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Abstract
The high plasticity of root morphology, physiology, and function influences root-associated microbiomes. However, the varia-
tion in root-associated microbiome diversity and structures in response to root diameter at different root depths remains poorly
understood. Here, we selected black locust (Robinia pseudoacacia L.) as a model plant to investigate the selection and network
interactions of rhizospheric and root endophytic bacterial microbiomes associated with roots of different diameters (1, 1–2, and >
2 mm) among root depths of 0–100 cm via the Illumina sequencing of the 16S rRNA gene. The results showed that the alpha
diversity of the root-associated bacterial communities decreased with increasing root diameters among different root depths;
fewer orders with higher relative abundance, especially in the endosphere, were enriched in association with coarse roots (> 2
mm) than fine roots among root depths. Furthermore, the variation in the enriched bacterial orders associated with different root
diameters was explained by bulk soil properties. Higher co-occurrence network complexity and stability emerged in the rhizo-
sphere microbiomes of fine roots than those of coarse roots, in contrast to the situation in the endosphere microbiomes. In
particular, the endosphere of roots with a diameter of 1–2 mm exhibited the lowest network complexity and stability and a high
proportion of keystone taxa (e.g., Cytophagia, Flavobacteriia, Sphingobacteriia, β-Proteobacteria, and γ-Proteobacteria), sug-
gesting a keystone taxon-reliant strategy in this transitional stage. In summary, this study indicated that root diameter at different
root depths differentially affects rhizospheric and endophytic bacterial communities, which implies a close relationship between
the bacterial microbiome, root function, and soil properties.

Keywords Root-associated bacterial microbiome . Root diameter . Root depth . Co-occurrence network

Introduction

The rhizosphere is the interface between soil and plant roots,
where beneficial microbes are recruited as the first

microbiological layer of plant defense [1], which protect the
plants from pathogens and mediate plant development and nu-
trient cycling [2]. The endophytic bacteria living inside plant
root tissue for all or part of their life cycle [3] are the second
layer of plant defense [1]. Rhizospheric microorganisms are
distributed heterogeneously in the rhizosphere because of dif-
ferences in root traits (root morphology: primary or secondary,
and root zones: root cap, lateral meristem, or border cells) [4].
The heterogeneity in the rhizosphere and endosphere creates
microhabitats for diverse microbial taxa and facilitates benefi-
cial interactions [5], which play critical roles in plant growth
[6]. Therefore, it is imperative to clarify the heterogeneity of
rhizospheric and endophytic microbiomes (root-associated
microbiomes) to regulate plant growth by maximizing micro-
bial function and root adaptation.

Root-associated microbiomes are largely influenced by the
host plant and the soil environment [7]. Most recent studies
have suggested that host plants provide multiple microhabitats
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(e.g., plant compartments) for distinct microbial communities
and affect the colonization of microbiomes [6–9]. Several oth-
er studies have demonstrated that the variation in host plant
root traits also influences root-associated microbiomes.
Szoboszlay et al. (2015) suggested that the wild maize ances-
tor (Balsas teosinte) and modern cultivars (sweet corn and
popping corn) exhibit different root traits and harbor different
rhizospheric microbiomes [10]. Pérez-Jaramillo et al. (2017)
further analyzed the relationships between the rhizosphere
microbiome and root traits of wild and domesticated
Phaseolus vulgaris and indicated that wild bean accessions
have thin roots whereas modern accessions have thick roots.
Furthermore, Bacteroidetes were found to be dominant in wild
bean accessions, while Verrucomicrobia and Actinobacteria
occurred at higher relative abundance in modern bean acces-
sions [11]. Saleem et al. (2018) suggested that fine roots,
rather than primary and secondary root, recruit OTUs belong-
ing to specialist organisms (the relative abundance of OTUs
changes from fine to primary roots), which are mostly present
at a relatively high abundance [5]. Fine roots with different
branch orders also exhibit significantly different root-
associated bacterial communities in poplar (Populus ×
euramericana (Dode) Guinier.) [12]. Even the root traits of
first-order roots with different root diameters from various
plant species vary significantly across the sequence of tropi-
cal, temperate, and desert biomes. Root diameter has the stron-
gest effect on root traits. Compared with finer first-order roots,
thicker first-order roots are more dependent on mycorrhizae
[13]. These studies indicate that root diameter plays an impor-
tant role in the composition of root-associated bacterial or
fugal communities in different plant types at a local or global
scale. Actually, based on root diameter, plant roots with < 1 or
2 mm and > 2 mm diameter are, respectively, classified as fine
and coarse roots [14]. Fine roots are markedly different from
coarse roots in terms of their morphology, nutrient concentra-
tions, and functions. Fine roots are mainly distributed in the
surface soil and exhibit high bioactivity, a large specific sur-
face area, high nitrogen (N) concentrations [15], and a strong
decomposition ability, all of which contribute to the soil car-
bon (C) flow and N cycling [16, 17]. Conversely, coarse roots,
which exhibit rather low levels of bioactivity, are less efficient
in absorbing soil nutrients [18]. Cregger et al. (2018) reported
the fine (< 2 mm) and coarse (~ 5–20 mm) root-associated
microbiomes of two genotypes of Populus. However, the dif-
ferences in the community between fine and coarse roots were
not specifically addressed in that study [9]. Overall, it is un-
clear how the root-associated bacterial community varies spe-
cifically between fine and coarse roots. On the other hand,
plant roots exhibit a heterogeneous distribution in the soil in
response to patchy and dynamically changing resources such
as water and nutrients [19]. In vertical soil profiles, soil phys-
icochemical properties differ significantly with depth in vari-
ous ecosystems, and this causes variations in soil microbiome

