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Abstract
Host-microbiome dynamics occurring in the yellow fever mosquito (Aedes aegypti) contribute to host life history traits, and
particular bacterial taxa are proposed to comprise a “core” microbiota that influences host physiology. Laboratory-based studies
are frequently performed to investigate these processes; however, experimental results are often presumed to be generalizable
across laboratories, and few efforts have been made to independently reproduce and replicate significant findings. A recent study
by Muturi et al. (FEMS Microbiol Ecol 95 (1):213, 2019) demonstrated the food source imbibed by laboratory-reared adult
female mosquitoes significantly impacted the host-associated microbiota—a foundational finding in the field of mosquito
biology worthy of independent evaluation. Here, we coalesce these data with two additional mosquito-derived 16S rRNA gene
sequence data sets using a unifying bioinformatics pipeline to reproduce the characterization of these microbiota, test for a
significant food source effect when independent samples were added to the analyses, assess whether similarly fed mosquito
microbiomes were comparable across laboratories, and identify conserved bacterial taxa. Our pipeline characterized similar
microbiome composition and structure from the data published previously, and a significant food source effect was detected
with the addition of independent samples, increasing the robustness of this previously discovered component of mosquito
biology. However, distinct microbial communities were identified from similarly fed but independently reared mosquitoes,
and surveys across all samples did not identify conserved bacterial taxa. These findings demonstrated that while the main effect
of the food source was supported, laboratory-specific conditions may produce inherently differential microbiomes across inde-
pendent laboratory environments.
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Introduction

Microbial communities are an important component of mos-
quito biology, although the true nature of these dynamic rela-
tionships is not yet fully understood. Gut bacteria contribute to
the fundamental life history traits of blood digestion and egg
production [1], while both gut and whole-body bacteria con-
tribute to development [2–4] of the yellow fever mosquito

(Aedes aegypti) and other mosquito species. Specifically, the
reduction of the gut microbial community negatively impact-
ed digestive processes and reduced egg production [1].
Furthermore, the presence or absence of particular bacterial
taxa differentially impacted host development [2, 3], and lar-
val development was significantly stymied when hosts were
deprived of microbial communities [4]. However, the relative
significance of these mosquito-microbe interactions remains
unclear [5]. Certain bacterial taxa were detected across multi-
ple mosquito studies in natural and laboratory environments
and have been proposed to constitute a “core” microbiota that
plays significant roles in mosquito physiology [6, 7], although
no consensus has been reached regarding the validity of this
assertion [8].

Variable environmental microbiota contributes to disparate
host-associated microbiomes [9, 10], making the identifica-
tion of significant bacterial taxa difficult when analyzing
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mosquito-associated microbial communities originating from
natural environments. Laboratory-based experiments that rear
mosquitoes under controlled conditions are often performed to
mitigate these impacts, and thus investigate directly specific
experimental treatments’ effects on mosquito-microbiome dy-
namics. For example, a recent study discovered that the food
source fed to laboratory-reared adult female mosquitoes (new-
ly emerged adults that had not consumed a meal [hereafter
referred to as Unfed] of sugar, human blood [3- and 7-day
digestion], chicken blood, or rabbit blood) impacted various
characteristics of the mosquito-associated gut microbiota [11].
These results complement a prior study that revealed influ-
ences of host diet on the microbiota associated with the mos-
quito Anopheles gambiae [12]. Significantly, gut microbial
communities can influence host-pathogen interactions and
the mosquito’s vector competence (capacity to contract and
transmit a variety of pathogens) [13–18]. Studying factors that
cause shifts in mosquito-associated microbial communities
could reveal important characteristics of mosquito biology
that drive the global spread of pathogens and impact host life
history traits.

Although these findings and those from other laboratory-
based studies have proven invaluable to our understanding of
how biotic and abiotic factors influence microbial communi-
ties, it is often presumed that laboratory dynamics are gener-
alizable, and efforts to reproduce and replicate significant re-
sults are rarely performed. Studies characterizing similarly
reared mosquito microbiomes across laboratories are essential
to validate this widespread assumption and promote the accu-
rate identification of significant mosquito-microbe interac-
tions. Significantly, these studies investigate microbial com-
munities isolated from mosquito guts, other anatomic regions,
or the entire animal body, and inter-study comparisons of
experimental findings must take these differences into account
when interpreting results.

Bacterial taxa in the genus Clostridium identified from
whole body microbial communities [4], and the genera
Asaia, Enterobacter, Pseudomonas, Elizabethkingia, and
Serratia from gut microbiota [19–21] have been detected
across independent mosquito samples [4, 19, 20] collected
from laboratory environments. Although this could indicate
that certain significant microbes are conserved across labora-
tory settings, there is also evidence that the gut microbiome of
mosquitoes is determined entirely by the insectary environ-
ment in which the animals are reared [22]. Additional research
demonstrated that the laboratory environment and other study-
specific conditions, such as the sequential cohort of the exper-
imental animals and the microbiota found in the larval rearing
water, impact host-associated microbiomes in the mosquito
species A. gambiae and Aedes albopictus [23]. These findings
suggest results produced from laboratory-based studies may
not be reproducible across different laboratory environments,
bringing in to question the validity of generalizing conserved

taxa-specific host-microbe dynamics without independent re-
production and replication of experimental results. The iden-
tification and confirmation of core laboratory microbes could
serve as an important first step in the unification of laboratory-
based mosquito microbiome studies. Reanalyzing data col-
lected from independent laboratory-based mosquito projects
may help to address these questions. We are not aware of any
studies that have attempted to compare independently pro-
duced laboratory-reared A. aegypti 16S rRNA gene sequence
data sets.

Disparate methods used to process 16S rRNA sequencing
data introduce challenges for comparative analyses of inde-
pendently collected data. For example, amplicon sequencing
data are prepared with different processing methods, such as
differential sequence error-correction strategies, that can affect
downstream analyses [24]. Disparate, pipeline-specific se-
quencing read quality filtering methods may also influence
results. Furthermore, different sequence clustering strategies
produce operational taxonomic units (OTUs) or amplicon se-
quence variants (ASVs) that vary in quality and utility [25].
Amplicon sequence variants are now widely considered supe-
rior to OTUs; however, past studies that performed OTU clus-
tering have not been re-evaluated with ASV-based methods.
In addition, distinct 16S sequence databases are used to assign
taxonomy to sequences, possibly influencing taxonomic iden-
tifications [26]. Finally, contaminant sequences introduced
through DNA extraction kits and other sources [27] are not
always accounted for due to the absence of negative control
sample sequencing during experimental workflows. Taken
together, these factors associated with microbiome research
can impede the replication and reproduction of previously
published results [28].

