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Abstract
Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in
marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with
superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed
two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient
regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2)
Cobetia sp. 4BUA from the endemic Humboldt Current System (HCS) seagrassHeterozostera chilensis. From our physiological
studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with
different pH levels, both in long-term (12 days (d)) and short-term studies (4 d/96 h (h)). We showed that the isolated strains were
sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of
phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001
showed a better adaptation to low nutrient concentrations, being a potential N2-fixer, reaching higher growth rates (μ) than the
HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and
structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical
markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine,
select, and modify the genomic and phenotypic features of the same bacterial species (i.e.,Cobetia spp.) found in different marine
environments, pointing to a direct correlation between adaptability and oligotrophy of seawater.

Keywords Posidonia oceanica .Heterozostera chilensis .Mediterranean Sea . Humboldt Current System .Cobetia sp. (UIB001
and 4BUA) and nitrogen (N)-phosphorus (P)-iron (Fe) regimes

Introduction

Seagrasses are one of the most productive ecosystems, placed
in continental seashores of all continents but Antarctica [1],
providing key ecological services. As relevant coastal primary
producers, seagrasses fix atmospheric CO2, acting as carbon
sinks and O2 releasers. They also sustain secondary produc-
tion, trap particles, stabilize sediments, are key actors of bio-
geochemical processes (e.g., nitrogen cycles), and form the
habitat and nursery for several micro- and macro-organisms
[2]. Their associated microbiome takes part in the major
ocean’s biogeochemical cycles (e.g., nutrient cycling of nitro-
gen (N), phosphorus (P), and/or iron (Fe)) and microbial food
webs [3–5], essential for the livelihood of seagrasses. Within
the bacteria l consort ia , pr imary producers (e .g. ,
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Prochlorococcus and Synechococcus) play a critical role
through their CO2-fixing capacity [6], together with other bac-
teria in sulfide detoxification (which is highly toxic for plant
growth [7]), and biological N2-fixation (BNF) which compen-
sates denitrification, converting dinitrogen gas (N2) to inor-
ganic N (i.e., ammonia, NH3) [8]. The role of environmental
factors (e.g., nutrient availability) modulating bacterial com-
munity composition, diversity, functioning, and, thus, the
health and productivity of the seagrasses, remains to be
investigated.

The implication of the microbial communities associated
with seagrasses, which can be found as epiphytic or endophyt-
ic, has been profusely illustrated on theMediterranean endem-
ic seagrass Posidonia oceanica (L.) Delile [9–11]. N2-fixers
or diazotrophs can supply the entire N-demand of the plant,
having a key role in nutrient cycling [12], considering the
Mediterranean Sea (MS) oligotrophy. The MS is a semi-
enclosed sea chronically limited by P [13], where P and N
concentrations do not obey the Redfield ratio (i.e., 23–28:1)
[14, 15]. Besides, Mediterranean waters are subjected to
Saharan atmospheric dust deposition, which controls Fe con-
centrations in the water column [16]. On the other hand, the
Humboldt Current System (HCS), which extends from the
west coast of South America (Southern Chile) up to Ecuador
and the Galapagos Islands, is one of the most productive ma-
rine ecosystems as a result of the transport of sub-Antarctic-
enriched nutrient waters and often poor in Fe [17–19]. There,
the endemic Heterozostera chilensis J. Kou seagrass thrives
settled after long-distance dispersion of its ancestor, i.e.,
Heterozostera nigricaulis, from temperate waters of
Australia across the Pacific Ocean [20, 21]. Noteworthy, it is
intriguing how H. chilensis (former H. nigricaulis) was capa-
ble to settle in the cold waters of the HCS, concretely in Puerto
Aldea, Bahia Chascos, and Isla Damas [21], where historically
seaweeds have proliferated, but no seagrasses [22]. Among
the many intrinsic characteristics that may have allowed
H. chilensis to survive, the role of its associated microbiota
in its maintenance and sustenance remains unclear.

Elucidating the nutrient regimes of N, P, and Fe of these
microbial communities is of especial relevance as they limit
microbial growth and activity [17], usually controlled by
upwelling/downwelling processes or by atmospheric dust de-
position [23]. The average ratio of N/P/Fe in microbial com-
munities obeys to Redfield ratio, 16 (N):1 (P):0.0075 (Fe), and
hence N and P are the major elements needed for microbial
biomass, constituting around 7% and 1% of cell biomass,
respectively [24, 25]. In P-limited waters, bacteria are capable
of hydrolyzing P-esters contained in dissolved organic phos-
phorus (DOP) releasing dissolved inorganic phosphorus
(DIP), through the so-called alkaline phosphatases (APases).
Bacterial APases can be classified into three main families
depending on the associated co-factor (i.e., Mg2+, Zn2+,
Fe3+, and/or Ca2+): PhoA, PhoX, and PhoD [26]. Thus,

metals, as Fe, are essential for enzyme activity as structural
components. Nonetheless, Fe homeostasis has to be tightly
regulated since it can promote oxidative stress by the genera-
tion of reactive oxygen species (ROS) through Fenton and
Haber-Weiss reactions [27].

Multifactorial studies investigating the interactive effects of
N, P, and Fe in marine microorganisms are very scarce
[28–31]. Low dissolved inorganic N (DIN, e.g., NO3

−), inor-
ganic P (PO4

3−), and Fe concentrations can impair growth,
enhancing oxidative stress, morphological changes, and apo-
ptosis processes, as well as limiting N2-fixation rates [31]. In
oligotrophic waters (e.g., North Atlantic Ocean or the MS), Fe
can limit P-mechanisms as the alkaline phosphatase activity
(APA) [32], and APA can be subjected to DIN concentration
[30]. In the global ocean, microbial communities are faced
with a wide range of nutrient regimes (e.g., from oligotrophy
to eutrophic) and abiotic scenarios, selecting the best-adapted
species worldwide [33]. Analyzing the biogeographic patterns
of cosmopolitan species is of special relevance to better ad-
dress the success of these species in adapting and surviving to
a wide range of scenarios, an issue poorly studied with bacte-
ria associated with seagrasses.