[20–24]. Previous studies also indicate that the root-associated
microbiome is influenced by soil types and properties [7, 12,
25]. Thus, soil properties may affect root traits, resulting in
differences in root-associated bacterial communities.
However, the variation in root-associated bacterial
microbiomes among different root diameters across different
soil depths, and the effect of soil properties on them, remains
poorly understood.

As mentioned above, root traits and root-associated bacte-
rial or fungal communities vary among different plant types.
However, this is a limitation of the relationship between the
root system and root-associated microbiome of leguminous
tree species. Black locust (Robinia pseudoacacia L.) is an
N-fixing leguminous tree species that increases soil N levels
and enhances nitrification and N mineralization in soil via
symbiotic N fixation with rhizobia, in turn promoting plant
growth in poor or degraded soils [26, 27]. In addition, Robinia
pseudoacacia (R. pseudoacacia) is used for soil rehabilitation
[28]. In the present study, we selected R. pseudoacacia as a
model plant and aimed (1) to investigate the effect of root
diameter on the diversity and compositional variation of
root-associated bacterial microbiomes (rhizospheric and root
endophytic bacterial communities) and whether those are af-
fected by root depth and (2) to explore whether the variation in
the bacterial communities at different root diameters with root
depth is affected by differences in soil properties via Illumina
sequencing of the 16S rRNA gene. We hypothesized that root
diameter would affect the root-associated bacterial
microbiome of R. pseudoacacia L., and this would vary with
root depth.

Materials and Methods

Sampling Location and Methods Sampling was conducted on
August 26–29, 2018, in Ansai County, Yan’an City, Shaanxi
Province, China (108°51′44″–109°26′18″ E, 36°30′45″–
37°19′31″ N). The area is located in the hinterland of the
Loess Plateau and is characterized by vast R. pseudoacacia
plantations. In general, R. pseudoacacia is in the early growth
stage from April to June and the late growth stage from
August to October. The period after the early growth stage
and before the late growth stage is the accelerating growth
stage [29]. We sampled in the late growth stage of
R. pseudoacacia.

Three plots (each 10 × 10 m) were selected in the study
area. The plots were spaced 5–10 m apart to preclude interac-
tions. In each plot, three approximately 10-year-old trees of
similar height and diameter at breast height were selected at
random (Table S1). For each tree, soil samples and root sam-
ples were collected at a 50-cm distance from the trunk in a
100-cm-long vertical profile. The soil surrounding the plant
roots (bulk soil) was collected from four soil depths (SD1, 0–
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20 cm; SD2, 20–40 cm; SD3, 40–60 cm, and SD4: 60–100
cm) and passed through a 2-mm sieve [12]. All collected sam-
ples were placed in boxes with ice packs and transported back
to the laboratory at − 20 °C. A bulk soil subsample was used to
analyze the soil physicochemical properties, including pH,
organic matter (OM), total phosphorus (TP), total nitrogen
(TN), total potassium (TK), total carbon (TC), nitrate nitrogen
(NO3

