches detect signature sequences from DNA fragments 
in a library, which may not be organized completely giving 
only partial information during analysis [64, 65]. These stud-
ies along with culture based assessments can provide a full 
picture of bacteriophage diversity in a given sample.

Isolation of Lysogenic Bacteriophages 
by Prophage Induction

Temperate phage genome carried as a lysogen in the host 
genome is termed as a prophage [66]. Unless obligately 
lytic bacteriophages are found, many phage scientists prefer 
to isolate temperate ones and modify them genetically to 
remove undesired genes. In some cases, for example, that 
such as Clostridium difficile, several prophages are identi-
fied phages are temperate [67]. Therefore, temperate phages 

are also needed to be isolated in many conditions. In nature, 
prophages are induced to undergo lytic cycle under certain 
physiological stimuli. The energetic state of the bacterial 
cell and the growth conditions determines whether the 
prophage will undergo a lytic cycle [68]. To identify and 
isolate prophages, protocols involving physical and chemical 
treatments that attack DNA integrity have been developed. 
These include use of chemical agents like mitomycin C [69] 
antitumor drugs [70], antigyrase drugs [71], antifolates [72], 
fluoroquinolone antibiotics [73], hydrogen peroxide [74], 
and UV light [75].

A treatment of bacterial culture hosting the lysogen with 
0.1–0.5 μg/ml mitomycin C acts effectively in inducing 
prophages [69]. Another commonly employed technique is 
irradiation of bacterial culture with short wave UV light in 
the presence of MgSO4. Post-exposure, the bacterial cells are 
incubated in double strength media to help them recuperate 
from UV damage, while the induced prophages grow in titer.

Lab‑based Methods of Bacteriophage 
Isolation

Bacteriophage diversity in the environment is very high; 
they are globally distributed throughout various environ-
ments like aquatic systems, terrestrial systems, deep seas, 
and air. [65].

The presence of bacteriophages as separate entities 
was first indicated by Ernst Hankin (in 1896) [75]. Felix 
d’Herelle described a basic enrichment-based method of 
bacteriophage isolation that has formed the foundation for 
all bacteriophage isolation methods [76, 77]. An overview of 
the various bacteriophage isolation methods from environ-
ment is depicted in Fig. 1 below.

Reservoirs of Bacteriophages in Water

Bacteriophages are widely distributed in all aquatic envi-
ronments [78]. The marine ecosystem hosts about 10 [30] 
viruses and is considered a big reservoir of bacteriophages 
[79]. As per Yooseph et al. (2010), members of the family 
Vibrionaceae occur in high abundance in the marine eco-
system with 103 to 104 cells per ml found in sea water [80]. 
Typically, Vibrio bacteriophages, coliphages, and bacterio-
phages against Bacteroides fragilis have very commonly 
been isolated from marine environments [81–83]. In marine 
ecosystems, factors such as ionic environment, hydrostatic 
pressure, aerobic/anaerobic conditions, temperature, and the 
dynamics of host bacteria numbers play an important role 
on the survivability of the bacteriophages and therefore their 
detection [84].

Rivers too are rich natural sources of bacteriophages. 
They are highly exposed to anthropogenic microbial 
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pollutants, which increase the recovery of phages like 
coliphages. Coliphages also serve as indicators of water 
pollution [85]. High concentrations of somatic and F-RNA 
coliphages are reported from freshwater samples [86–97]. 
Freshwater sources have been found to contain bacterio-
phages against Klebsiella pneumoniae and Salmonella spe-
cies [98].

Although not a natural ecosystem, sewage is one of 
the biggest reservoirs for bacteriophages and forms an 
important part of the environment with respect to humans 
today. Due to the high bacterial population in sewage, 
bacteriophages are commonly isolated from sewage. 
106–108 somatic coliphages per liter of sewage have been 
reported [99–103]. Sewage samples like cattle wastewa-
ter, pig slurry, poultry wastewater, and animal slurry too 
are rich sources of somatic coliphages and Stx phages 
[104, 105].