Gammaproteobacteria is one of the most distributed marine
heterotrophic bacteria in the oceans [34]. Among them, the
Halomonadaceae family (which include Modicisalibacter,
Halotalea, Zymobacter, Carnimonas, Cobetia, Kushneria,
and Salinicola) is found in almost any saline environment,
being moderate halophilic bacteria and exopolysaccharides
producers [35, 36]. As a result of the re-classification of the
Halomonas marina, Arahal et al. (2002) described the genus
Cobetia as a member of the Halomonadaceae [20], which
comprises five species (i.e., C. amphilecti, C. crustatorum,
C. lioralis, C. marina, and C. pacifica) [37–39]. Cobetia
spp. are isolated as hydrocarbon-degrading, biosurfactants-
producing, which display a nutritional versatility and different
metabolic profiles (e.g., sugar utilization and assimilation),
being sources of psychrophile enzymes. Besides, some strains
have a key role in improving the water quality [40–43].
Although the ecophysiology and adaptation responses of
Cobetia spp. remains poorly explored, the genus Cobetia is
well distributed throughout the world oceans having been iso-
lated from different marine ecological niches, pointing to their
high adaptability.

Our genomic analysis proved that we isolated two strains
that belong to the same species, inside the genus Cobetia,
placed in geographically unrelated endemic seagrasses:
P. oceanica from the MS and H. chilensis from the HCS.
Based on our previous studies in which we described the sen-
sitivity of the diazotrophic bacteria to different nutrient re-
gimes and emerging pollutants [30, 31, 44], the aim of this
study, considering the contrasting features of theMS and HCS
at nutrient level, was to evaluate the physiological responses
of the Cobetia spp. isolated, using batch cultures. For this
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purpose, we conducted long-term (i.e., 12 days (d)) and short-
term experiments (i.e., 4 d/96 h) towards different nutrient
regimes (i.e., N, P, and Fe) and pH levels, measuring their
physiological and biochemical responses.

Materials and Methods

Isolation, Sequencing, Identification, and Genomic
Features of UIB 001 and 4B UA Strains

Isolation of the Strains

The strains UIB 001 and 4B UA were isolated from the roots
of P. oceanica and leaves of H. chilensis, respectively.
Posidonia oceanica roots were collected from Cala Nova
(Mallorca) in Balearic Islands, Spain (39° 33′ 02.3″ N 2° 36′
02.1″ E), while H. chilensis leaves were collected from the
seashore of Puerto Aldea (Coquimbo), Chile (30° 17′ 37.83″
S–71° 36′ 24.55″O). Posidonia oceanica roots were triturated
in Tris-EDTA 1mMpH 7.5, whereasH. chilensis leaves were
rasped to gather the epiphytic community, which was main-
tained in sterile seawater. In both cases, the microbial consor-
tia were cultured in modified artificial seawater (ASW) medi-
um (L−1: 25.0 g NaCl, 1.0 g MgCl2·6H2O, 5.0 g MgSO4·
7H2O, 0.7 g KCl, 0.15 g CaCl2·2H2O, 0.1 g KBr, 0.04 g
SrCl2·6H2O, and 0.025 g H3BO3), with 1 ml L−1 trace metal
[L−1: 2.86 g H3BO3, 1.81 g MnCl2·4 H2O, 0.22 g ZnSO4·
7H2O, 0.39 g NaMoO4·2H2O, 0.079 g CuSO4·5H2O, and
0.049 g Co(NO3)2·6H2O], glucose/citrate (final concentration
0.1% (v/v)), and with agarose (1.5% (p/v)). Cultures had N2 as
sole N source (with low P and Fe concentrations) and were
incubated at 20 °C. The resulting colonies were subcultured in
marine agar (MA) to obtain pure cultures.

Genome Sequencing

Total genomic DNA of the strains UIB 001 and 4B UA were
extracted using the optimized version of Salvà Serra et al.
(2018) [45]. Illumina whole-genome sequencing was per-
formed (Eurofins Scientific, Luxemburg). Briefly, the DNA
libraries were prepared following an optimized protocol and
standard Illumina adapter sequences. Paired-end sequences
were determined using the Illumina HiSeq platform (read
mode, 2 × 150 bp). Additionally, DNAs were sequenced with
a MinION Mk101B sequencer (Oxford Nanopore
Technologies, Oxford, UK) for the generation of long-read
sequences. The DNA library was prepared, using the rapid
barcoding sequencing kit vR9 (SKQ-RBK004) and loaded
into a FLO-MIN106 vR9.4 flow cell. The sequencing process
was performed for 48 h (h) on MinKNOWN software v1.4.2
(Oxford Nanopore Technologies). The raw reads obtained
were base called using Guppy software v3.5.1 (Oxford

Nanopore Technologies). Quality of Illumina and nanopore
reads were determined using fastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and
NanoPlot software (https://github.com/wdecoster/NanoPlot),
respectively. A hybrid assembly was done using Unicycler
v0.4.7 [46] combining the Illumina and nanopore reads. The
qualities of the genome sequences obtained were assessed
using the Quality Assessment Tool for Genome Assemblies
(QUAST) v4.5 [47]. For submission to GenBank, the whole-
genome sequences were annotated with the Prokaryotic
Genome Annotation Pipeline (PGAP) [48, 49].

Strain Identification

Complete 16s rRNA gene sequences were extracted from the
obtained genomes and analyzed using EzBioCloud to deter-
mine the closely related species [50]. Afterward, the genome
sequences or the strains UIB 001 and 4B UA were compared
with the genomes of the closely related species, which were
obtained from NCBI. Comparative 16S rRNA gene sequence
analyses were done using the Kimura two-parameter model to
calculate evolutionary distances. Cluster analyses and phylo-
genetic trees were built by Neighbor-Joining, using the
MEGA7 software [51]. Bootstrap values were determined
for 1000 replications. Average nucleotide identities by
BLAST (ANIb) were determined using the JSpeciesWS tool
[52]. The digital DNA–DNA hybridization (dDDH) similarity
values were determined with the Genome-to-Genome
Distance Calculator (GGDC) [53]. Only results of the recom-
mended formula 2 (sum of all identities found in high-scoring
segment pairs (HSPs) divided by the overall HSP length) in
the GGDC analyses were considered.