−-N), ammonium nitrogen (NH4
+-N), available phos-

phorus (AP), and available potassium (AK) (Table S2,
Supplementary materials) via routine methods [30]. The re-
maining subsample used for DNA analysis was stored at − 80
°C. The living roots were picked from the soil and grouped
based on root diameter (RD1, ≤ 1 mm; RD2, 1–2 mm; and
RD3, > 2 mm) and root depth (SD1, 0–20 cm; SD2, 20–40
cm; SD3, 40–60 cm; and SD4, 60–100 cm; Fig. 1).
Rhizospheric soils were obtained by washing the roots, while
the root samples designated for the endophyte analyses were
cleaned and sonicated to eliminate rhizoplane microbes [7]. In
total, 252 samples were obtained, including 36 bulk soil sam-
ples (9 replicates × 4 root depths) + 108 rhizospheric soil
samples (9 replicates × 3 root diameters × 4 root depths) +
108 root samples (9 replicates × 3 root diameters × 4 root
depths). The rhizospheric soil samples and root samples used
for DNA analysis were stored at − 80 °C.

DNA Extraction and High-Throughput Sequencing The ex-
traction of metagenomic DNA from the bulk and rhizospheric
soil samples (each 0.5 g) was performed using a FastDNA®
SPIN Kit for Soil (MP Biomedicals, Solon, USA) according
to the manufacturer’s instructions. Root samples (each 0.2 g)
were pre-chilled with liquid nitrogen, and then ground using a
mortar and pestle before metagenomic DNA extraction using
a DNeasy Power Plant® Pro-Kit (Qiagen GmbH, Hilden,
Germany). The DNA concentrations and purity were deter-
mined using a NanoDrop 2000 UV-Vis spectrophotometer
(Thermo Scientific, Wilmington, USA). DNA quality was
checked by electrophoresis in a 1% (w/v) agarose gel.

The hypervariable V4–V5 region of the bacterial 16S
rRNA gene was amplified using the 515F (5′-GTG CCA
GCM GCC GCGG-3′)/907R (5′-CCG TCA ATT CMT TTR
AGT TT-3′) primer pair (Jiao et al. 2016). PCR amplification
was performed in a GeneAmp PCR system 9700 (ABI, Foster
City, USA). PCR was performed in 20-μL triplicate mixtures,
each containing 4 μL of 5× FastPfu Buffer, 2 μL of 2.5 mM
dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu
Polymerase, 0.2 μL of bovine serum albumin, 10 ng of tem-
plate DNA, and double-distilled H2O. The PCR conditions
were as follows: initial denaturation at 95 °C for 3 min;
followed by 29 cycles of denaturation at 95 °C for 30 s, an-
nealing at 55 °C for 30 s, and extension at 72 °C for 45 s; and a
final extension step at 72 °C for 10 min. The PCR products
were extracted from a 2% (w/v) agarose gel after electropho-
resis. Further purification and quantification were performed
using an AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, USA) and a QuantiFluor™-ST
Fluorometer (Promega, Fitchburg, USA) according to the
manufacturers’ instructions. The purified amplicons were
pooled in equimolar amounts and subjected to paired-end se-
quencing (2 × 300 bp) on the Illumina MiSeq platform
(Illumina, San Diego, USA) at Majorbio (Shanghai, China).

Raw FASTQ files were quality filtered usingQIIME v1.9.1
[6] and merged using FLASH v1.2.11 [31]. The filtering
criteria were as follows: (i) reads were truncated at any site
receiving an average quality score < 20 over a 50-bp sliding
window; (ii) only sequences with overlap of greater than 10 bp
were merged according to their overlap sequence with mis-
matches of no more than 2 bp; and (iii) the sequences of each
sample were separated according to barcodes (exactly
matching) and primers (allowing two nucleotide mismatches),
and those containing ambiguous bases were removed [31].
Operational taxonomic units (OTUs) were clustered at a 97%
similarity threshold using UPARSE v7.1 (http://drive5.com/
uparse/) with a novel ‘greedy’ algorithm adopted to perform
chimera filtering and OTU clustering simultaneously [32]. The

Fig. 1 Schematic illustration of
the experimental design for
exploring the response of root-
associated bacterial communities
to root architecture in
R. pseudoacacia. We sampled the
soil within 50 cm of the tree trunk.
RD1, RD2, and RD3 denote root
diameters of < 1 mm, 1–2 mm,
and > 2 mm, respectively. SD1,
SD2, SD3, and SD4 represent
root depths of 0–20 cm, 20–40
cm, 40–60 cm, and 60–100 cm,
respectively
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taxonomy of each 16S rRNA gene sequence was analyzed using
the RDP Classifier (http://rdp.cme.msu.edu/) against the Silva
16S rRNA database (Release 128; http://www.arb-silva.de/)
with a confidence threshold of 70% [33].

