
ENVIRONMENTAL MICROBIOLOGY

Assessing the Diversity of Benthic Sulfate-Reducing Microorganisms
in Northwestern Gulf of Mexico by Illumina Sequencing of dsrB Gene

Ma. Fernanda Sánchez-Soto1
& Daniel Cerqueda-García2 & Rocío J. Alcántara-Hernández3 & Luisa I. Falcón4

&

Daniel Pech5
& Flor Árcega-Cabrera6 & Ma. Leopoldina Aguirre-Macedo1

& José Q. García-Maldonado7

Received: 20 April 2020 /Accepted: 21 October 2020
# Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This study investigates the community composition, structure, and abundance of sulfate-reducing microorganisms (SRM) in
surficial sediments of the Northwestern Gulf of Mexico (NWGoM) along a bathymetric gradient. For these purposes, Illumina
sequencing and quantitative PCR (qPCR) of the dissimilatory sulfite reductase gene beta subunit (dsrB gene) were performed.
Bioinformatic analyses indicated that SRM community was predominantly composed by members of Proteobacteria and
Firmicutes across all the samples. However, Actinobacteria, Thermodesulfobacteria, and Chlorobi were also detected.
Phylogenetic analysis indicated that unassigned dsrB sequences were related to Deltaproteobacteria and Nitrospirota superclu-
sters, Euryarchaeota, and to environmental clusters. PCoA ordination revealed that samples clustered in three different groups.
PERMANOVA indicated that water depth, temperature, redox, and nickel and cadmium content were the main environmental
drivers for the SRM communities in the studied sites. Alpha diversity and abundance of SRM were lower for deeper sites,
suggesting decreasing sulfate reduction activity with respect to water depth. This study contributes with the understanding of
distribution and composition of dsrAB-containing microorganisms involved in sulfur transformations that may contribute to the
resilience and stability of the benthic microbial communities facing metal and hydrocarbon pollution in the NWGoM, a region of
recent development for oil and gas drilling.
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Introduction

Biological sulfate reduction to sulfide is a crucial step in the
global sulfur, carbon, and metal cycles, particularly in marine

sediments where sulfate is the main anaerobic oxidant [1–3].
This metabolism is mediated by the ubiquitous sulfate-
reducing microorganisms (SRM) that dominate the anaerobic
steps in the mineralization processes of sulfate-rich marine
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sediments, oxidizing as much organic matter to CO2 as aero-
bic microorganisms [4, 5]. This specialized functional guild
constitutes a phylogenetically and physiologically diverse
group of anaerobes that mainly use sulfate as a terminal elec-
tron acceptor to oxidize several organic substrates or hydro-
gen, in a dissimilatory pathway resulting in sulfide as the end
product [6].

Dissimilatory (bi)sulfite reductase enzyme (DsrAB enzyme)
catalyzes the transformation of sulfite to sulfide, the last step in
the dissimilatory sulfate reduction pathway (DSR). These
enzymes, and the dsrAB genes that encode it, are conserved
in all SRM and these are distributed in six bacterial
(Proteobacteria, most within the class Deltaproteobacteria,
Nitrospirota, Firmicutes, Actinobacteria, Caldiserica,
Thermodesulfobacteria) and three archaeal phyla
(Euryarchaeota, Crenarchaeota, Aigarchaeota) [2, 6, 7].
However, the genetic capacity for sulfate/sulfite reduction was
recently discovered in other microbial genomes, expanding
the number of microbial phyla associated with this process.
For instance, Chloroflexi (e.g., Dehalococcoidia),
Verrucomicrobia, Candidatus Rokubacteria, Candidatus
Hydrothermarchaeota , and Euryarchaeota (e .g. ,
Diaforarchaea) are some phyla that contain dsrAB genes
[8–10]. The taxonomic distribution of dsrAB genes may reflect
different microbial lifestyles and versatile metabolisms to sur-
vive under different environmental conditions [11].