Genomic Difference Detection Through Pan-Genome Analysis
and Single Nucleotide Polymorphisms (SNPs)

Pan-genome analysis was performed following an already de-
scribed procedure [54]. Briefly, homologous determinations
were performed using the software Get_Homologues [55],
based on two different algorithms: Cluster of Orthologous
Genes Triangle (COGT) and Orthologous Markov Cluster
(OMCL). The total number of clusters conforming the pan-
genome was determined with the consensus of COGT and
OMCL. Exclusive proteins of each strain, extracted from the
pan-genome determination, were assigned to a functional cat-
egory using the eggNOG-mapper v2 online tool [56]. Single
nucleotide polymorphism (SNPs) analyses were done using
Snippy (https://github.com/tseemann/snippy), using the
default parameters and the genome of strain UIB 001 as a
reference.
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Experimental Design

Prior to the experiments, temperature (4–42 °C) and NaCl
tolerance (0–20% (p/v)) were tested. Besides, biochemical
tests were carried out in the Spanish Type Culture Collection
(CECT) using API 20NE and API ZYM test kits
(Biomerieux), following the manufacturer’s instructions and
adding Marine Cations Supplement in a 1/10 ratio, and incu-
bated at 30 °C. To evaluate their ability to cope with different
nutrient regimes and changes in cell morphology, bacterial
cells were grown in ASW with agarose (1.5% (p/v)), contain-
ing optimal nutrients (+N, +P, +Fe, and +carbon source (C)),
N2 as sole N source (−N, +P, +Fe, and +C), without P and Fe
(+N, −P, −Fe, and +C), without N, P, and Fe (−N, −P, −Fe,
and +C), with N, P, Fe, and not C (+N, +P, +Fe, and −C), and
without N, P, Fe, and C (−N, −P, −Fe, and −C).

Cobetia sp. isolates were cultured and acclimatized in ma-
rine broth (MB) at 20 °C and 150 r.p.m. The subcultures for
seeding were centrifuged and washed with their correspond-
ing medium without N, P, and Fe. All the experiments were
performed in triplicate in sterile 50 mL Falcon tubes and/or
2 mL microplates in modified ASW culture media (without
agarose), in batch cultures.We inoculated 7 × 105 cell mL−1 in
each treatment. Samples were manipulated in a glass-clean
hood to avoid Fe contamination, and cultures were maintained
over 4–12 d, at 20 °C and 120 r.p.m.

Different inorganic/organic N (i.e., NH3 from NH4Cl and/
or C4H11NO3 [Tris]), inorganic P (i.e., PO4

3− from K2HPO4),
and Fe (from ferric citrate [C6H5FeO7]) concentrations were
tested at different pH (6–8), as shown in the Supplementary
Table S1, based in previous works [30, 31]. Briefly, for N,
four levels of inorganic (NH3) and/or organic N (Tris) were
tested: Non-N [0 mM], 0.8 mM NH3, 1 mM Tris, and 1 mM
Tris +0.8 mM NH3; for PO4

3−, two levels were tested: [Low
PO4

3−, 0.005 μM] and [High PO4
3−, 50μM], as well as for Fe,

[Low Fe, 1 nM] and [High Fe, 1μM]. All these concentrations
were combined in three different experimental designs: (I)
long-term studies (12 days) performing growth curves (where
growth rates (μ) and duplication times (Tg) were measured) at
pH 8 and (II) and (III) short-term studies (96 h), testing N,
and PO4

3− concentration effects at different pH levels, respec-
tively. During the experiment, subsamples were taken to mea-
sure growth, alkaline phosphatase activity (APA), and reac-
tive oxygen species (ROS). Besides, (IV) we measured APA
under different levels of PO4

3− (0.005–100 μM) and Fe (1 nm
and 1 μM) at pH 8 after 96 h (Supplementary Table S1).

Flow Cytometry and Growth Responses

Flow cytometry was used to assess changes in cell abun-
dances. For long-term studies, subsamples of the culture
(1.5 mL) were daily sampled, fixed with 36% (p/v) of forma-
lin and froze at −20 °C until reading at the end of the

experiments. For the rest of the experiments, measurements
were performed without freezing nor fixing. The cytometer
used was the BD FACSJazzTM, previously calibrated with
the SPHEROTM Ultra Rainbow Fluorescent Particles,
3.08 μm. The cells were separated by adjusting the voltages,
according to size and complexity: forward scatter (FCS) ver-
sus side scatter (SSC), respectively. Cell counts were adjusted
to count for 10 s or 1000,000 events. To measure the growth
rates (μ) and duplication times (Tg), we followed the equations
used in Fernández-Juárez et al. (2020) [31]. To evaluate the
effect of the low nutrient concentration (i.e., serial, simulta-
neous, or independent) of the growth response to P and Fe
(with N replete), the log ratio effect-size criteria based on the
mean treatment and control response was assessed as in
Fernández-Juárez et al. (2020) [31].

Microscopical Analysis

Microscopical images were taken with the Leica TCS SPE
confocal microscope, Leica Microsystems. The samples were
placed on a clean slide with DAPI at a final concentration of
0.1 mgmL−1. The samples were kept in the dark until reading,
taking the images with the ×100 objective combining the
brief-field I (BF) channel. Images were processed with
ImageJ software, and cell volume was calculated following
Hillebrand et al. (1999) [57].

Alkaline Phosphatase Activity

Alkaline phosphatase activity (APA) was evaluated using a
fluorometric assay and following the MUF-P hydrolysis [30].
At the end of the experiment, APA was tested at low levels of
PO4

3− (i.e., 0.005 μM) with low or high levels of Fe (1 nm or
1 μM) combined with different pH levels (pH 6–8).
Moreover, a battery of concentrations of PO4

3− (0.005, 0.05,
0.5, 5, 50, and 100 μM) combined with different levels of Fe
(1 nm and 1 μM) at pH 8 was performed (Supplementary
Table S1). An endpoint assay was conducted, using 5 μM
MUF-P. After 1 h of incubation in darkness at room temper-
ature, APA was measured in a microtiter plate that contained
buffer borate pH 10 (3:1 of sample: buffer). With a Cary
Eclipse spectrofluorometer (FL0902M009, Agilent
Technologies), MUF production (fmol MUF cell−1 h−1) was
measured at 359 nm (excitation) and 449 nm (emission), using
a calibration standard curve with commercial MUF (Sigma-
Aldrich). Results were normalized by cell number.