Normalizing inter-experimental data through the imple-
mentation of a conserved bioinformatics pipeline using the
same sequence data processing, clustering, taxonomic assign-
ment, and decontamination strategies could mitigate variation
resulting from disparate data handling protocols and promote
a more accurate coalescence and analysis of mosquito
microbiome data sets. Once normalized, laboratory-specific
effects could be incorporated and accounted for when
performing standardmicrobiome comparative analyses to pro-
vide a framework to test the reproducibility, replicability, and
robustness of previous findings and provide novel opportuni-
ties to investigate core laboratory-associated bacterial taxa and
the impact of experimental treatments on microbial
communities.

To advance the field’s understanding of the impact of food
source and differential mosquito-associated microbiota across
laboratory environments, we coalesced and re-analyzed the
sequencing data collected from gut microbiomes in Muturi
et al. 2019 (hereafter, Muturietal_2019), and from two addi-
tional laboratory-produced 16S data sets derived from whole-
body microbiomes for mosquitoes fed sugar (29 [hereafter,
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Hegdeetal_2018]) as well as newly emerged adults that had
not imbibed a meal (30 [hereafter, FrankelBrickeretal_2020]),
by implementing a unifying bioinformatics pipeline to nor-
malize these data for downstream analyses. The pipeline im-
plemented here (DADA2; 31) processed sequencing reads
similarly using conserved quality filtering and sequence-
error correction methods, merged reads into ASVs, and
assigned taxonomy using the same 16S rRNA gene sequence
reference database (SILVA v132; 32,33). Furthermore, reads
for each sample were rarefied to account for variable sequenc-
ing coverage across samples.

First, we evaluated whether our pipeline identified the
same prominent bacteria classified from the previous studies
to assess whether our pipeline detected microbes similarly to
those found previously. Then, we tested whether the signifi-
cant effect of food source on previously investigated and ad-
ditional diversity metrics was reproducible and replicable
when additional samples from other studies were added to
the analysis. We subsequently assessed whether microbial
communities harbored inmosquitoes fed the same food source
were comparable across laboratories. Finally, we surveyed all
experimental samples for the presence of previously proposed
core laboratory microbes to evaluate the prevalence of these
taxa across food sources and laboratories.

We predicted that our pipeline would successfully identify
prominent bacterial taxa from each of the studies analyzed and
reproduce the major finding of a significant effect of food
source on laboratory mosquito-associated microbiota, howev-
er, that distinct microbiome characteristics (the overall diver-
sity and relative abundance distribution of microbial commu-
nity members) would be detected for microbiota harbored in
mosquitoes fed the same food source but originating from
different laboratories. We also predicted that core bacterial
taxa would be observed due to the significant roles that mi-
crobes play in mosquito physiology. Significantly, the studies
analyzed here provided data derived from the gut-
(Muturietal_2019) and whole body- (Hegdeetal_2018,
FrankelBrickeretal_2020) associated microbiota, which re-
quired us to tailor our interpretations of results to account for
potentially disparate characterizations of microbes found
within, and external to, the mosquito gut.We proceeded under
the assumption that data from the whole body constituted a
characterization of the complete mosquito-associated
microbiome (including the gut), whereas gut microbiome
samples represented a subset of the whole-body microbiota.

Results

Alpha Diversity Analyses

Differences across food sources were detected for both Simpson
(F(5, 201) = 11.134, P < 0.0001; Fig. 1a, Table 1) and Shannon

(F(5, 202) = 9.992, P < 0.0001; Fig. 1b, Table 1) diversity indices,
showing a significant effect of food source on the overall diver-
sity and evenness of microbial communities. Post-hoc pairwise
comparisons revealed significant differences between particular
food sources after Bonferroni correction for both metrics, sug-
gesting certain food sources had more pronounced influences on
measures of alpha diversity (Table S1).

A significant study effect was detected for the Unfed and
Sugar groups for both metrics ([Simpson:W = 442, P < 0.001;
W = 777, P < 0.0001, respectively; Fig. 1c, Table 1],
[Shannon: W = 457, P < 0.001; W = 750, P < 0.0001, respec-
tively; Fig. 1d, Table 1]), revealing differential microbial com-
munity diversity and evenness across studies within shared
food source groups (Table 1).

Beta Diversity Analyses

After total read processing, 743 ASVs were identified across
209 samples. A significant food source effect for all beta di-
versity metrics tested was detected (Bray-Curtis dissimilarity
[R = 0.314,P < 0.0001; Fig. 2a], unweighted UniFrac distance
[R = 0.417, P < 0.0001; Fig. 2d], weighted UniFrac distance
[R = 0.377, P < 0.0001; Fig. 2g]; Table 1), demonstrating an
influence of food source on microbiome composition and
structure. PCoA plots were constructed to visualize relative
clustering of samples for each metric and captured higher
relative variation along the x-axis (Bray-Curtis dissimilarity:
23%, unweighted UniFrac distance: 26%, weighted UniFrac
distance: 35.9%). Relatively high R values generated from
pairwise ANOSIM, as well as distinct clustering of samples
from certain food groups, provided high confidence in the
significant influence of food source on the metrics tested. In
particular, the Unfed and Sugar groups significantly differed
for many of the comparisons with the other groups for Bray-
Curtis dissimilarity, indicated by low P-values and relatively
high R values (Table S1). Furthermore, differences were
found between the Human_3 and Human_7 blood groups as
well as several other comparisons. Please see Table S1 for a
detailed summary of all results from pairwise ANOSIM. Only
three significant pairwise comparisons with the Unfed group
were identified for unweighted UniFrac distance, whereas
Human_3 and Human_7 were the only other significant com-
parison for this metric. Significant pairwise differences in
group dispersions were detected between certain food sources
for all metrics and across studies (Table 1; Table S1), reveal-
ing differential within-group variation possibly leading to
false positives produced by ANOSIM and PERMANOVA.
In particular, dispersions of Bray-Curtis dissimilarity and un-
weighted UniFrac distance in the Unfed group significantly
differed with many of the other groups (Table S1). However,
PCoA plots show distinct centroids of Unfed clusters relative
to many of the other groups (Figs. 2a, d, g), increasing confi-
dence in these results.
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A significant study effect was found for both Unfed and
Sugar groups for Bray-Curtis dissimilarity (F (1, 47) = 9.577,
R2 = 0.169, P < 0.0001, Fig. 2b; F (1, 58) = 114.13, R2 = 0.663,
P < 0.0001, Fig. 2c, respectively), unweighted UniFrac dis-
tance (F (1, 47) = 12.75, R2 = 0.213, P < 0.0001, Fig. 2e; F (1,