The characterization of environmental SRM through 16S
rRNA gene-based analyses has been difficult because SRM
belong to different and distant lineages, and are often related
to non-SRM [12, 13]. Instead, comparative analyses of the
dissimilatory sulfite reductase (dsrAB) genes amplicon se-
quences are more accurate for this purpose [12]. The highly
conserved dsrAB genes are in general organized in a single-
copy operon [12, 14, 15]. These genes encode for the α and β
subunits of the enzyme that catalyzes the transformation of
sulfite to sulfide, the last step in the DSR pathway, and thus,
they are present in all SRM. For these reasons, dsrAB genes
have been frequently used to infer the evolutionary history,
and to characterize and enumerate SRM in different environ-
ments [2, 16–22]. The combination of high-throughput se-
quencing and quantitative PCR (qPCR) of the dsrAB genes
has provided comprehensive information about abundance
and composition of SRM in marine environments [23].
Moreover, this approach has been identified to be a powerful
approach for comparative analyses of SRM communities [23].

In the Gulf of Mexico (GoM), a large set of geochemical
and isotopic data from the Deep-Sea Drilling Project gave the
first indications of the importance of sulfate reduction (SR) in
marine sediments [24] and the variables controlling this pro-
cess, such as the organic sources, water depth, and sediment
deposition rates [25]. Once SR was recognized as one of the
dominant microbial processes in marine sediments mainly as-
sociated with seep environments [26, 27], several studies

investigated the corresponding microbial taxonomy diversity
[28–30]. The results indicated that SRM were involved in the
degradation of simple hydrocarbons, suggesting that labile
organic matter is an important factor shaping SRM diversity
and activity in marine sediments [28–30]. After the significant
amount of oil was released by the Deepwater Horizon (DWH)
blowout in 2010, laboratory studies have demonstrated that
SRM families within the Deltaproteobacteria are involved in
the anaerobic hydrocarbon degradation in oil-polluted sedi-
ments [31–33]. PCR-dependent molecular analyses have rec-
ognized the importance in oil-polluted sedimentary environ-
ments, particularly in the Northern GoM [19, 33–37].
However, more information about SRM diversity, distribu-
tion, and the potential environmental factors related with them
are needed for this region. Thus, the aim of the present study
was the characterization of SRM communities in sediments
spanning across the continental shelf and slope down to the
abyssal zone in terms of geochemical variables influencing
their abundance and composition.

Methods

Sample Collection

InMay 2016, 23 soft-bottom sediment samples were collected
using a 0.50 m2 Hessler-Sandia box corer from four transects
(A, B, C, and D) located perpendicular to the coastline in the
NWGoM (Fig. 1). Sediment samples (one from each sampling
site) were collected in a depth gradient from 44- to 3548-m
water depth (Table 1). Immediately after collection, pH and
redox potential were measured directly on the sediment sam-
ples using an Extech pH 100 probe and an Extech RE300
probe, respectively (MA, USA). A sediment subsample of
the uppermost 10 cm of the sediment layer was collected with
sterile syringes with cut-off tips and frozen at − 20 °C for later
DNA extraction. Another subsample of 400 g of sediment for
total organic carbon (TOC), organic matter (OM), and grain-
size was collected and frozen at − 4 °C until lab analysis. An
extra sample was collected for heavy metal determinations
and stored in plastic bags after being washed with a 1N
HNO3 (Sigma-Aldrich pure grade) solution and deionized
water. To determine the total hydrocarbon (THC) concentra-
tion, sediment subsample (100 g) was stored in glass con-
tainers previously washed with hexane and acetone (both
Sigma-Aldrich chromatographic grade). Both samples were
kept at 4 °C until analysis.