Extreme aquatic environments like hot water springs host 
bacteriophages against thermophilic bacteria and Archaea 
[106]. While mostly untapped, studies of some of these ther-
mophilic bacteriophages have given insights into the micro-
bial population dynamics of these environments [106]. Stud-
ies on bacteriophages from hot springs have been conducted 
in different parts of the world [107–112].

Similarly, cold-active bacteriophages have recently been 
isolated from glacial environments where they influence the 
bacterial dynamics. Frozen seawaters as well as freshwater 
ice cover have been shown to support cold-active bacte-
riophages. Studies have described isolation of active bac-
teriophages, metagenomic profiling of bacteriophages and 
viruses, virus-host interactions, and morphological diversity 
in glacial environments [113–121].

Isolation of Bacteriophages from Water

Direct Plating

The earliest bacteriophage isolation methods involved plat-
ing of samples directly with the host of interest without 
enriching them, followed by observation of plaque forma-
tion [122, 123]. Bacteriophage detection and isolation are 
possible by this method only when the sample has high bac-
teriophage titer – at least 10–100 bacteriophages per ml must 
be present for visibility on the plate [124]. Direct plating has 
been useful in isolating novel bacteriophages from sources 
like sewage effluents, stool samples, saliva, and dental 
plaques [125–128]. It is not a commonly preferred method 
as the probability of missing out on phages due to low titers 
in samples is very high. Moreover, some bacteriophages are 
only active in liquid media and may not show up in plaque 
assays that typically involve solid media.

Direct Plating of Large Volumes

Grabow and Coubrough described direct plaque assays for 
large volumes of water with agar media in 1986 [129]. One 
hundred millimeter volume of water samples were mixed 
with concentrated agar media and poured into 140-mm 
diameter petri plates along with host culture [129]. A modi-
fication in the method involved pouring equal volumes of 
the mixture into bottom and top as double agar layer. This 
method substantially increased the yield of bacteriophages 
and is useful for different kinds of water samples includ-
ing sewage [130–132]. This method detects bacteriophages 
at low titers and eliminates losses during recovery steps 

Fig. 1   An overview of bacterio-
phage isolation methods from 
environment
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considerably [133]. The method suffers from limitations 
involving laborious handling of large petri dishes and their 
cost compared to conventional petri dishes. It is useful in 
isolation of coliphages that are commonly found in water 
samples. Since bacteriophages are not concentrated in this 
method at any step, only certain high titer groups of phages 
may be isolated using this technique.

Non‑specific Concentration of Bacteriophages

To improve isolation of bacteriophages, concentration and 
enrichment protocols were developed. Czajkowski et al. 
(2016) demonstrated the use of zinc chloride in liquid sam-
ples like water and plant or soil extracts in concentrating 
bacteriophages so as to detect in direct plating without an 
additional enrichment step [134]. Flocculation of bacterio-
phages using various salts of metals increased recovery as 
they form small insoluble aggregates that precipitate out of 
the suspension [135, 136].

An interesting method of bacteriophage flocculation 
using casein (at its isoelectric point for flocking) and mag-
netite has been employed for the recovery of coliphages 
from freshwater and sewage samples effectively [88, 89]. 
The technique is rapid, inexpensive, and efficient and works 
well for concentration of coliphages from highly polluted 
samples.

Ultrafiltration

Ultrafiltration involves filtering of samples through poly-
sulfonate or related material’s membranes with pore size 
0.02 μm and weight cut-off limit of 10,000 Da that allow 
molecules to pass but retain bacteriophages. The method is 
solely based on physical retention of bacteriophage without 
involving charges or adsorption phenomenon [137, 138]. 
Ultrafiltration ensures high efficiency in bacteriophage 
recovery without exposing it to extreme pH levels or harsh 
conditions. Bacteriophages have been isolated from large 
volumes of river water samples and groundwater samples 
(about 450 l) by ultrafiltration with 30–60% recovery [90, 
139]. Recovery efficiencies of even up to 94% have been 
reported for a variety of phages and other viruses from tap 
water and ~ 70% from activated sludge effluents [140].