58) = 29.229, R2 = 0.335, P < 0.0001, Fig. 2f, respectively),
and weighted UniFrac distance (F (1, 47) = 16.038, R2 =
0.254, P < 0.0001, Fig. 2h; F (1, 58) = 186.43, R2 = 0.763,
P < 0.0001, Fig. 2i, respectively) (Table 1), demonstrating that
microbial community composition and structure associated
with mosquitoes fed the same food source differed across
studies (Table 1). In addition, differential intra-study beta di-
versity variation was found for comparisons of unweighted
UniFrac distance across studies within the shared food groups
(Table 1); however, distinct clustering was observed for these
comparisons (Figs. 2e, f).

Bacterial Taxa Relative Abundance

Relative abundances of prominent families across all studies
and food groups were calculated (Fig. S1, Table S2). Families
identified from the Muturietal_2019 samples reproduced

generally the identification and quantification of major taxa
published previously. Specifically, Enterobacteriaceae
(Proteobacteria) and Weeksellaceae (Bacteroidetes) were
present at relatively high abundance across all blood groups
(Enterobacteriaceae [Human_3: 70.89%, Human_7: 34.85%,
Chicken: 22.7%, Rabbit: 36.48%];Weeksellaceae [Human_3:
21.93%, Human_7: 32.31%, Chicken: 61.37%, Rabbit:
47.26%]). In contrast, Nocardioidaceae (Actinobacteria) was
found at intermediate abundance in Human_7 (22.53%) and
Chicken (9.65%) groups, but at very low levels in Human_3
(3.25%) and Rabbit (0.04%) groups. Furthermore, this family
was most abundant in the Unfed and Sugar groups (40%,
65.68%, respectively), followed by Microbacteriaceae
(Actinobacteria, 26.50%) in the Unfed group and
Acetobacteraceae (Proteobacteria, 22.84%) in the Sugar
group. In addition, the quantification of major families from
FrankelBrickeretal_2020 samples reproduced largely the pre-
v ious ly pub l i shed f i nd ings . Burkho lde r i aceae
(Proteobacteria) was identified as the dominant family
(40.62%), followed by Pseudomonadaceae (Proteobacteria,
7.93%), Staphylococcaceae (Firmicutes, 7.23%), and
Enterobacteriaceae (Proteobacteria, 5.64%). Family-

Table 1 Results from comparative statistical analyses for measures of
alpha and beta diversity across all food groups (Unfed [n = 49], Sugar
[n = 60], Human_3 [n = 27], Human_7 [n = 25], Chicken [n = 36], Rabbit

[n = 12]) and studies within shared food groups (Unfed (Muturietal_2019
[n = 30], FrankelBrickeretal_2020 [n = 19]), Sugar (Muturietal_2019
[n = 35], Hegdeetal_2018 [n = 25])

Group Metric DF DF.res F P (food
source)

ANOSIM (R) ANOSIM (P,
food source)

F (homogeneity) P
(homogeneity)

All food
sources

Simpson 5 201 11.134 < 0.0001
Shannon 5 202 9.992 < 0.0001
Bray-Curtis 5 203 0.314 < 0.0001 8.484 < 0.0001
Unweighted

UniFrac
5 203 0.417 < 0.0001 15.674 < 0.0001

Weighted
UniFrac

5 203 0.377 < 0.0001 6.829 < 0.0001

DF DF.res W P (study) PERMANOVA
(F)

PERMANOVA
(R2)

PERMANOVA
(P, study)

F (homogeneity) P (homogeneity)

Unfed Simpson 1 442 < 0.001
Shannon 1 457 < 0.001
Bray-Curtis 1 47 9.577 0.169 < 0.0001 2.481 0.121
Unweighted

UniFrac
1 47 12.750 0.213 < 0.0001 4.629 0.036

Weighted
UniFrac

1 47 16.038 0.254 < 0.0001 2.161 0.145

DF DF.res W P (study) PERMANOVA
(F)

PERMANOVA
(R2)

PERMANOVA
(P, study)

F (homogeneity) P (homogeneity)

Sugar Simpson 1 777 < 0.0001
Shannon 1 750 < 0.0001
Bray-Curtis 1 58 114.130 0.663 < 0.0001 2.170 0.143
Unweighted

UniFrac
1 58 29.229 0.335 < 0.0001 7.376 0.009

Weighted
UniFrac

1 58 186.430 0.763 < 0.0001 0.187 0.681

The food source effect on alpha diversity measures was calculated with a linear mixed effects model accounting for random effects across studies and the
study effect within the Unfed and Sugar groups with Wilcoxon rank sum tests. Differences in beta diversity across all food groups were calculated with
ANOSIM and across studies within the Unfed and Sugar groups with PERMANOVA. Differences in within-group beta diversity variation were
calculated with permutational statistical tests for the homogeneity of group dispersions. Values in boldface indicate statistically significant P-values
less than 0.05
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resolution characterization of the Hegdeetal_2018 samples
were reproduced largely as well. These communities were
dominated by taxa within the family Enterobacteriaceae
(P ro t eobac t e r i a , 89 . 60%) and lowe r l eve l s o f
Acetobacteraceae (Proteobacteria, 7.89%).

Calculations of relative abundance for themost abundant phyla
for the shared food groups revealed Proteobacteria, Actinobacteria,
Bacteroidetes, and Firmicutes were conserved as the most abun-
dant taxa in the Unfed group and Proteobacteria and
Actinobacteria in the Sugar group (Table 2, Fig. 3). However,
the relative abundances of Proteobacteria, Actinobacteria, and
Firmicutes were not conserved across studies in the Unfed (W=
500, P< 0.0001; W= 54, P< 0.0001; W= 529, P< 0.0001, re-
spectively) and Sugar (W= 870, P< 0.0001; W= 0, P< 0.0001;
W = 519, P = 0.04, respectively) groups. In the Unfed group,
Actinobacteria was significantly more abundant in
Muturietal_2019 (66.96%) relative to FrankelBrickeretal_2020
(10.39%), whereas Proteobacteria and Firmicutes were higher in
FrankelBrickeretal_2020 (64.53%, 14.51%) relative to
Muturietal_2019 (20.4%, 2.13%), respectively. In the Sugar
group, Actinobacteria dominated Muturietal_2019 (65.76%) but

was nearly indetectable in Hegdeetal_2018 samples (0.13%). In
contrast, Proteobacteria was the prominent phylum in
Hegdeetal_2018 (98.42%) and found in intermediate abundance
in Muturietal_2019 (33.71%). Inter-sample visualization with
heatmaps of relative abundances of families within these phyla
show patterns of intra-study variation in both abundances and
families present for both shared groups (Fig. S2).