Structural Analysis of the Alkaline Phosphatase

Sequences of PhoD of the UIB 001 and 4B UA (locus_tag:
HA399_02660 and H2O77_02640) in FASTA format were
sent to the I-Tasser server for protein 3D-structure prediction
[58], with their domains previously checked in Pfam 32.0
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[59]. The predicted structures were sent to POSA for a struc-
tural alignment between them [60]. The description of the
Ca2+ and Fe3+ coordination positions of these proteins was
based on the descriptions of the catalytic center of the PhoD
from C. amphilecti KMM 296 (WP_043333989) [61] and the
PhoD crystal structure of Bacillus subtilis (PDB: 2YEQ).
Residues from PhoD fromUIB 001 and 4BUA strains against
the PhoD of C. amphilecti KMM 296 were mapped through
alignments with Uniprot Clustal Omega [62]. The predicted
structures and the corresponding structural alignments were
visualized with Pymol [63].

Reactive Oxygen Species Production

ROS detection was measured with the molecular probe 2′,7′-
dichlorofluorescein diacetate (DCFH-DA, Sigma) [31].
Briefly, bacterial samples were placed in a 96-well microplate
(Thermo Scientific) spiked with DCFH-DA at a final concen-
tration of 15 μg mL−1. The green fluorescence product, 2′,7′-
dichlorofluorescein (DCF), generated after its oxidation by
ROS was measured at 25 °C in the Eclipse spectrofluorometer
(FL0902M009, Agilent Technologies) for 1 h with an excita-
tion of 480 nm and emission of 530 nm. The results were
expressed as the slope of the linear regression obtained and
normalized by cell (arbitrary units [AU] cell−1). DCFH-DA
was added in ASW without cells as blanks under the same
conditions.

Statistical Analysis

A parametric univariate analysis of variance (ANOVA) factor
and post hoc (Bonferroni) was used to study the effect of N, P,
and Fe concentrations in the UIB 001 and 4B UA strains. The
statistical analyses were performed using the SPSS software
v21 (IBM Corp year 2012).

Results

Characterizing Cobetia Sp. UIB 001 and 4B UA

Genomic Analyses

Based on 16S rRNA, ANIb, and GGDC analyses, we revealed
that both strains from the endemic Mediterranean seagrass
P. oceanica and the endemic HCS seagrass H. chilensis, re-
spectively, corresponded to the same species and belonging to
the Cobetia genus (Table 1, Fig. 1, Supplementary Tables S2,
S3 and S4). The 16s rRNA analysis of the UIB 001 and 4B
UA strains showed a similarity between 99.5 and 99.9% with
the type strains C. amphilectiKMM 1516T, C. litoralis KMM
3880T, Cobetia marina JCM 21022T, and C. pacifica KMM
3879T (Supplementary Table S2). Besides, the 16S rRNA

phylogenetic tree showed a clade formed by these species,
supported with high bootstrap values (Fig. 1). Based on these
results, the UIB 001 and 4B UA strains seem to be more
closely related to C. amphilect i and C. li toralis
(Supplementary Table S2). In agreement with the 16s rRNA
analysis, ANIb and DDH analyses also confirmed that strains
UIB 001 and 4B UA belong to the same species, showing a
similarity over 96% (ANIb) and 70% (dDDH) between them
(Table 1 and Supplementary Tables S3 and S4). Comparisons
with genomes of the Cobetia genus present in GenBank were
carried out to provide deeper insights into their taxonomic
affiliation (Supplementary Table S3 and S4). There is an im-
portant lack of genome sequences of type strains inside the
Cobetia genus, being C. marina the unique species for which
the type strain has been genome sequenced (JCM 21022T,
accession number CP017114). The genome of C. amphilecti
KMM 296, which is not the type strain, showed the highest
score by ANIb and dDDH (over 96 and 70%, respectively),
indicating that, presumably, our strains might be representa-
tives of C. amphilecti (Supplementary Tables S3 and S4).
However, due to the lack of type strain genomic information,
it was not possible to perform an accurate final taxonomic
classification at the species level. Overall, with our results,
we can affirm that the strains isolated belong to the Cobetia
genus, and they are not C. marina. Thus, the strains were
named Cobetia sp. UIB 001 and 4B UA.

Genomic Features

Sequencing and assembly procedures generated two com-
plete and closed genomes. The genome sequence of the
strain UIB 001 was composed of one chromosome
(4,177,647 bp) and one putative plasmid (10,679 bp), while
the genome of strain 4B UA was composed of one chromo-
some (4,319,205 bp) and two putative plasmids (4702 and
2015 bp). The main genomic features of each genome are
included in Table 1 and Fig. 2A and B. The complete ge-
nome sequences were deposited at DDBJ/EMBL/GenBank
under the accession numbers CP058244 to CP058245
(Cobetia sp. UIB 001) and CP059843 to CP059845
(Cobetia sp. 4B UA).

Genomic Differences

The pan-genome analysis determined that both strains shared
3087 homologous proteins (Fig. 3A). Functional analysis of
the entire set of proteins of each strain displayed that both
strains shared almost the same distribution of gene functions
(Supplementary Fig. S1). Additionally, 197 proteins were ex-
clusively present in the strain UIB 001, whereas the strain 4B
UA had 278 specific proteins (Fig. 3A). It is worth mentioning
that the functional category with the most representatives was
“Function unknown” (Fig. 3B). Results from the SNPs

Fernández-Juárez V. et al.300



analysis showed up to 66,929 SNPs between both strains.
Among the “classical” proteins implicated in the adaptation
and survival to lowN, P, and Fe availability, we detected up to
1045 SNPs, 470 SNPs for proteins related to N-metabolism,
277 SNPs for proteins related to P-metabolism, and 298 SNPs
for proteins related to Fe-metabolism (Fig. 3C).

Phenotypic Features

From the phenotypic point of view, these rod-shaped bacteria
(1–1.5 μm length and 0.7–0.8 μm width) were able to grow
in nutrient-depleted media, i.e., in N-, P-, and Fe-depleted
solid media (with 1.5% (p/v) agarose), as long as carbon (C)

Table 1 Genomic features of
Cobetia sp. UIB 001 and 4B UA UIB 001 4B UA

Genome length (bp) 4,177,647 4,319,205

G+C (%) 62.78% 62.56%

Genes 3488 3562

Protein-coding genes 3391 3474

rRNA operons 7 7

tRNA genes 74 72

Putative plasmids 1 (10,679 bp) 2 (4702 and 2015 bp)

16s rRNA identity (%, between each other) 100% 100%

ANib (%,between each other) 96.99% 96.93%

dDDH (%,between each other) 75.80 75.80%

Fig. 1 Complete 16s rDNA phylogenetic tree ofCobetia spp. and other closely related groups, including the strainsCobetia sp. UIB 001 and 4BUA (*)
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source was present (Table 2). In agreement with the species
more related to them (C. amphilecti KMM 1516T and
C. litoralis KMM 3880T), both isolated had a tolerance
over 15% NaCl (yet growth was not detected at 20%

NaCl) and up to 42 °C (Table 2). Overall, biochemical tests
showed that both Cobetia sp., UIB 001 and 4B UA, had the
same metabolic profiles and similar to the most related type
strains (Table 2).