One of the biggest limitations of this method is clogging 
of the membrane pores that restrict the volume of sample 
that can be screened. Filtration units with motorized recir-
culating pumps and stirrers that can prevent clogging and 
enhance filtration rate have been described [139, 141], but 
it increases overall equipment cost of the process.

A passive process of membrane retention of bacterio-
phages was achieved by Padan et al. in 1967, who applied 
the principle of dialysis for cyanophage isolation from ponds 

[142]. Briefly, the water sample was poured into a cellulose 
dialysis bag that was dipped into a hygroscopic liquid mate-
rial like polyethylene glycol (PEG) that absorbs the water, 
including microsolutes, through the semipermeable mem-
brane sparing the bacteriophages and macrosolutes.

Although ultrafiltration is least damaging to the bacterio-
phage during isolation, it is expensive and tedious and not 
feasible in every microbiological lab. The equipment cost 
and maintenance is high. It is useful in commercial setups 
where in a controlled environment, large-scale bacterio-
phage production is carried out and higher recovery rate is 
required.

Adsorption‑based Methods

Bacteriophages naturally carry predominantly a negative 
charge at or near neutral pH. A number of isolation tech-
niques involve recovery of bacteriophages based on their 
adsorption to various matrices. Varying pH levels modify 
the charges on the bacteriophage allowing them to adsorb 
to various matrices.

Viruses have been concentrated by adherence to natural 
adsorbents like bituminous coal, fiberglass, and cellulose 
nitrate filters [143–146].

Following different principles of adsorption, electronega-
tive microporous filters [147], electropositive microporous 
filters (1MDS®) [148, 149], and other such adsorbents have 
been used effectively for bacteriophage isolation. Di- and 
trivalent cations like calcium and magnesium salts have been 
added to the samples to improve the adsorption of phages to 
these membrane by modifying charges on the filter [150], 
altering the width of charge layer on the filter [151] and 
developing formation of salt bridges between the membrane 
filter and viruses [152–155].

In case of electronegative adsorbent filters like glass pow-
der, minerals, fabrics, starch, resins, and alumina gel [156], 
bacteriophage suspension needs to be adjusted to acidic pH 
so the bacteriophages are positively charged and adsorb bet-
ter [157]. The adsorbed bacteriophages are eluted from the 
matrix using an eluent at alkaline pH [155, 158]. The use of 
electronegative adsorbent is not usually the best choice for 
concentration as bacteriophages show poor survival rates at 
pH extremes (pH < 3 and pH > 12) [159].

Bacteriophages adsorb naturally to electropositive 
matrices at neutral pH [90, 147, 160–165]. Electropositive 
adsorption-elution systems yield better recoveries of bacte-
riophages compared to electronegative filters although with 
high variability in their efficiencies [140, 146, 160, 163]. See 
Table 1 below for examples on adsorption-based bacterio-
phage detection methods.

The main limitations of chemical adsorption methods 
for bacteriophage isolation are cost of filters and pH sen-
sitivity [146, 152]. There also is the disadvantage of filters 
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getting clogged and the non-suitability of the method for 
marine water [124]. However, such non-enrichment meth-
ods are useful in unbiased concentration of bacteriophages 
from environmental samples and are crucial for large-scale 
screening and monitoring experiments looking for natural 
bacteriophage diversity. They allow for large volume screen-
ing and can be conveniently performed in simple lab setups.