Core Laboratory Microbes

Presence-absence surveys for genera within the Class
Clostridia (Firmicutes) for studies and food sources within
studies revealed differential prevalence of all genera in sam-
ples across studies (Table S3). Furthermore, while certain gen-
era were detected in relatively high numbers of samples within
each study, no single genus was universally found across all
samples within a study or food group. The genus found in the
greatest number of samples for each study and food source
was : Mutu r i e t a l_2019 (Unfed : Ethano l igenens
(Ruminococcaceae), 3.33% of samples; Sugar: no genera
from Clostridia present; Human_3 blood: No genera from

Fig. 1 Box plots of measures of Simpson (a, c), and Shannon (b, d) alpha
diversity indices and significant results from pairwise comparisons for
samples across all food groups (a, b, respectively; Unfed [n = 49],
Sugar [n = 60], Human_3 [n = 27], Human_7 [n = 25], Chicken [n =
36], Rabbit [n = 12]) and studies within shared food groups (c, d,
respectively; Unfed [Muturietal_2019 (n = 30), FrankelBrickeretal_2020
(n = 19)], Sugar [Muturietal_2019 (n = 35), Hegdeetal_2018 (n = 25)]).
Upper and lower limits of boxes represent quartiles around the mean;

horizontal lines within boxes represent median values within each
group compared. Significant pairwise comparisons of mean alpha
diversity values across all food source groups were calculated with
post-hoc simultaneous tests for general linear hypotheses with P-values
adjusted with the Bonferroni method (*P < 0.05, **P < 0.01,
***P < 0.001) and Unfed and Sugar samples across studies with
Wilcoxon rank sum tests (***P < 0.001)
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Clostr idia present; Human_7 blood: Romboutsia
(Peptostreptococcaceae), 4% of samples; Chicken blood:
Christensenellaceae_R-7_group (Christensenellaceae),

Romboutsia (Peptostreptococcaceae) , Roseburia
(Lachnospiraceae), Blautia (Lachnospiraceae), 2.78% of
samples; Rabbit blood: Ruminococcaceae_NK4A214_group

Fig. 2 Principal coordinates analysis plots of beta diversity measures
calculated across all food groups (column 1; Unfed [n = 49], Sugar [n =
60], Human_3 [n = 27], Human_7 [n = 25], Chicken [n = 36], Rabbit
[n = 12]), across studies within the Unfed group (column 2; Muturietal_
2019 (n = 30), FrankelBrickeretal_2020 (n = 19)), and across studies

within the Sugar group (column 3; Muturietal_2019 (n = 35),
Hegdeetal_2018 (n = 25)) for Bray-Curtis dissimilarity (a, b, c), un-
weighted UniFrac distance (d, e, f), and weighted UniFrac distance (g,
h, i), respectively. Ninety-five percent confidence ellipses are provided to
aid with the visualization of relative clustering

Table 2 Relative abundances of
prominent bacterial phyla in the
shared Unfed (Muturietal_2019
[n = 30], FrankelBrickeretal_
2020 [n = 19]) and Sugar
(Muturietal_2019 [n = 35],
Hegdeetal_2018 [n = 25]) food
groups and results from
comparative statistical analyses

Phylum Food
source

Muturietal_2019
(%)

FrankelBrickeretal_2020
(%)

DF W P
(study)

Actinobacteria Unfed 66.96 10.39 1 54 < 0.0001
Proteobacteria Unfed 20.40 64.53 1 500 < 0.0001
Bacteroidetes Unfed 9.93 2.15 1 323 0.438
Firmicutes Unfed 2.13 14.51 1 529 < 0.0001
Cyanobacteria Unfed 0.19 2.70 1 393 0.003
Deinococcus-Thermus Unfed 0.00 1.28 1 435 < 0.0001
Chloroflexi Unfed 0.00 0.52 1 315 0.077
Fusobacteria Unfed 0.00 0.44 1 345 0.01
Patescibacteria Unfed 0.00 0.49 1 360 0.004
Planctomycetes Unfed 0.00 0.04 1 300 0.224

Muturietal_2019 (%) Hegdeetal_2018 (%)
Actinobacteria Sugar 65.76 0.13 1 0 < 0.0001
Proteobacteria Sugar 33.71 98.42 1 870 < 0.0001
Patescibacteria Sugar 0.00 0.53 1 455 0.25
Firmicutes Sugar 0.01 0.06 1 519 0.04
Cyanobacteria Sugar 0.18 0.00 1 375 0.052
Bacteroidetes Sugar 0.05 0.24 1 464 0.416

W and P (study)-values were calculated with Wilcoxon rank sum tests. Values in boldface indicate statistically
significant P-values less than 0.05
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(Ruminococcaceae), Romboutsia (Peptostreptococcaceae),
Blaut ia (Lachnospiraceae ) , 8 .33% of samples) ;
FrankelBrickeretal_2020 (Unfed: Finegoldia (Family_XI),
Anaerococcus (Family_XI) , 42.11% of samples);
H e g d e e t a l _ 2 0 1 8 ( S u g a r : P a r a c l o s t r i d i u m
(Peptostreptococcaceae), 24% of samples).

Additional presence-absence surveys were conducted for
the genera Asaia (Acetobacteraceae), Enterobacter
(Enterobacteriaceae), Pseudomonas (Pseudomonadaceae),
El i zabe thk ing ia (Weekse l laceae ) , and Serra t ia
(Enterobacteriaceae) (Table 3) across all samples. Asaia
was found in the majority of samples from the Sugar groups
from Muturietal_2019 (88.57%) and Hegdeetal_2018
(100%), respectively. However, this genus was not detected
in any samples from the other groups. Enterobacter was de-
tected in the majority of samples for the Rabbit (58.33%) and
Chicken (52.78%) blood groups from Muturietal_2019, al-
though this genus was found at lower levels or entirely absent
across samples from the other groups. Pseudomonaswas pres-
ent in the majority of samples for FrankelBrickeretal_2020
(78.95%) and the Sugar samples from Muturietal_2019
(62.86%) and Hegdeetal_2018 (60%), but at lower levels in
the other groups. Elizabethkingia followed similar trends of
variable prevalence and was detected across the majority of
samples for the blood groups of Muturietal_2019 (Human_3:
62.96%; Human_7: 56%; Chicken: 61.11%; Rabbit: 50%) but
in lower numbers or completely absent from the other groups.
Finally, Serratia was detected in all samples from the two
Human blood groups from Muturietal_2019, but in fewer
samples or entirely absent from the other groups.