Fig. 2 Genome BLAST atlas of the chromosomes for the strains A UIB 001 and B 4B UA, showing the overall similarity of the chromosome
organization between them. Position of CDS+ and CDS−, as well as GC content, is indicated

Fig. 3 Genomic differences between Cobetia sp. UIB 001 and 4BUA.A
Pan-genomic analysis betweenCobetia sp. UIB 001 and 4BUA, showing
the number of shared proteins between the strains, as well as the number
of exclusive proteins of each strain. B Functional categorization by COG

analyses of the exclusive proteins of UIB 001 and 4B UA strains. C
Number of SNPs detected in genes implicated in N, P, and Fe metabo-
lism. The bar chart represents the number of SNPs, whereas, lines repre-
sent the number of annotated genes implicated inN, P, and Femetabolism
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Long- and Short-Term Effects of Varying Nutrient
Concentration (N, P, and Fe)

Effect on Morphology

Nitrogen, P, and Fe triggered differential responses on the
morphology of the UIB 001 and 4B UA strains (Fig. 4A–I).

With N2 as the sole N source, rod-shaped cells became more
circular (≃1.2 μm length and 0.97 μm width) than under op-
timal nutrient conditions (≃1.16 μm length and 0.76 μm
width) (Fig. 4C, D, and I). Under P/Fe or total nutrient (N,
P, and Fe) depletion, cells became larger and wider (≃1.68μm
length and 0.95 μm width) than under optimal concentrations
(≃1.16 μm length and 0.76 μm width) (Fig. 4E–I). Overall,

Table 2 Differential phenotypic characteristics of the Cobetia sp. UIB 001 and 4B UA and the most related Cobetia sp. species, Cobetia amphilecti
KMM 1516T and Cobetia litoralis KMM 3880T, whose results were obtained from Romanenko et al. (2016)

UIB 001 4B UA KMM 1516T KMM 3880T

Habitat Mediterranean
Sea
(Balearic
Islands,
Spain)

Humboldt
Current
System
(Puerto
Aldea, Chile)

Internal tissue of
the sponge
Amphilectus
digitatus
(Alaska)

Sandy sediment sample
collected at a depth of 1 m
from the shore of the Sea
of Japan, Russia

Motility – – + +

Morphology Rod-shaped
(0.76 μm
width and
1.2 μm
length)

Rod-shaped
(0.76 μm
width and
1.1 μm
length)

Rod-shaped
(0.8–0.9 μm
width and
1.1–1.6 μm
length)

Rod-shaped (0.7–0.9 μm
width and 1.8–2.2 μm
length)

Growth Nacl
(%)

0% – – s s

1% + + + +

10% + + + +

20% – – + +

Growth (°C) 4 °C + + + +

42 °C + + + +

Optimum pH ≅ 8 ≅ 8 6.5–8.5 7.5–8.5

Growth under
very low
nutrient
concentration

(+P+Fe+N+C) ++ ++ Non-tested Non-tested
(−P−Fe+N+C) ++ +

(+P+Fe−N+C) + +

(−P−Fe−N+C) + +

(+P+Fe+N−C) – –

(−P−Fe−N−C) – –

API 20NE test PNPG test; assimilation D-glucose,
D-mannitol, maltose and D-gluconate

+ + + +

Nitrate reduction, indole production, glucose
fermentation, arginine dihydrolase and
urease activity, aesculin hydrolysis,
gelatinase; assimilation of L-arabinose,
N-acetylglucosamine, D-mannose

– – – –

Caprate – w – +

Adipate – w – –

L-Malate w w + +

Citrate and phenylacetate w w – –

Enzyme
activities
(API ZYM)

Alkaline phosphate, esterase (C4), esterase
lipase (C8), acid phosphatase,
a-glucosidase
naphthol-AS-BI-phosphohydrolase

+ + + +

Lipase (C14), cystine arylamidase, trypsin,
a-chymotrypsin, a-galactosidase,
β-glucuronidase, β-glucosidase,
N-acetyl-β-glucosaminidase,
a-mannosidase, a-fucosidase

– – – –

Valine arylamidase, β-galactosidase – – w –

Symbols +, −, w, and s, indicate positive, negative, weak, and slow reaction, respectively
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under low nutrient concentrations, both strains’ volume (μm3)
significantly increased (Fig. 4I).

Changes of N Concentrations

Long-Term Effect of N Long-term studies testing N2 as the
sole N source showed differential effects between UIB 001
and 4B UA (ANOVA, p < 0.05, Fig. 5A and B). N-
depletion for UIB 001 reduced cell growth by 3-fold (μ,
0.18 d−1 and Tg, 3.87 d) compared to optimal nutrient con-
ditions (μ, 0.51 d−1 and Tg, 1.37 d) (Bonferroni test,
p < 0.05, Fig. 5B). Nevertheless, UIB 001 strain was capa-
ble to grow under this condition, showing its diazotrophic
features. Although we did not find any annotated nif genes,
UIB 001 possesses a cbb3-type cytochrome oxidase
(locus_Tag: HA399_01480) found in N2-fixing organisms
and had active N2-fixation rates (Supplementary Fig. S2A).

Besides, both strains were capable of growth in Burk’s N-
free medium, recommended for detecting N2-fixing organ-
isms [64] (Supplementary Fig. S2B).