Concentration of Specific Bacteriophages by Enrichment

The isolation of “specific bacteriophages” was first dem-
onstrated by Guelin in 1948  [166]. Briefly, nutrient broth 
is added to pre-filtered water samples along with log-phase 
host bacteria culture and incubated overnight. Post-incuba-
tion, the enrichment suspension is centrifuged at 4000 g and 
supernatant filtered through 0.22-µm nitrocellulose mem-
brane filter to get rid of bacteria and debris. While 0.22-
µm filters are more commonly used in viral studies, some 
researchers prefer 0.45-µm filters to improve the isolation 
of large or jumbo phages or phage aggregates. The filtrate 
obtained is an enriched bacteriophage suspension that can be 
used for plaque assays, spot method, or electron microscopy 
[167–170]. The International Organization for Standardiza-
tion has included this as a standard bacteriophage isolation 
method in the year 2000 [171].

The enrichment method helps in detection and isolation 
of bacteriophages from large as well as small volumes of 
sample – ranging from 1 to 1000 ml [153, 154, 167, 169, 
170] with high accuracy. It has been applied for monitoring 
of treated drinking water, by detecting the bacteriophages 
against indicator organisms [170]. Enrichment method is 
simplest to follow in lab and is, therefore, also the most 
popular.

Ghugare et  al. (2017) recently reported an improved 
membrane filtration immobilization method for simulta-
neous isolation and enrichment of specific bacteriophages 
[172]. Large volumes of pre-filtered environmental water 
samples are passed through an immobilized layer of bac-
teria on membrane filter under vacuum and subsequently 
enriched.

Host-based bacteriophage enrichment method provides 
an ideal environment for the bacteriophages to bio-amplify 
without undergoing much stress as opposed to chemical 
methods like adsorption-elution that modify the bacterio-
phage structure affecting their functionality.

However, in the enrichment method, even among bacte-
riophages specific to the host, the ones with higher fitness, 
i.e., higher infective and reproductive capacities, domi-
nate in number in liquid culture and get selectively ampli-
fied to higher titers. A procedure involving extraction and 
propagation of environmental bacteriophages in dilute and 
very dilute agarose gels has been described for isolation of 
under sampled bacteriophages, complicated large-genome 

bacteriophages, and aggregating bacteriophages [173–175]. 
The problem is circumvented in semisolid condition (in 
presence of agar) because fitter bacteriophages are unable 
to physically infect all the bacterial cells present in the solu-
tion due to lower diffusion rate and new/ under sampled 
bacteriophages are also able to thrive.

Reservoirs of Bacteriophages in Soil and Sediment

The terrestrial soil is divided into several layers and multi-
ple microhabitats creating niches for bacteria-bacteriophage 
systems to develop. Apart from spatial heterogeneity, the 
high variability in soil structure, influences of plant root 
microbiota, fungal microbiota, mineral, and nutritional sta-
tus render soil a rich reservoir of bacteriophages with high 
diversity [176–178].

Sediments – composed of organic and inorganic deposits 
in water ecosystems – adsorb a large number of bacterio-
phage particles and aggregates offering higher densities of 
bacteriophages for isolation. Several studies report isolation 
of bacteriophages from freshwater sediments, mostly river 
sediments [179–182]. Marine sediments too are important 
ecological niches for bacteriophages displaying high den-
sity and diversity [183–191]. They play an important role 
in nutrient cycling and sustenance of the benthic food web 
[192–197].

Some extreme soil environments like deserts too have 
shown the presence of bacteriophages. The desert environ-
ment, characterized by extreme heat, dry sand surface defi-
cient in humidity, and high UV radiation exposure, under-
goes considerable shifts in temperature through the day. 
Bacteriophages in diverse morphologies, genetic makeup, 
and physical and chemical attributes too have been success-
fully isolated and characterized from desert soils  [198–207].

Similarly, bacteriophages have also been seen to inhabit 
cold ecosystems like permanently frozen grounds or perma-
frost where they have been explored for their influence on 
microbial and community dynamics [208–213].