Discussion

The analyses presented herein are offered as a comprehensive
evaluation of the literature on the effect of food source on the

adult female A. aegypti-associated microbiota, assessment of
laboratory-specific microbiomes, and an investigation of the
prevalence of putatively significant core laboratory microbes.
Our data workflow implemented a normalized bioinformatics
pipeline to coalesce raw 16S sequencing data collected from
independent studies to mitigate variation incurred by data pro-
cessing methods and promote comparisons of host-associated
microbiota from laboratory-reared mosquitoes across
laboratories.

By processing raw 16S sequencing data collected from
different studies, we attempted to minimize differences found
across data sets incurred by variable read-processing strate-
gies. By implementing the DADA2 pipeline [31] for all se-
quencing data to produce ASVs, we minimized the likelihood
of differential outputs due to variable sequence-error correc-
tion strategies [24]. Furthermore, assigning taxonomy to all
ASVs using the SILVA v132 database [32, 33] as a reference
ensured consistent taxonomic designations across data sets
[26]. Contaminant sequences are often introduced to samples
through DNA extraction kits, PCR reagents, and other exter-
nal sources and can impact downstream microbiome charac-
terization [27]. Only one of the original data sets we analyzed
provided negative control sequences (DNA extraction kit re-
agents) and each study implemented a different DNA extrac-
tion protocol. Eleven putative contaminant sequences from
t h e n e g a t i v e c o n t r o l s w e r e i d e n t i f i e d f r om
FrankelBrickeretal_2020 and four of the eleven from
Hegdeetal_2018 samples and were removed prior to analysis.
Because no contaminant sequences were subtracted from
Muturietal_2019, we cannot be sure whether our
decontamination-based strategy served as an effective method
across samples from different studies. We acknowledge that
this likely influenced the representation of certain ASVs for
the data sets that did not provide negative control data; how-
ever, we prioritized removing known contaminant ASVs iden-
tified by our pipeline. It is possible that the four contaminant

Fig. 3 Bar plots of mean relative abundances of the most abundant bacterial Phyla across studies within the shared (a) Unfed (Muturietal_2019 [n = 30],
FrankelBrickeretal_2020 [n = 19]) and (b) Sugar (Muturietal_2019 [n = 35], Hegdeetal_2018 [n = 25]) food groups
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ASV s s h a r e d b e t w e e n H e g d e e t a l _ 2 0 1 8 a n d
FrankelBrickeretal_2020 represented laboratory independent
contaminants, whereas the seven sequences unique to
FrankelBrickeretal_2020 may have originated from laborato-
ry dependent sources. It is also possible that the different DNA
extraction protocols and mosquito storage conditions could
have produced divergent contaminant ASVs. However, the
absence of negative controls from two of the three studies
prevents further assessment of these concepts. We strongly
encourage future microbiome studies to include a comprehen-
sive suite of negative controls and provide all relevant infor-
mation pertaining to the DNA extraction protocols conducted
to promote more accurate removal of putative contaminant
sequences.

To assess the capacity of our pipeline to accurately analyze
data previously processed by different methods, we investi-
gated whether the prominent bacterial taxa reported in the
previous studies could be detected. Our pipeline identified
and quantified the same major families for the blood
(Enterobacteriaceae, Weeksellaceae, Nocardioidaceae,
Bu r kho l d e r i a c ea e ) , S ug a r (Noca rd i o i d a c ea e ,
Acetobacteraceae), and Unfed (Nocardioidaceae ,
Microbacteriaceae, Burkholderiaceae) groups originally
characterized in Muturietal_2019 (Fig. S1, Table S2), demon-
strating taxonomic assignments for these data were conserved
despite disparate read processing methods. Similar accuracy
was found for our analyses of the data provided in
F r a n k e l B r i c k e r e t a l _ 2 0 2 0 , w h i c h i d e n t i f i e d
Bu r k h o l d e r i a c e a e , P s e u d omo n a d a c e a e , a n d
Staphylococcaceae as the prominent families (Fig. S1,
Table S2). Family-level characterization was also conserved
for Hegdeetal_2018, where Enterobacteriaceae from the
Phylum Proteobacteria dominated microbiomes. These gener-
al results indicate our pipeline was effective at reproducing
prominent taxa identified previously and suggest the charac-
terization and quantification of major microbial community
members may not be substantially impacted by differential
bioinformatics pipelines implemented during data processing.