Short-Term Effects of N along with pH Different N sources
(i.e., inorganic, NH3, and/or organic, Tris) triggered differ-
ent effects on UIB 001 and 4B UA at pH 8 after 96 h
(ANOVA, p < 0.05, Fig. 5C). For both, increasing N
sources had a positive impact, reaching the highest growths
at 0.8 mM of NH3 and 1 mM of Tris for UIB 001 and 4B
UA, respectively (Fig. 5C). However, combining inorganic
and organic N sources (i.e., 1 mM Tris + 0.8 mM NH3)
impaired the growth of both strains (Bonferroni test,
p < 0.05, Fig. 5C). At low N levels (i.e., 0.08 mM NH3),
UIB 001 responded better than 4B UA. However, organic N
(i.e., 1 mM Tris) was more toxic to UIB 001 than 4B UA
(Bonferroni test, p < 0.05, Fig. 5C).

Fig. 4 Microscopic analysis of Cobetia sp. UIB 001 and 4B UA under
different N, P, and Fe nutrient regimes. A Optimal condition, +N + P +
Fe + C, for the UIB 001 strain. BOptimal condition, +N + P + Fe + C, for
the 4BUA strain.CN2 as the sole N source, −N+ P + Fe + C, for the UIB
001 strain. D N2 as the sole N source, −N+ P + Fe + C, for the 4B UA
strain. E P- and Fe-depleted condition, +N−P−Fe + C, for the UIB 001

strain. F P- and Fe-depleted condition, +N−P−Fe + C, for the 4B UA
strain. G Nutrient-depleted condition, −N−P−Fe + C, for the UIB 001
strain. H Nutrient depleted condition, −N−P−Fe + C, for the 4B UA
strain. I Length, width, and volume changes derived from changes in
nutrient regimes for Cobetia sp. UIB 001 and 4B UA. For A–H, micro-
scopical images were taken at ×100 with 4.73 of zoom
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Lowering pH to 6 or 7 affected growth to a higher degree
than the N source itself (ANOVA, p < 0.05, Fig. 5D). Indeed,
the significant differences found previously were banished
when pH was dropped, without any differences between
strains (ANOVA, p > 0.05, Fig. 5D), except for UIB 001 at
pH 7, in which 0.8 mM of NH3 had a positive impact on cell
abundance (Bonferroni test, p < 0.05, Fig. 5D).

Changes of P and Fe Concentrations

Long-Term Effect of P and Fe Not surprisingly, higher growth
rates (μ) were reached under optimal PO4

3− and Fe concen-
trations than at low PO4

3−, decreasing growth ≃ 2-fold for
both strains, and more pronouncedly at low Fe levels
(ANOVA, p < 0.05, Fig. 6A and B). Noteworthy, higher μ
and lower Tg were reached by UIB 001, compared to 4B
UA, independently of the nutrient levels (Bonferroni test, p
< 0.05, Fig. 6B).

Short-Term Effects of P and Fe Along with pH Short-term
studies (during 96 h) showed that for both strains, PO4

3−/Fe
concentrations and pH levels (6, 7, and 8) variations signifi-
cantly affected cell abundances (ANOVA, p < 0.05, Fig. 6C).
Overall, low concentrations of PO4

3− and Fe combined with
different pH levels (6–8) did not significantly differ between
strains (ANOVA, p > 0.05, Fig. 6C), albeit a higher tolerance
to lower pH was observed for the UIB 001 strain. However, at
pH 8 and low PO4

3− and Fe levels, UIB 001 grew as it did at
high PO4

3− and Fe levels (Bonferroni test, p > 0.05, Fig. 6C),
as opposed to 4B UA (Bonferroni test, p < 0.05, Fig. 6C).
Decreasing pH levels had a dramatic effect on cell abundances
(i.e., pH 6 and 7) (Bonferroni test, p < 0.05, Fig. 6C), showing
that pH 8 was the optimum for UIB 001 and 4B UA strains
independently of PO4

3− and Fe levels (Fig. 6C).

Effect of Low Concentrations of P and Fe The responses to low
PO4

3− and Fe availability (under long term or short term) for
both strains revealed an independent effect of P and Fe (P

Fig. 5 Nitrogen (N) concentration effect for Cobetia sp. UIB 001 and 4B
UA. A–B Long-term effect. A Growth curve under the optimal condition
and N2 as the sole N source and B growth rate (μ, d−1, as a bar chart) and
duplication time (Tg, d, as a line) under the optimal condition and N2 as
the sole N source.C–D Short-term (cell abundance, cell mL−1) after 96 h
under different N sources (inorganic, NH3, or organic, Tris) atC pH 8 and

D at pH 6 and 7. Values are the mean ± SE between the replicates. Letters
(for UIB 001) and numbers (for 4B UA) indicate significant differences
according to the treatment inside each strain, and asterisks (*) indicate
significant differences between each strain inside each treatment, using a
post hoc test (Bonferroni test, p < 0.05) after ANOVA over the whole
dataset
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response >0, Fe response >0 and P + Fe response >0, p < 0.05,
Fig. 6D). The threshold for P and Fe was slightly lower for
UIB 001 than 4B UA, displaying a better response to low
concentrations of P and Fe.

Effects of P on APA and Structure of PhoD The alkaline phos-
phatase activity (APA)was extremely influenced by pH at low
PO4

3− levels, i.e., 0.005 μM (ANOVA, p < 0.05, Fig. 7A).
Alkaline pH (i.e., pH 8) enhanced APA an average of 40-
fold in both strains compared with the acidify conditions
(Bonferroni test, p < 0.05, Fig. 7A). Different Fe levels
(1 nM–1 μM) did not cause any significant differences in
APA at [Low PO4

3−], i.e., 0.005 μM (ANOVA, p < 0.05,
Fig. 7A). Increasing levels of PO4

3− (up to 100 μM) induced
different inhibition responses on each strain (ANOVA,

p < 0.05, Fig. 7B), detecting positive feedback with Fe, es-
pecially for the Cobetia sp. UIB 001 (Fig. 7B). For the UIB
001, at pH 8 and high levels of Fe (1 μM), APA did not
respond to higher P levels (up to 50 μM) and required the
highest PO4

3− level (100 μM) to inhibit its activity
(Bonferroni test, p < 0.05, Fig. 7B), unlike for 4B UA in
which APA at 50 μM was significantly inhibited
(Bonferroni test, p < 0.05, Fig. 7B).