Statistical Analysis All data were normalized using the
trimmed mean of M value method for subsequent analyses
[6]. Alpha-diversity indices (Shannon index and OTU rich-
ness) were calculated to assess bacterial diversity and species
richness. To estimate bacterial beta diversity, the Bray–Curtis
distances between rhizosphere or root samples were cal-
culated with the vegdist () function of the R package
“vegan” (version 2.5-6), and the compositional differ-
ences in bacterial communities were then visualized
through principal coordinate analysis (PCoA) with the
“ape” (version 5.3) package in R (v3.5.2; http://www.
r-project.org/) [34]. The variation in bacterial beta
diversity was examined through analysis of similarities
(ANOSIM) and permutational multivariate analysis of
variance (PERMANOVA, also known as ADONIS)
based on the Bray–Curtis similarity matrix using the
“vegan” package in R [20].

Kruskal-Wallis tests and Wilcoxon tests (Mann–Whitney
U test) were performed using the “ggpubr” (version 0.2.3)
package in R for multiple comparisons and pairwise compar-
isons, respectively. P values were adjusted by using the
Benjamini and Hochberg false discovery rate (FDR) test
[35], and the adjusted P values had a cutoff of 0.05. Two-
way analysis of variance (ANOVA) was used to compare
the effects of root diameter, root depth, and the interaction of
the two terms on alpha-diversity in the rhizosphere and the
endosphere; analysis was performed using “HH” (version 3.1-
42) package [36]. The OTUs that were significantly enriched
in the rhizosphere and endosphere for each root diameter were
presented in ternary plots with the “ggtern” (version 3.1.0)
package in R [20]. Bar plots were constructed using the
“vcd” (version 1.4.4) package in R to display the proportions
of the ten most abundant bacterial orders based on the
enriched OTUs for each root diameter at different depths.
SourceTracker (v.1.0) based on the Bayesian approach was
used to estimate the sources of the root-associated microbiome
with coarse roots or deep soil layers [37]. Redundancy analy-
sis (RDA) of the correlation between soil properties (signifi-
cance at P < 0.05, through constrained axis variance test using
version 4.0.2 “stats” package) and ten enriched root-
associated bacterial orders was generated using the “vegan”
package in R [38].

A co-occurrence network was constructed based on strong
(Spearman’s ρ > 0.7) significant (P value < 0.05) correlations
to explore the interactions between OTUs with a relative
abundance ≥ 0.01%. In detail, statistical analyses were per-
formed in the R environment with the “igraph” (version
1.2.4.1) package to calculate network topological features,

including the node number, edge number, average degree,
diameter, density, modularity, average clustering coefficient,
and average path length [39]. In addition, the “Hmisc” (ver-
sion 4.2-0) package was used to calculate the correlation ma-
trix (Spearman correlation coefficient values) and the signifi-
cance matrix (P value). The co-occurrence network was visu-
alized in Gephi (https://gephi.org/) [39]. The taxonomic
classification of bacteria in the network modules of the
rhizosphere and endosphere (RD1 to RD3) was plotted
using Krona (https://github.com/marbl/Krona/wiki) [40]. In
addition, the z-score and c-score were calculated for each
node according to the methods of metabolic networks [41].
Nodes with a z-score > 2.5 were classified as hubs, and nodes
with a z-score < 2.5 were classified as nonhubs. Based on c-
scores, network hubs (z-score > 2.5; c-score > 0.6) andmodule
hubs (z-score > 2.5; c-score < 0.6) were defined, whereas
nonhubs were classified as connectors (z-score < 2.5; c-score
> 0.6) and peripherals (z-score < 2.5; c-score < 0.6). Network
hubs, module hubs, and connectors were designated keystone
taxa with connective functions in the network. The natural
connectivity and average degree after the removal of nodes
in the static network were used to estimate network stability.
They reflected the sensitive variation of network structural
robustness and were used to assess network robustness [42].