In addition, we investigated whether the significant effect
of adult food source on the host-associated microbiome could
be reproduced for alpha and beta diversity metrics previously
analyzed by Muturietal_2019. The significant impact of food
source was reproduced for measures of Shannon diversity
(Fig. 1b, Table 1) and Bray-Curtis dissimilarity (Fig. 2a,
Table 1). The addition of samples to the Unfed and Sugar
groups did not impact this overall significant effect, increasing
the robustness of the previously published findings. These
results suggest that while our pipeline did not replicate all
significant pairwise comparisons previously found in
Muturietal_2019, the conserved detection of the major impact
of food source and the identification of prominent taxa at the
family level provide support that our pipeline was suitable for
inter-study comparative analyses.Ta
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Additional metrics were calculated for alpha (Simpson
[Table 1; Table S4, Fig. 1a]) and beta (unweighted and
weighted UniFrac distances [Table 1, Figs. 2d, g, respective-
ly]) diversity indices, providing added information to the find-
ings published previously in Muturietal_2019. A strong food
source effect for Simpson diversity complements the previous
(and now reproduced) finding of distinct Shannon diversity
measures across certain food groups, revealing that the micro-
biota had differential levels of evenness across food sources.
Although the main food source treatment effect was
reproduced, differences in the specific pairwise comparisons
underlying these trends were identified (Table S1).
Specifically, our results show microbiota harbored in newly
emerged adults were either less diverse or not significantly
different from the other groups, contrary to the higher diver-
sity previously reported for these mosquitoes. We also identi-
fied previously undetected differences between blood groups
for the Shannon diversity index. These divergent results may
derive from specific differences in the way data were proc-
essed between studies. Our pipeline organized sequences into
ASVs rather than OTUs, possibly resulting in differential cal-
culations of these metrics. Furthermore, our implementation
of divergent read processing and filtering methods relative to
those performed previously may have also contributed to
these differences. These findings indicate that the implemen-
tation of a different bioinformatics pipeline yielded similar
conclusions regarding the main treatment effect but altered
the characterization of specific relationships underpinning
these results. Analyses of unweighted and weighted UniFrac
distances uncovered significant differences for certain
pairwise comparisons between the Unfed and the other food
groups (Table S1). Significant differences between the human
blood groups were identified as well. Including these metrics,
along with the previously published finding of a significant
food source effect on Bray-Curtis dissimilarity values, indi-
cates that while microbiota structures differ across groups,
taxonomic compositions may be relatively similar. Although
these trends may indicate truly differential microbiome com-
positions and relative abundances of microbial community
members, they may also reflect skewed measures due to the
addition of data derived from whole-body microbiomes to the
Unfed and Sugar groups. We also performed essential tests to
assess the homogeneity of within-group beta diversity varia-
tion [34, 35], which provided important contextual informa-
tion regarding the potential biases of our statistical tests.
Numerous significant differences in the within-group disper-
sions for the Unfed and Sugar groups relative to other groups
may reflect similarly the influence of including samples de-
rived from whole-body microbiomes for these measures.

Our analyses discovered study-specific alpha and beta di-
versity measures (Table 1) for microbiomes associated with
mosquitoes fed with sugar or newly emerged adults, revealing
distinct community diversities and disparate compositions and

structures (Figs. 1c, d). Genetically and geographically di-
verse mosquitoes were previously shown to harbor similar
microbiomes when fed sugar and reared in a controlled labo-
ratory environment, indicating laboratory-specific conditions
influence the results of laboratory-based microbiome studies
[22]. Our findings support their conclusions by revealing dis-
parate, laboratory-specific microbiota. Significantly, these re-
sults were likely influenced by characterizations of overlap-
ping yet differential microbial communities (gut and whole
body). Higher alpha diversity values for whole body samples
(FrankelBrickeretal_2020, Hegdeetal_2018) relative to gut
samples (Muturietal_2019) for both the Unfed and Sugar
groups (Figs. 1c, d, Table 1) suggested that data from
whole-body microbiomes were more diverse due to the iden-
tification of microbes including and external to the gut
microecosystem. These findings do indicate that diverse and
distinct communities of microbes inhabit regions outside of
the gut, which has been shown in previous studies [36–38].
Similarly, strong significant differences and disparate cluster-
ing were detected across studies for both shared food groups
(Fig. 2b, c, e, f, h, i, Table 1). Although likely impacted by the
nature of the microbiomes characterized and compared, the
clear and distinct clustering and significant results from statis-
tical tests may reflect truly divergent microbiomes harbored in
mosquitoes reared in independent laboratories. Future studies
could collect and compare microbiomes derived from the
same source to resolve these potential issues in our analyses.

Sugar is a common food source for laboratory-reared mos-
quitoes [39], yet large-scale microbiome differences at the
Phylum level from different laboratories demonstrated that
the ingestion of sugar may not have resulted in a conserved
host-associated microbiota (Fig. 3b, Table 2). In addition, var-
iation in the relative abundances for families within these phy-
la indicated laboratory-specific effects could impact the abun-
dances of certain taxa across all taxonomic levels (Fig. S2).
These results may have significant implications for the gener-
alizability of laboratory-basedmosquito microbiome research.
For example, microbiomes harbored in samples collected
from Hegdeetal_2018 were dominated by taxa from the phy-
lum Proteobacteria (98.42%), whereas this phylum was de-
tected at intermediate abundance in Muturietal_2019
(33.71%). Conversely, Muturietal_2019 samples contained
high levels of Actinobacteria (65.76%), whereas the phylum
was nearly indetectable in samples from Hegdeetal_2018
(0.13%). Although these differences may be influenced by
disparities between the gut and whole-body microbiomes
characterized, the strong significant differences for all metrics
tested and taxa characterized between the studies may reflect
genuinely distinct microbial communities. The mosquitoes
from the two studies could have been reared under disparate
environmental conditions, such as temperature and relative
humidity, and fed different sugar food sources, contributing
to the taxa-specific differences we detected. These results
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could indicate that certain laboratories rearmosquitoes harbor-
ing microbial communities dominated by a single phylum
(Hegdeetal_2018, one phylum > 98%), whereas others may
rear mosquitoes with more balanced phyla structures
(Muturietal_2019, two phyla > 33%). If this is the case, iden-
tical experiments conducted in independent laboratories uti-
lizing sugar-fed mosquitoes could yield disparate results when
investigating various experimental effects on specific bacterial
taxa. Taxa-specific results from laboratory studies may not be
applicable or reproducible in other laboratories even if signif-
icant experimental treatment effects are conserved. These con-
cepts were demonstrated in another arthropod system, where a
treatment effect of temperature on host-associated microbiota
was universally detected, but disparate shifts in distinct bacte-
rial taxa were observed [40, 41]. Future research investigating
novel experimental questions could also perform comparisons
with previously published 16S data sets to gage whether
laboratory-specific effects should be accounted for in analyses
and interpretations of results.

We similarly identified disparate microbial communities
harbored in newly emerged mosquitoes across studies.
Specifically, large differences in the relative abundances
of Proteobacteria and Actinobacteria suggest that, as with
sugar-fed mosquitoes, laboratory-specific conditions may
have influenced the relative abundances of prominent taxa
at high taxonomic levels (Fig. 3a, Table 2). Newly
emerged adults had not consumed a meal; therefore, the
host-associated microbiota was not fully established nor
influenced by food source. However, it is possible that
adults imbibed environmental rearing water that harbored
disparate microbes across these studies. As discussed pre-
viously, differences across the studies compared may have
been affected by the characterizations of gut and whole-
body microbiomes, though the strong phylum-level differ-
ences we detected do indicate laboratory-specific
microbiomes were present. These findings could reveal a
potential factor driving the inter-laboratory variation ob-
served in the sugar-fed mosquitoes. Newly emerged adults
inherit a subset of microbes from larvae through
transstadial transmission (bacteria transferred from larvae
through pupae to adult; 4, 12, 42, 43), potentially indicat-
ing that the disparate microbiomes we identified were the
result of differential transstadial transmission processes of
certain bacterial taxa. Larval rearing conditions may have
contributed to these dynamics. Significantly, distinct food
sources were given to larvae in Muturieetal_2019 (fish
food, rabbit food) and FrankelBrickeretal_2020 (fish
food), and both larvae and adults may have been reared
at different environmental temperatures. Taken together,
these and other laboratory- and study-specific conditions,
such as host genotype, filial generation, geographic loca-
tion of laboratories, rearing water conditions, and countless
others may inherently contribute to the distinct inter-

laboratory microbiota we characterized. Future studies
could include larval data along with the adult data to pro-
vide additional information on the temporal dynamics of
the microbiota across developmental stages for different
food sources. Furthermore, larval data could be compared
with previous studies to assess whether laboratory-specific
effects may influence results.