Structural analysis revealed the potential protein structure
and the catalytic center for both PhoD of UIB 001 and 4B UA
(Fig. 7 C and D). PhoD sequences shared an identity of 88%,
while at the structural level, they shared an identity of 76%.
Both PhoD had the same catalytic center as predicted for the
PhoD of C. amphilecti KMM 296 (WP_043333989): ASP
(241/238), TYR (244/241), ASP (306/303), HIS (308/305),

Fig. 6 Phosphorus (P) and Fe concentration effect for Cobetia sp. UIB
001 and 4B UA. A–B Long-term effect studies. A Growth curve under
optimal nutrient condition and low PO4

3− and/or Fe concentrations
(0.005 μM and/or 1 nM, respectively) and B growth rate (μ, d−1, as a
bar chart) and duplication time (Tg, d, as a line) curve under optimal
nutrient condition and low PO4

3− and/or Fe concentrations. C Short-
term studies (cell abundance, cell mL−1) after 96 h under different PO4

3

− and Fe concentrations at pH 6, 7, and 8. In A-C values are the mean ±
SE between the replicates. Letters (for UIB 001) and numbers (for 4B
UA) indicate significant differences according to the treatment inside

each strain, and asterisks (*) indicate significant differences between each
strain inside each treatment, using a post hoc test (Bonferroni test,
p < 0.05) after ANOVA over the whole dataset. PO4

3− is represented as
Pi. D Log P and Fe responses. Each data point represents each replicate
(red: UIB 001; blue: 4B UA) in which X-axis is the P log response and Y-
axis is the Fe log response. Dashed red (forCobetia sp. UIB 001) and blue
lines (Cobetia sp. 4B UA) represent the critical threshold values (data
points outside the critical values are significantly different (at p = 0.05)
from P0Fe0)
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ASN (312/309), ASN (313/310), ARG (375/372), ASP (472/
469), and HIS (474/471) (Fig. 7D).

Effects of N, P, and Fe on ROS Production Along with pH
Different pH levels had a significant effect on ROS production
for both strains (ANOVA, p < 0.05, Fig. 8A). Alkaline pH
(i.e., pH 8) reduced an average of 15-fold ROS compared with
the acidify conditions (Bonferroni test, p < 0.05, Fig. 8A). At
pH 8, ROS production was affected by the different sources
of inorganic and organic N (ANOVA, p < 0.05, Fig. 8B).
However, no significant differences were achieved between
strains (ANOVA, p > 0.05, Fig. 8B), decreasing ROS pro-
duction with an increase of N (ANOVA, p < 0.05, Fig. 8B).
Indeed, different PO4

3− and Fe levels did not have any ef-
fect on ROS production for both strains (ANOVA, p > 0.05,
Fig. 8C), except for 4B UA at high concentrations of PO4

3−

and Fe, with ROS production decreasing significantly

compared to [Low PO4
3−-High PO4

3−] condit ion
(Bonferroni test, p < 0.05, Fig. 8C).

Discussion

For decades, the study of microbial biodiversity has sought to
determine why microbes live where they live, embracing the
tenet that “Everything is everywhere, but the environment
selects” [33]. Here, we isolate and identify two strains of the
same species (i.e., as endophytic and epiphytic bacteria,
Cobetia sp. UIB 001 and 4B UA) which thrive on two differ-
ent seagrasses in contrasting environments: Posidonia
oceanica found in the Mediterranean Sea (MS) and the
Heterozostera chilensis (formerly H. nigricaulis) found in
the Humboldt current system (HCS). As noticed before, the
MS is an oligotrophic semi-enclosed sea, where P. oceanica is

Fig. 7 P-acquisition mechanisms forCobetia sp. UIB 001 and 4B UA.A
Alkaline phosphatase activity (APA) under low levels of PO4

3−

(0.005 μM) and differential concentration of Fe (1 nm and 1 μM). B
APA under different levels of PO4

3− (0.005–100 μM). Solid bars are
low Fe level conditions, whereas the stripped bars are under high levels
conditions. Values are the mean ± SE between the replicates. Letters (for
UIB 001) and numbers (for 4B UA) indicate significant differences

according to the treatment inside each strain using a post hoc test
(Bonferroni test, p < 0.05) after ANOVA over the whole dataset. PO4

3−

is represented as Pi. C–D Protein structural analysis base on the descrip-
tion of the PhoD of C. amphilecti KMM 296. C Structural analysis of
PhoD from UIB 001 (red) and 4B UA (blue) strains. D Catalytic center
for PhoD: UIB 001 strain, in red (aa letters) and blue (aa structure), and
4B UA, in black (aa letters) and yellow (aa structure)
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widely extended, while the HCS is a nutrient-rich cold current
where H. chilensis thrives in just a few locations, settled rela-
tively recently [21]. Our results suggest that regardless of the
contrasting environments considered, the same endophytic
and epiphytic bacteria can perform analogous functions and
adapt similarly to stressful scenarios.

After culturing the whole epiphytic community of both
seagrasses, the gamma-proteobacteria Cobetia sp. (UIB 001
and 4B UA) arose above all in both seagrasses. Although we
made an effort to taxonomic classify these isolates, it was only
possible to determine that both strains are the same Cobetia
species, presumably C. amphilecti, and they do not belong to
the Cobetia marina species. Due to the lack of type strain
genome sequences of the genus Cobetia, precise taxonomic
classifications cannot be performed from the genomic point of
view. From a genomic view, high G + C % contents were
detected in both strains (i.e., 62–63%), which has previously
been correlated to N availability [65]. This means that the
ecological niche of Cobetia sp. UIB 001 and 4B UA are rich
in N, probably by the high rates of N2-fixation detected in
P. oceanica (i.e., higher than the rest of tropical seagrasses)
[9] and the high N availability in the HCS [19]. Even though

Balabanova et al. (2016ab) did not show physiological data, it
revealed the potential genomic adaptation to the changing
nutrient regimes of C. amphilecti, reporting different metabol-
ic and biochemical profiles between differential strains placed
in different marine niches [66, 67]. Yet, this work reveals that
the Cobetia sp. isolates respond differently to seawater condi-
tions. Thus, we hypothesize that these different traits might be
the consequence of a different genomic evolution subjected to
environmental pressures that led to the development of spe-
cific proteins and the significant number of SNPs that were
found.