Results

Diversity and Composition of Root-Associated
Microbiomes

In total, 3,634,858 high-quality bacterial sequences and 2083
OTUs were obtained across all samples after normalization.
The Shannon index of rhizospheric bacterial communities was
significantly different between RD1 and RD2 (P = 0.042) and
between RD1 and RD3 (P = 0.004), while no significant dif-
ferences were observed in their OTU richness among the three
root diameters (Fig. 2). The Shannon indices of rhizospheric
bacterial communities were not significantly different among
the three root diameters across the four root depths (Fig. S1a).
The endophytic bacterial communities differed significantly
in terms of their alpha-diversity indices among various root
diameters (Fig. 2), although the alpha-diversity indices of the
endophytic bacterial communities were not significantly dif-
ferent between RD1 and RD2 at root depths SD1 and SD2
(Fig. S1a). Two-way ANOVA also showed that the alpha
diversity of the root-associated bacterial microbiome and the
rhizospheric bacterial microbiome was influenced mainly by
root diameter (Shannon index, P < 0.001; OTU richness, P <
0.05) and root depth (Shannon index, P < 0.01; OTU richness,
P < 0.001), respectively. And the Shannon index of the bac-
terial microbiome in endosphere was influenced mainly by
root diameter (P < 0.001), while the OTU richness was
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influenced by both root diameter (P < 0.001) and depth (P <
0.05; Table S2). These results indicated that the alpha diver-
sity of the root-associated bacterial communities decreased
significantly with an increase in root diameter, especially the
endophytic community, which exhibited similar changes with
root depth. Moreover, root depth and diameter differently af-
fected the bacterial diversity of the rhizosphere and the
endosphere.

With regard to beta diversity, the Bray–Curtis distance-
based PCoA revealed that the rhizosphere and root samples
generated clearly different clusters in the ordination plot.
Statistically, the root compartment explained the greatest
amount of the variation in the bacterial communities (com-
partment: ANOSIM R = 0.520, ADONIS R2 = 0.163, P <
0.001). In addition, we observed significant compositional
differences in both the rhizospheric and endophytic bacterial
communities across various root diameters and depths (diam-
eter: RANOSIM = 0.224, R2

ADONIS = 0.102, P < 0.001; depth:
RANOSIM = 0.160, R2

ADONIS = 0.088, P < 0.001; Figs. 3a and
S2). For the rhizospheric bacterial communities, the analysis
of similarity (ANOSIM) and permutational multivariate anal-
ysis of variance (PERMANOVA, also known as ADONIS)
indicated significant differences in the microbial communities
across root diameters and depths (diameter: RANOSIM = 0.167,
R2

ADONIS = 0.086, P < 0.001; depth: RANOSIM = 0.296,
R2

ADONIS = 0.164, P < 0.001; Fig. 3b). For endophytic bacte-
rial communities, the greatest separation between the micro-
bial communities was associated with the root diameter
(RANOSIM = 0.620, R2

ADONIS = 0.300, P < 0.001), and the
second largest source of variation was root depth (RANOSIM

= 0.017, R2ADONIS = 0.038, P < 0.001; Fig. 3c). The results
indicate that the composition of root-associated bacterial com-
munities differed significantly among the various root diame-
ters and depths.

Relationship Between the Enriched Taxa with Different Root
Diameters and Soil Properties The significantly enriched
OTUs and the ten most abundant bacterial orders based on
different root diameters were displayed using ternary plots
and bar plots (Fig. 4). The lowest numbers of enriched
OTUs were recorded for RD2 in both the rhizosphere (55)
and the endosphere (61). The numbers of enriched OTUs in-
creased to 173 and 258 in the rhizosphere of RD1 and RD3,
respectively, while 618 and 198 enriched OTUs were ob-
s e r v e d i n t h e e n d o s p h e r e o f RD1 and RD3 ,
respectively (Fig. 4a).

Among the enriched bacterial taxa, Rhizobiales was dom-
inant at all root diameters in the rhizosphere and the
endosphere. Burkholderiales and Rhizobiales were the most
dominant taxa in RD1 of the rhizosphere and the endosphere,
respectively, while Rhodospirillales and Rhizobiales were the
most dominant taxa in RD2 and RD3, respectively.
Additionally, RD3 of the rhizosphere showed a more even
community structure compared with RD1 (Figs. 4a and S3),
indicating the selection effect of the specific bacterial order in
RD3 (Figs. 4a and S3). The most dominant bacterial orders
across different root depths were similar, although the relative
abundance exhibited variation (Fig. S3).