Isolation of Bacteriophages from Soil and Sediment

Soil is one of environment’s richest sources of bacterio-
phages containing about 107–109 bacteriophages per gram 
of soil. Isolation of bacteriophages from soil requires stand-
ardization as soil environment varies from place to place. 
The moisture content of soil, pH, mineral, and microbial 
composition plays critical roles in isolation of bacteriophage 
from soil in the lab.

Methods for the isolation of bacteriophages directly 
from soil have been explored in several studies in the 
past [214–219]. These techniques primarily focused on 
the isolation of actinophages or arthrophages. In general, 
arthrophages have been isolated from soil samples by 
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incubation along with the host in liquid nutrient broth fol-
lowed by plaque assay.

For the isolation of actinophages from soil, Lanning and 
Williams (1982) used sterile soil suspension in nutrient 
broth as bacteriophage suspension and poured it into petri 
dishes as basal agar layer, while a spore suspension of strep-
tomycete host was plated over it [220].

Dabbs (1998) described a method for isolation of bac-
teriophages wherein the soil sample is supplemented with 
cations, and the 0.22 μm filtrate was used as bacteriophage 
suspension [221]. Bacteriophages have also been isolated 
from soil by homogenizing it in Ringer’s solution using glass 
beads and subsequently using the homogenate for plaque 
detection [222].

A number of elution buffers like 10% beef extract, gly-
cine buffer, 10 mM sodium pyrophosphate, Na/K Sorens-
en’s phosphate buffer, and 1% potassium citrate have 
been tested for effective isolation of bacteriophages from 
soil samples with good yield [223–225]. An addition of 
lysozyme and chloroform followed by ultracentrifugation 
helped in isolation of an array of bacteriophages of various 
morphotypes from the rhizosphere in a study conducted by 
Swanson et al. in 2009 [225].

As a general guideline, a systematic method of isola-
tion of bacteriophages from soil is described in their book 
chapter in Bacteriophages: Methods & Protocols Volume 
I [226]. Briefly, liquid nutritive media like Tryptic Soy Broth 
is added to soil sample and mixed thoroughly. Post a brief 
incubation, supernatant is filtered and tested for bacterio-
phages by enrichment with specific hosts and plaque analy-
sis. This is one of the most widely followed and accepted 
methods of isolation of bacteriophages from soil. In their 
2013 study, Williamson and group tested a number of extrac-
tion methods for study of viral abundance in soil [227]. 
Bacteriophages were yielded best when potassium citrate 
buffer was used for soil suspension and sonication or blend-
ing methods were employed for extraction.

Meiring et al. (2012) conducted the first study on isola-
tion of bacteriophages from extreme environment involving 
lysogenic bacteriophage Psymv2 from the dry valley soil 
samples of Antarctic desert [208]. Latent prophages were 
induced by addition of mitomycin C to the soil suspensions.

Reservoirs of Bacteriophages in Air

Most studies on sampling of air bacteriophages until two 
decades ago involved aerosolization of bacteriophage sam-
ples in controlled environment of lab and sampling using 
commercial air samplers [228–232]. These studies mainly 
used bacteriophages as surrogates for understanding the 
behavior of viruses in air and their sampling efficiencies. 
The open ambient air is an important ecological niche with 
possibilities of high diversity in bacteriophages. Air being 

an extremely dynamic system shows great variations in the 
kinds of bacteriophages isolated with each sampling event. 
However, studies on the natural bacteriophage diversity in 
air are sparse currently and may hold greater scope in future.

Bacteriophages have been isolated from air in dairy 
industries like cheese factories as contaminants in starter 
cultures [231–238]. Bacteriophage contamination in starter 
cultures greatly hampers cheese production, and hence, their 
detection is very important there. Studies on aerosolized 
bacteriophages in toilets, water treatment plants, and poul-
tries are also important [239–242].

It is to be noted that all studies on bacteriophages in air 
have aerosols in common. Phages have been isolated either 
from controlled laboratory environments like laminar hoods 
and aersolization chambers or from enclosed spaces like 
dairies, cheese factories, poultries, or bathrooms. Phage iso-
lation from open air systems have not been explored so far.