According to classical classifications [68, 69], both
Cobetia sp. strains (UIB 001 and 4B UA), might belong to
the group of oligotrophic bacteria, as they were capable of
growing with minimal content of organic matter and nutrients
(i.e., 1–15mg of CmL−1 and N2 as the sole N source). Indeed,
these strains may be considered as extreme oligotrophic bac-
teria, as they were able to grow with N2 as the sole N source,
and P- and Fe-depleted conditions, being just dependent on
the carbon (C) source (e.g., citrate or glucose), as metabolic
tests revealed. Oligotrophic bacteria usually have small sizes
(≤ 1 μm) to optimize the low availability of resources

Fig. 8 Reactive oxygen production (ROS) production for Cobetia sp.
UIB 001 and 4B UA. A At different pH levels (6–8). B At different
concentrations of N source. C At different combinations of PO4

3− and
Fe. Values are the mean ± SE between the replicates. Letters (for UIB

001) and numbers (for 4B UA) indicate significant differences according
to the treatment inside each strain using a post hoc test (Bonferroni test,
p < 0.05) after ANOVA over the whole dataset. PO4

3− is represented as Pi
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available by increasing their S/V ratio. However, microbes
can expand their size to increase the cell surface area to ac-
commodate enough uptake sites to meet uptake demands [70],
as observed in both Cobetia sp. Through this plasticity to
respond to the changing environment, bacteria play a key role
in marine food webs and nutrient recycling (e.g., accumula-
tion, export, remineralization, and transformation of nutri-
ents), being a reservoir for nutrients as C, N, and P [71, 72],
as Cobetia sp. does for the sustenance and maintenance of
both seagrasses.

The ability to grow with N2 as the sole N source and the
N2-fixation activity found in the UIB 001, remarks its poten-
tial role as N2-fixer, as previously seen in other Cobetia spp.,
isolated as hydrocarbon-utilizing microbiota [73, 74].
Although non-putative N2-fixation genes annotated were
found in their genomes (i.e., UIB 001 and 4B UA), genes
typically involved in N2-fixing bacteria as ADP-ribosyl
(dinitrogen reductase) glycohydrolase (draG), which products
can regulate the nitrogenase complex (i.e., formed by NifH,
NifK, and NifD) [75], and cbb3-type cytochrome c oxidase,
required for symbiotic N2-fixation [76], were found in both
bacteria. This observationmay suggest that the UIB 001might
contain alternative genes for N2-fixation. Noteworthy, the uti-
lization of trace amounts of atmospheric ammonia through
high-affinity ammonium transporters (AmtB) might be also
a potential source of N for extreme oligotrophic bacteria
[77], which explains why isolated 4B UA was capable of
growth in (semi)solid media with N2 as sole N source.

In vast oligotrophic areas of the ocean, N2-fixation is lim-
ited by P [78], while, in eutrophic coastal areas, P can trigger
harmful algal blooms [79]. In our experiments, only the 4B
UA strain isolated from the eutrophic HCS was P limited, as
opposed to the oligotrophic MS isolate (UIB 001) that was
relatively unaffected. Contrariwise, APA of the UIB 001
strain was prolonged with a higher concentration of PO4

3−

(without enhancing ROS production, unlike the 4B UA), sug-
gesting a higher P-demand to achieve homeostasis.
Previously, it was observed that under low concentrations of
P, bacteria associated with P. oceanica (e.g., Halothece sp.
species) were able to release dissolved inorganic phosphorus
(DIP) from dissolved organic phosphorus (DOP) through the
alkaline phosphatases (APases), which are expressed and ac-
tivated through the PhoB-PhoR system [30]. Alkaline phos-
phatase D (PhoD) varied between the two strains at the se-
quence and structural levels, 88% and 76%, respectively,
pointing to the structural differences as the most relevant in
the differential APA, due to the lack of differences at the
catalytic center.

Both APases are Fe-dependent (such as antioxidant en-
zymes or the nitrogenase complex [27, 80]) and are therefore
impacted by the extended iron limitation throughout the
ocean, including the MS and the HCS [17]. For both strains,
APAwas enhanced by increasing Fe levels since we predict in

our PhoD model the coordination with one Fe3+ atom.
However, high Fe levels did not induce ROS production at
the optimal pH 8. Ferric iron, Fe3+, is insoluble at neutral pH,
but at a lower pH, its solubility increases. At acidified pH,
organic ligands have less affinity for Fe, reducing Fe absorp-
tion and thus affecting cell growth [81]. Moreover, ROS pro-
duction was enhanced under acidic pH (i.e., pH 6), possibly
by lower intracellular Fe content for antioxidant enzymes
(e.g., superoxide dismutase, catalase, glutathione reductase,
or glutathione peroxidase).

The increasing carbon dioxide (CO2) concentrations
emitted to the atmosphere are irremissibly increasing
ocean acidification (OA), posing serious risks to marine
life [82]. However, lower pH levels may ameliorate some
of the concomitant impacts of OA, i.e., reducing the im-
pacts of un-ionized NH3 on the activity of some cytosolic
enzymes [83]. Both Cobetia sp. were significantly affected
by high N sources at pH 8, but not at pH 6 or 7, not
accompanied by ROS increments, suggesting that antiox-
idant enzymes were not affected by un-ionized NH3.
Moreover, it has been observed that OA may play a sig-
nificant role in P eutrophication [84]. Previous works
pointed to the sensitivity of the APA of Cobetia spp. ex-
posed to acidification [61, 85, 86].

Our multifactorial design showed that the same species
growing in different ocean basins (i.e., MS or HCS) dis-
plays different physiological and biochemical responses to
different nutrient regimes (N, P, and/or Fe). Not surprising-
ly, the Mediterranean strain (exposed to oligotrophic water
of the MS) coped with low N and P concentrations more
efficiently. Nonetheless, the appearance of oligotrophic
bacteria in nutrient replete waters (i.e., 4B UA) may point
to the origin of this species, as its host,H. chilensis, reached
the Chilean coast after long-distance dispersal from its na-
tive East Australian Current [21], characterized by warm
waters and oligotrophy. Moreover, this species settled
~30°S, where a drop in primary production has been asso-
ciated with the poleward migration of the South Pacific
Anticyclone [87], pointing to substrate availability as the
more important factor controlling bacterial activity and
abundance in the HCS [88].

Conclusions

In summary, the present study brings new clues to better un-
derstand how biotic (host) and abiotic (i.e., nutrient levels and
pH) interactions affect the plasticity and phenotypic acclima-
tion of epiphytic bacteria thriving in contrasting environ-
ments, pointing to the intriguing relationships between epi-
phytes and seagrasses on the nutrients cycling around the
global ocean.
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