The ten enriched orders were used for correlation analysis
with soil properties. The RDA biplot showed that the vari-
ances of bacterial communities in all root diameters at
shallower soil depths (SD1 and SD2) were explained by
AK. AK and OM were positively correlated with
Burkholderiales, and AP was positively correlated with
Rhizobiales in RD1 of the rhizosphere. TC and OM explained
the bacterial variance in the rhizosphere or endosphere of oth-
er root diameters. Interestingly, the correlation between
Rhizobiales and AK changed from negative to positive with
increasing root diameter (Fig. 4b). These results indicated that

Fig. 2 Shannon index and
operational taxonomic unit
(OTU) richness of bacterial com-
munities in the rhizosphere and
root endosphere of
R. pseudoacacia among different
root diameters visualized using
boxplots. Data are the mean ±
standard deviation (n = 36).
Different letters above the col-
umns indicate significant differ-
ences between groups (P < 0.05)
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specific bacterial orders associated with different diameters
across root depths were affected differently by soil properties.
The correlations between the enriched bacterial orders and soil
properties in RD2 and RD3 were similar.

Co-occurrence Network Interactions of Root-Associated
Microbiomes Among Root Diameters Across Depths In the
co-occurrence network of rhizospheric bacterial communities,
the node number, edge number, network density, and average
clustering coefficient all decreased with an increase in the root
diameter. Among the endophytic bacterial communities, in-
creases in the network topological feature values occurred in
the order of RD3 > RD1 > RD2 and SD4 < SD3< SD2 < SD1
(Table S4). The similar trends were found in network com-
plexity in the rhizosphere and the endosphere (Figs. 5a and
S5). A total of 274 shared nodes were found in the
rhizospheric networks (Fig. 5b), while only 13 shared nodes
were observed in the endophytic networks across the three
root diameters (Fig. 5c). These results indicated that
the diversity of the rhizospheric microbiome was more
similar among different root diameters than that of the

endospheric microbiome, which agreed with the alpha
and beta diversity results.

The network nodes for the rhizospheric and endophytic
taxa at the OTU level were classified into network hubs, mod-
ule hubs, connectors, and peripherals based on z-scores and c-
scores (Fig. 5d). At the class level, members of the phylum
Chloroflexi were the keystone taxa in both the rhizosphere
(Anaerolineae and Thermomicrobia for both RD2 and RD3)
and the endosphere (Chloroflexi for both RD1 and RD2).
Similarly, Rhizobiales were observed as keystone taxa in the
rhizosphere (RD2 and RD3) and endosphere (RD1 and RD2).
In addition, members of the phyla Bacteroidetes (Cytophagia,
Flavobacteriia, and Sphingobacteriia), β-Proteobacteria, and
γ-Proteobacteria were keystone taxa in the endosphere (RD2;
Fig. 5e). Therefore, the rhizospheric and endospheric
microbiomes associated with different root diameters exhibit
different keystone taxa.

Different modules of the co-occurrence network harbored
various taxa. Among the major modules of the rhizospheric
network, Rhizobiales, Burkholderiales, Planctomycetales,
Xanthomonadales, Sphingobacteriales, and Rhodospirillales
were ubiquitous among several modules and root diameters

Fig. 3 Principal coordinate
analysis based on the Bray–Curtis
distance of bacterial communities
in the rhizosphere and root
endosphere of R. pseudoacacia.
Community composition based
on the root compartment (rhizo-
sphere and endosphere), root di-
ameter, and root depth (a). Root
diameter and root depth are pre-
sented simultaneously as the var-
iables influencing rhizospheric
(b) and endophytic communities
(c)
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(Fig. S6a–c) . The proport ions of Gaiel la les and
Propionibacteriales increased with an increase in the root di-
ameter, while the proportions of Rhizobiales were relatively
low in the endosphere of coarse roots (Figs. 4 and S6f). In
addition, modules consisting mainly of Bacillales were ob-
served in the rhizospheric networks of RD2 (Module 21)
and RD3 (Module 7), and modules consisting mainly of
Burkholderiales and Pseudomonadales were found in the
rhizospheric networks of RD2 (Module 1) and RD3
(Module 1). Similar to the rhizospheric taxa, various endo-
phytic taxa, including Rhizobiales, Burkholderiales,
Bacillales, and Pseudomonadales, were also ubiquitous in
RD1, RD2, and RD3 (Fig . S6d– f ) . In addi t ion,
Desulfurellales in Module 11 of the RD3 endophytic network
was unique.