Isolation of Bacteriophages from Air

Bacteriophage isolation from air is an underappreciated 
field. Ehrlich and colleagues made one of the earliest 
attempts on isolation of bacteriophages from aerosolized 
samples in a bid to study the effects of environmental fac-
tors on airborne T-3 coliphages [228]. In 1965, Harstard 
published his work on comparison of sampling efficiencies 
of two different kinds of liquid impingers using two kinds of 
filters and a fritted bubbler [220]. The study concluded that 
liquid impingers were best for sampling as they cause least 
destruction to the bacteriophage particles and are relatively 
more efficient. AGI samplers are therefore the most preferred 
samplers for bacteriophage-aerosol sampling in most studies 
that followed due to better recovery of bacteriophages, reten-
tion of infectivity, and gentle sampling process [230–232, 
243–249]. Among filters, polytetrafluoroethylene (PTFE) 
filters are studied to be best for sampling of bacteriophages 
and other viruses with high collection efficiency [250].

Studies describing isolation of bacteriophages from open 
air are relatively newer. Lactococcal bacteriophages have 
been detected in the air in dairy industries and sampled using 
various commercial air samplers and filters [233–235].

Analytical methods other than plaque assays for bacte-
riophage detection too have been explored [236]. Verrault 
et al. (2011) detected bacteriophage genomes in aerosols of 
cheese manufacturing plants by quantitative PCR (qPCR). 
Five different types of samplers were used for air sampling 
in this study of which the NIOSH samplers proved most reli-
able [236]. A detailed review on different types of sampling 
devices employed for airborne viruses in general is given by 
Verrault et al. (2008) [237].

Similarly, Espinosa and Pillai (2002) detected male-spe-
cific coliphages in confined animal housing operations using 
impaction-based sampler (SAS-100) within and around 
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broiler houses for male-specific indicating presence of fecal 
contaminants [239].

While commercially available samplers are quicker and 
offer more control, the disadvantages lie with difficulty in 
device sterilization, high cost, and inactivation of viruses 
due to sampling [251]. Magare et al. (2017) described 
an indigenous and economical method for isolation of 
airborne bacteriophages by impingement by modifying 
a simple laboratory vacuum filtration unit [242]. All the 
parts of the system are autoclavable rendering cleaner 
results. Table 2 provides an overview on the types of sam-
pling devices used for recovering bacteriophages from air 
samples.

The study of airborne bacteriophages and methods to 
sample and enumerate them are still unfledged. Standardi-
zation in air sampling is a major limitation. The recovery 
efficiency too is inadequate. The sampling procedures 
themselves play a role in inactivating the bacteriophages 
or damaging them physically. All sampling devices have 
their own shortcomings, but a balanced plan for any study 
with right analytical methodologies can help generate very 
useful data.

Field‑based Methods of Bacteriophage 
Isolation

Nearly all techniques of isolation of bacteriophages are 
confined to the lab in a controlled environment. The instru-
ments required for the isolation process require facilities 
to maintain sterility, laminar hoods, adsorption-elution 
columns, or vacuum filtration units that can function only 
in labs. In most cases where bacteriophages are isolated 
from various environments, sampling is performed on the 
field and processed in lab. Sample transport can be costly 
and time-consuming affecting bacteriophage recovery 
due to sample deterioration. Therefore, there is a need for 
developing on-field bacteriophage isolation or entrapment 
techniques urgently.

In view with designing a method for virus concentration 
that is low-cost, rapid, efficient and capable of handling 
large volumes in field, portable devices were devised that 
could be operated on field and screen large volumes of 
samples in the range of 500 l [87, 251, 252]. In samples 
with high number of bacteriophages, up to 75% recovery 
of bacteriophages was observed. Although efficient in 
screening large water samples and good bacteriophage 
recovery, some setups are too bulky and may not be suit-
able for large-scale monitoring studies of water bodies with 
a number of sampling sites [252].