To investigate whether previously proposed core labo-
ratory microbes were present in our study samples, we
performed basic presence-absence surveys to assess the
prevalence of these bacteria across studies (Table 3;
Table S3). The genus Clostridium in the class Clostridia
was suggested as a conserved obligate anaerobe in labora-
tory environments [4, 7] identified from whole-body
microbiomes. We found no evidence for this or any other
genus in the class Clostridia being conserved across stud-
ies, regardless of food source (Table S3). Though it could
be inferred that Clostridium may not inhabit the gut
microecosystem, since it was identified from a study that
investigated whole-body microbiomes, low detection in
the whole body samples from FrankelBrickeretal_2020
and Hegdeetal_2018 suggests the genus and other mem-
bers of the class Clostridiales do not play universally sig-
nificant roles in the animals we studied in either gut nor
whole-body microbial communities. Further investigations
of the prevalence of the genera Asaia, Enterobacter,
Pseudomonas, Elizabethkingia, and Serratia across sam-
ples within studies (Table 3) challenge the proposed con-
served abundance of these genera in laboratory-reared
mosquito microbiomes [19–21]. Since these genera were
identified from studies investigating gut microbiomes,
presence of these microbes should have been detected
across all of the samples analyzed in our study. However,
no single genus was consistently found across samples or
studies for any food source. Significantly, particular genera
were detected across all or the majority of samples for
certain studies and food groups. For example, Asaia was
detected in all samples from Hegdeetal_2018 and in
8 8 . 5 7% o f t h e S u g a r g r o u p s a m p l e s f r o m
Muturietal_2019. Further, Serratia was found in all sam-
ples from both human blood groups from Muturietal_2019.
These results may suggest that specific microbes are highly
prevalent in mosquitoes fed certain food sources; however,
we could not detect any universally conserved microbes.
Alternatively, particular host genotypes may select for spe-
cific core microbes. Each study analyzed herein utilized a
different strain of A. aegypti (Rockefeller, Galveston,
Gainesville), and coadaptation processes may have driven
differential establishment of core microbial communities.
In addition, it is possible that a core functional microbiome
is conserved across laboratory-reared mosquitoes rather
than particular bacterial taxa. Future experiments could
implement shotgun sequencing strategies in tandem with
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16S rRNA amplicon sequencing to holistically assess
mosquito-microbe relationships across different laboratory
environments and investigate the functional role of the
laboratory-reared mosquito microbiome. Furthermore,
non-bacterial microbiome components, such as viruses, eu-
karyotes, archaea, and fungi, may also be impacted by the
dynamics described herein. Future studies could account
for these understudied components of mosquito-
associated microbiomes to promote a more holistic assess-
ment of biotic factors impacting mosquito biology.

Conclusions

Mosquitoes play important roles in global human health,
making studies of the mosquito holobiont scientifically
and socially significant. Laboratory-based studies are per-
formed to study various aspects of these microbes and
host-microbiome dynamics under controlled laboratory
conditions; however, our results suggest that laboratories
may inherently rear mosquitoes harboring divergent mi-
crobiota potentially influenced by a multitude of
laboratory-specific factors not investigated here. If true,
the results of these studies may not be generalizable
across laboratories. Due to complex and incompletely un-
derstood host-microbe interactions, we advise that future
laboratory-based studies take into consideration the differ-
ent laboratory-specific conditions that could impact the
host-associated microbiota. Furthermore, the validity and
robustness of these studies cannot be fully evaluated until
results are replicated under independent laboratory
environments.

Materials and Methods

Overview of 16S Mosquito Data Sets

Data sets from previously published laboratory-based studies
of adult female A. aegypti microbiomes were selected for
analysis based on the following criteria: (1) Raw 16S sequenc-
ing reads were publicly available in an accessible and globally
recognized data repository, (2) Sequencing data were pro-
duced from a modern next-generation sequencing platform,
(3) Sequencing data were derived from microbial DNA ex-
tractions of individual, rather than pooled, mosquito samples
tominimize limitations of assessments of variation in diversity
measurements [44], and (4) PCR amplification was performed
targeting the V3-V4 hypervariable region of the 16S rRNA
gene [45, 46]. Based on a comprehensive literature search, 3
data sets were selected for our study (Table 4).

Muturi et al. 2019 (Muturietal_2019), investigated how
different food sources impacted the gut microbiota of age-

matched laboratory-reared adult female A. aegypti
(Rockefeller strain). The authors found multi-faceted influ-
ences of various food sources (Unfed [newly emerged adults],
Sugar [10% sucrose solution], human blood 3 days after blood
meal [Human_3], human blood 7 days after blood meal
[Human_7], chicken blood [Chicken], and rabbit blood
[Rabbit]) on the composition and structure of the mosquito-
associated microbiota with 2 replicate batches of mosquitoes
for each food group. These data are publicly available in the
NCBI SRA Bioproject PRJNA494958. All samples were
downloaded and processed in our study.

Hegde et al. 2018 (Hegdeetal_2018), analyzed laboratory
and wild mosquito-associated whole-body microbiota for
multiple species (including A. aegypti; Galveston strain).
Laboratory-rearedA. aegyptiwere fed sugar for 5–7 days prior
to microbial DNA extraction. Sequencing data are publicly
available in the NCBI SRA Bioproject PRJNA422599. The
dataset was subset for laboratory-reared A. aegypti samples for
our study.