The keystone taxa with the lowest proportions and the
highest average degree and natural connectivity were
found in the RD1 rhizosphere and the RD3 endosphere,
which were the two root diameters exhibiting the highest
network complexity and stability (Figs. 5e and S7;
Table S4). In contrast, the average degree and natural con-
nectivity were lowest in the RD2 endosphere (Fig. S7).
Additionally, the co-occurrence network was less complex
than that of RD1 and RD3 according to the topological
features. These results indicated that the network of the
RD2 endosphere was the most unstable, which resulted in
the lowest ability to enrich bacterial taxa in RD2 (Figs. 4
and S4), and revealed that RD2 in the transitional stage
from fine to coarse roots exhibited the lowest resistance
to maintaining stable interactions between bacteria.
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Taken together, the co-occurrence network patterns, in-
cluding the network complexity and stability and the bacterial
community composition of the rhizosphere and the
endosphere, were affected by root diameter, which also varied
across root depths.

Discussion

In the present study, we investigated the effects of root diam-
eter among root depths on the rhizospheric and endophytic
bacterial microbiomes of R. pseudoacacia. According to the
results, the root-associated bacterial microbiomes were influ-
enced by root diameter, and this varied across root depths due
to the variation in soil properties. The influence was particu-
larly evident with respect to bacterial diversity, the taxonomic
composition, the correlation between enriched bacterial orders
and soil properties, and co-occurrence patterns.

The Effect of Root Diameter Among Root Depths on Root-
Associated Bacterial Diversity Bacterial diversity was lower
in association with the coarse roots than the fine roots of R.
pseudoacacia. Consistent with these results, larger-diameter
roots, whether classified by root order [12] or morphology [5],
were associated with lower bacterial diversity. This could be
linked to the much greater surface area of fine roots than
coarse roots, and the much higher levels of nutrients and me-
tabolites associated with fine roots may consequently increase
microbial diversity [5]. In contrast, coarse roots, with lower
nutrient levels [15], could lead to P limitation, restricting the
growth of both plants and microbes [43]. This could also be
related to the variation in the turnover between fine roots and
coarse roots [16, 17]. For example, fine roots have a short life
span that could result in strong root decomposition, which is
believed to serve as a potential soil C source. The traits of fine
roots could cause the recruitment of more diverse bacterial
taxa. However, coarse roots, which have a slow turnover of
C and nutrients as well as a more structural function and more
lignified composition, could restrict the growth of certain
groups of microorganisms [16, 17].

The variation in root-associated bacterial diversity among
root diameters differed in root-associated compartments
(rhizosphere and endosphere; Figs. 2 and 3 and S1).
Bacterial diversity in the rhizosphere was more affected by
root depth than that in the endosphere, suggesting that the soil
environment played a larger role in rhizospheric bacterial di-
versity as rhizosphere is an extended root phenotype to forage
soil nutrient [19], which was consistent with the report by
Xiao [7]. Differently, the present study provides a new per-
spective regarding the variation of root diameter in root-
associated bacterial microbiomes in root-associated compart-
ments as well as a better understanding of root-associated

compartment selection effects on root-associated bacterial
microbiomes.

The Different Filtering Effects of Fine and Coarse Roots on
Root-Associated Bacterial Microbiomes Linked to Root
Functional Traits and Soil Properties In our study, along the
root diameter trajectory from fine to coarse, we observed that
most of the enriched bacterial orders associated with different
root diameters belonged to Proteobacteria and Actinobacteria,
whereas these groups (particularly Rhizobiaceae and
Nocardioidaceae) were reported to be more strongly associat-
ed with thicker roots in the rhizosphere of modern common
bean [11]. Similar to Pérez-Jaramillo et al. (2017), we ob-
served that the Rhizobiales with higher relative abundance
occurred in the rhizosphere and the endosphere associated
with various root diameters, suggesting that the symbiotic
N-fixing system of the legumes R. pseudoacacia [26] and
Phaseolus vulgaris [11] is linked to the recruitment of
Rhizobiales. Intriguingly, the variation in Rhizobiales with
increasing root diameter was linked to AK and AP in the
present study. Previous studies have indicated that symbiotic
nitrogen fixers belonging to Rhizobiales have also shown K
and P solubilizing activity [44]. The correlation between
Rhizobiales and AP in RD1 of the rhizosphere could imply
a larger demand for P in the bacterial community with higher
diversity [43] compared with RD2 and RD3. The efficiency of
K-solubilization by microorganisms is improved by lowering
pH and is affected by oxygen [44]. Consistently, in this
study, AK was correlated negatively with pH and ex-
plained the variance of root-associated bacterial commu-
nities at shallower depths. Rhodospirillales was found to
have the potential to contribute to the N uptake of
plants [45]. Thus, its dominance in RD2 and RD3 as-
sociated with deeper root depth could compensate for
the lower capacity for nutrient acquisition of coarse
roots and the lower N content in deeper soil layers.
Analogous to the complementary relationship between
mycorrhizal fungi and plant roots: thin roots forage nu-
trients independently, while thick roots rely on their
associated mycorrhizal fungi [46].