An overview of all the methods, their applicability and 
cost is summarized in the table below (Table 3).Ta
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Conclusions

Bacteriophage-based applications are promising alterna-
tive options for tackling various bacterial pathogen-based 
issues. A resurgence of interest in phage studies in the 
past few years has been observed, pushing researchers to 
find newer applications for them in diverse fields. In fact, 
some phage biocontrol formulations have already been 
developed and commercialized for purposes like food pres-
ervation where they control food-borne pathogens, e.g., 
EcoShield [254], SalmoFresh [254], ShigActive [254], 
PhageGuard [255], and ListShield [256, 257]. There also 
are phage products being used in agriculture for crop pro-
tection like AgriPhage [258] and pathogen control in ani-
mal feed like BioTector [258]. FASTPlaque TB [258] and 
FASTPlaque-Response [258] are some rapid diagnostic 
tools prepared from phages. Phages today are increasingly 
finding commercial use.

Researchers are now focusing their understanding 
towards translational use. The primary step towards this 

end is careful evaluation of requirements and choice of 
method of isolation. Phage isolation methods have been 
simplified over the last two decades with enrichment 
method being the most preferred one. The methodologies 
have been improvised to retain infectivity and efficiency 
while also getting pure bacteriophage suspensions. Meth-
ods involving extreme pH variations and physical stress on 
the phages have either gone obsolete or have been modi-
fied to do away with physical or chemical stress.

Upcoming fields of high-throughput sequencing and 
metagenomics too are enabling prediction of bacterio-
phages from various environmental samples against host 
of interest with greater precision. Support of powerful 
computational predictions is helpful in quick screening 
and selection of appropriate phages for diverse applica-
tions. Disciplined approaches and further development of 
phage isolation methodologies will help leverage the value 
phage-based applications on the whole.

The numbers of known bacteriophages are increas-
ing with several new bacteriophages being added to the 

Table 3   Overview of bacteriophage sampling methods

Method Volume Type of sample Aim Recovery rate Cost

Direct plating 1–5 ml Water Low specificity, low selectivity. Col-
lects group of bacteriophages for a 
species

Low Economical

Direct plating of large volumes 100 ml Water Low specificity, low selectivity. Col-
lects group of bacteriophages for a 
species

Moderate Moderately expensive

Ultrafiltration 100 l Water Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Moderate Expensive

Adsorption based methods 10–20 l Water Moderate specificity, moderate 
selectivity. Collects group of non-
specific bacteriophages

Moderate Expensive

Concentration of specific bacterio-
phages by enrichment

1–10 ml Water High specificity, high selectivity. 
Collects group of bacteriophages 
for a species

High Economical

Concentration of specific soil bacte-
riophages by enrichment method

5–20 ml Soil, sediment High specificity, high selectivity. 
Collects group of bacteriophages 
for a species

High Economical

Impingers - Air, gas Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Moderate Moderately expensive

Impactors - Air, gas Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Low Moderately expensive

Fritted bubblers - Air, gas Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Low Moderately expensive

Filter samplers - Air, gas Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Low Moderately expensive

Laboratory vacuum pump - Air, gas Low specificity, high selectivity. 
Collects group of non-specific 
bacteriophages

Low Economical
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databases each year. Several dedicated phage banks have 
been formed around the world to ease the process of find-
ing phages for phage therapy. These dedicated phage banks 
host thousands of phages against pathogenic hosts that 
can be screened quickly when needed to avoid the time 
spent in isolating phages from scratch against a host when 
needed. In European and Belgian law, commercial mag-
istral phage preparations have been approved so that the 
time spent in isolating, characterizing, and optimizing the 
phages is minimized. These preparations will be avail-
able for a price for quick development into a phage-based 
therapeutic product [223].

Needless to say, to realize a future with phage-based 
applications in the forefront, development of sampling 
methods that are quicker, more efficient, and economical 
is still a necessity.
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