Frankel-Bricker et al. 2020 (FrankelBrickeretal_2020), in-
vest igated how an obligate gut fungal symbiont
(Zancudomyces culisetae) impacted larval and adult
A. aegypti-associated whole-body microbiota. Adult mosqui-
toes (Gainesville strain) were collected, and microbial DNA
extracted immediately after emergence from pupae. These da-
ta are publicly available in the NCBI SRA Bioproject
PRJNA541017 with negative control sequences provided.
The data set was subset for non-fungal adult female samples
for our study.

Normalization of 16S rRNA Gene Sequence Data

All data processing and downstream analyses (with the excep-
tion of ANOSIM) were performed using the R programming
language version 4.0.2 (47; File S1). Sequencing reads from
each data set were initially processed using the DADA2 pipe-
line [31]. For all data sets, reads were trimmed at the location
of the first occurrence of a base call with a Phred score less
than or equal to 15, reads with any number of N base calls or
containing six or more estimated errors were discarded, and
forward and reverse reads were merged with a minimum over-
lap of 12 bases. In addition, 21 base pairs were trimmed from
the reverse reads provided by Muturietal_2019 to account for
the use of a primer pair (341F/806R; 45) that targeted an
overlapping, but larger portion of the 16S V3-V4 hypervari-
able region targeted by the other two studies (341F/785R; 46).
The independently processed sequencing data were combined
after chimeric sequences were discarded and merged reads
dereplicated. Amplicon sequence variants were produced by
the pipeline, and taxonomy was assigned to ASVs using the
SILVA v132 database [32, 33].
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Phylogenetic Tree and Phyloseq Object Construction

A neighbor-joining tree was inferred using the phangorn
package version 2.5.5 in R [48] and a generalized time-
reversible with gamma rate variationmaximum likelihood tree
was fit. The phylogenetic tree was combined with the ASVs,
read count data, and sample-associated metadata into a single
data object using the Phyloseq package version 1.32 in R [49].

Removal of Contaminant ASV Sequences

The initial Phyloseq object contained data for 267 samples
(Table 4). Experimental reagents and other laboratory sources
add contaminant sequences to experimental samples [27], yet
only one of the three data sets provided sequencing data for
negat ive controls (DNA extract ion ki t reagents ;
FrankelBrickeretal_2020, Table 4). Reads from these sources
were pooled and putative contaminant ASVs were identified
and removed using the decontam package version 1.10.0 in R
[50] with the “prevalence”method and the threshold set at 0.5.
Eleven putative contaminant sequences were identified and
removed from samples in FrankelBrickeretal_2020 and four
of the eleven from Hegdeetal_2018. Sequencing data were
analyzed for the combined data set of all studies and also
subset separately for the 2 shared food sources (Unfed
[FrankelBrickeretal_2020; Muturietal_2019], Sugar
[Hegdeetal_2018; Muturietal_2019]).

Calculation of Diversity Metrics

Reads were rarefied to 1000 reads per sample to account for
the variable read coverage across studies while minimizing the
number of samples removed. In total, 209 samples remained
for analyses after rarefaction (Table 4). The alpha diversity
metrics Simpson and Shannon indices were calculated in
Phyloseq (Table S4), and box plots were produced using the
ggplot2 package version 3.3.2 in R [51]. Singletons and ASVs
not represented by at least five reads or greater in at least one
sample were discarded. The beta diversity metrics Bray-Curtis
dissimilarity, unweighted UniFrac distance, and weighted
UniFrac distance were calculated in Phyloseq. Principal
Coordinates Analysis (PCoA) plots were produced in
Phyloseq in combination with ggplot2 in R.

Relative Abundances of Prominent Taxa

Relative abundances of the five most prevalent families iden-
tified from each study and food source were calculated for all
food source groups and studies (Fig. S1, Table S2) to compare
whether our bioinformatics pipeline reproduced the identifica-
tion of major bacterial families and quantification of these
microbiota. Reads assigned to these families accounted for
over 95% of all reads analyzed in the study. In addition,Ta
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relative abundances were calculated for the ten most abundant
phyla across studies within the Unfed group and the six most
abundant phyla from the Sugar group, respectively (Table 2).
Relative abundances of families within the four most abun-
dant phyla identified from the Unfed group accounting for
greater than 91% of reads (Proteobacteria, Firmicutes,
Actinobacteria, Bacteroidetes) and the two identified from
the Sugar group accounting for greater than 98% of reads
(Proteobacteria, Actinobacteria) across samples were visual-
ized with heatmaps constructed in ggplot2 (Fig. S2).
Presence-absence surveys were performed for taxa from the
class Clostridia and the genera Asaia, Enterobacter,
Pseudomonas, Elizabethkingia, and Serratia by counting the
number of experimental samples harboring detectable levels
of these bacteria across studies and food groups and subse-
quently calculating the total percentage of samples containing
these taxa, respectively (Table 3; Table S3).

Statistical Analyses

A linear mixed effects model accounting for a random effect
of each study was constructed with the lme4 package version
1.1–23 in R [52] to test whether the food source impacted
mean Simpson and Shannon diversity values (Table 1).
Statistical significance was tested with type II Wald F tests
with Kenward-Roger degrees of freedom using the car pack-
age version 3.0–9 in R [53]. Post-hoc pairwise comparisons
across food sources were conducted with simultaneous tests
for general linear hypotheses using the multcomp package
version 1.4–15 in R (54; Table S1), and P-values were adjust-
ed with the Bonferroni method. Wilcoxon rank sum tests were
performed on samples from the Unfed and Sugar groups to
test for a study-specific effect on mean alpha diversity mea-
sures and mean relative abundances of prominent bacterial
phyla (Tables 1 and 2). Pairwise analysis of similarities
(ANOSIM; 55) was conducted to compare beta diversity met-
rics using similar methodology as Muturi et al. 2019 across
food sources with PAST version 4.01 [56] with 9999 permu-
tations (Table 1; Table S1) and P-values were adjusted with
the Bonferroni method. Permutational multivariate analysis of
variance (PERMANOVA; 57) was conducted to test for dif-
ferences across studies for the Unfed and Sugar groups with
9999 permutations (Table 1) using the vegan package version
2.5–6 in R [58]. Both ANOSIM and PERMANOVA are sen-
sitive to differential within-group beta diversity variation,
which can lead to false positives output from these tests
[59]. Permutational statistical tests for the homogeneity of
group dispersions [34] were performed with 9999 permuta-
tions to detect significant differences in beta diversity varia-
tion [35] across groups using vegan (Table 1; Table S1). All
statistical analyses were conducted at an α of 0.05.
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