Furthermore, compared with fine roots, the coarse roots in
the rhizosphere were dominated bymembers of Gaiellales and
Propionibacteriales (Fig. S6f), which can respond to low
levels of flavonoids [47]. In turn, the rhizosphere microbiome
assembly drives the systemically induced root exudation of
metabolites via root-to-root signaling [48]. In this study, the
root-associated bacterial microbiome was selected from the
nearby root diameters or depths (Fig. S4), suggesting that
root-to-root signaling could play an important role in filtering
effect of root-associated microbiome. This is consistent with
the view that selection means that particular species are dom-
inant in an ecological community because of their functional
traits [49]. These results indicate that the filtering effects of
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roots on root-associated bacterial microbiomes are related to
root functional traits and soil properties.

Potential Strategies Depending on the Network Interactions
of Root-Associated Bacterial Microbiomes We observed that
the RD1 networks exhibited the highest proportion of negative
correlations (edges; rhizosphere: 8.56%; endosphere: 29.52%)
compared with the RD2 (rhizosphere: 1.43%; endosphere:
0%) and RD3 networks (rhizosphere: 1.78%; endosphere:
0%; Table S4). In general, positive correlations indicate less
competitive interactions and more mutualistic interactions
[50]; thus, the potential for cooperative or syntrophic interac-
tions was greater in coarse roots than in fine roots. This could
be a strategy depending on the mutualistic interactions be-
tween bacterial taxa to compensate for the low absorption of
nutrients in coarse roots, analogous to the reliance of thick
roots on their associated mycorrhizal fungi [46].

On the other hand, the co-occurrence network of RD2 was
less complex and stable than those of RD1 and RD3 (Figs. 5a
and S7; Table S4), as RD2 is in a transitional stage from fine root
to coarse root and has a high community turnover, which results
in high stochasticity in species co-occurrences [51].
Consequently, the network keystone taxa in the RD2 endosphere
(e.g., Cytophagia, Flavobacteriia, Sphingobacteriia, β-
Proteobacteria, and γ-Proteobacteria; Fig. 5e) exhibited
copiotrophic attributes, such as higher growth rates and lower
substrate affinities [52], to adapt to the high community turnover.
These results indicated that this could be a strategy relying on
keystone taxa to maintain network stability in roots and thereby
influence root functions. Further research into the factors affect-
ing the assembly of the microbiome in the transitional stage
could provide new evidence regarding the mechanisms under-
pinning root-microbe interactions. Taken together, the results
demonstrated that the network interactions of root-associated
bacterial microbiomes could be potential strategies whereby
roots influence root functions.

Conclusions

In the present study, we revealed that different root diameters
among root depths affected both the rhizospheric and root endo-
phytic bacterial microbiomes of R. pseudoacacia. The selection
and network interactions of the bacterial community differed
among root diameters across depths with root-associated com-
partments (rhizosphere and endosphere). The variation in root-
associated compartments presented distinct response patterns to
different root diameters among root depths. Although the rhizo-
sphere soil properties of different root diameters were not mea-
sured, these results still demonstrated the relationship between
root-associated bacterial microbiomes from root diameters across
root depths and soil properties. The results implied that the re-
cruitment and interactions of the specific root-associated bacterial

microbiome play critical roles in plant growth. Further studies are
required to clarify the function of specific species selected by root
niches and to achieve themaximization ofmicrobial function and
root adaptability by regulating the root-associated microbiome.
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