Physicochemical Properties Analyses from Marine
Sediments

Sediment TOC% and OM% were determined following the
Walkley-Black [38] titration method by using potassium
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dichromate and carbonates were acidified by using 0.1 N hy-
drochloric acid and back titration with 0.3 M sodium hydrox-
ide. Sand grain structure was obtained by weighting the
retained grains at different mesh sizes (2 mm, 500 μm, 250
μm, 125 μm, 63 μm) and compared according to the
Wentworth [39] grain size classification. Temperature (°C),
salinity (PSU), and dissolved oxygen concentration (DO mL
L−1) of the bottom water were recorded in situ using a CTD
Seabird 9 plus®. Thermocline and oxycline were detected
around 50-m depth in the water column.

Determination of Heavy Metals and Total
Hydrocarbon Concentration

Heavy metal concentration was obtained following Loring
and Rantala [40] and Arcega-Cabrera et al. [41] techniques.
Sediment samples were freeze-dried using a freeze dryer

(LABCONCO FreeZone 2.5), for microwave-assisted acid
digestion (CEM MARS 6) from 0.5 g of the sample that was
placed in a Teflon vessel with 9 mL of HNO3 (EMSUREACS
60%), 3 mL of HF (EMSURE suprapur), and 1 mL of HCl
(EMSURE suprapure). Quantification of metal concentration
(Cd, Ni, V and Pb) was done using an ICP-MS (Mod. iCAPQ
Thermo Scientific) with the ions V51, Ni60, Cd112, and
Pb208. For quality analysis, SRM 2702 (NIST) was used,
recovery percentage (%) and limit of detection (mg/g) were
as follows: for V51, 88% and 0.0043mg/g, for Ni60, 96% and
0.0001 mg/g, for Cd112 86% and 0.0039 mg/g, and for
Pb208, 80% and 0.2066 mg/g.

For hydrocarbons analysis, freeze-dried sediment samples
were sieved through a 0.5-mm mesh and placed in an ASE
350 Dionex Thermo pressurized solvent extractor at 1500 psi
using DCM (dichloromethane GC grade). Hydrocarbon elu-
tion was done with TEDIA hexane GC grade (15 mL) and for

Table 1 Physicochemical variables of the bottom water and surface sediments, alpha diversity estimators, and dsrB gene abundance

Sample Depth* Temp.*a DOa pHb Redox*b TOCb OMb MSb FSb VFSb Vb Ni*b Cd*b Pbb THCb ASVsb H′b dsrB geneb

A1 50.4 25.1 4.1 7.5 195.8 1.1 1.9 43.3 39.8 16.9 60.3 15.3 0.1 19.5 18.8 2253 7.6 5.5

A2 97.6 21.4 2.9 7.3 50.5 0.4 0.6 37.2 52.1 10.7 64.4 16.3 0.1 23.2 10 1289 7 6.1

A3 372.5 9.4 2.4 7.3 − 118.2 0.3 0.5 46.1 38.2 15.6 84.5 24.8 0.2 28.2 7.9 926 6.7 5.3

A4 1000 8.3 2.5 7.2 164.3 0.3 0.6 41.4 52.9 5.6 44.3 17.7 0.2 11.2 21.9 459 6 4.8

A5 1448 4.4 4.5 7.1 228.7 0.6 1.1 38.5 51.2 10.3 82.2 31 0.2 19.9 7.3 249 5.4 3.8

A6 1998 4.3 4.6 7.7 245.7 0.5 0.9 24.4 69.9 5.7 71.6 25.5 0.2 18.3 7.3 67 4 4.3

B1 47 26.8 4.6 7.2 − 125.4 0.9 1.6 89.6 8.5 1.9 70.7 18.1 0.2 24.5 11.7 873 6.6 5.6

B2 105.8 22.6 4.2 7.3 − 169.6 0.5 0.9 31.1 57.2 11.8 72.5 18.6 0.2 26.7 8.4 816 6.6 6.4

B3 503.8 5.4 3.6 7.3 − 132.2 0.2 0.4 33.6 55.3 11.2 50.7 14.7 0.1 17.7 7.6 692 6.4 5.4

B4 1065.7 5.1 3.8 7.3 264.7 0.1 0.2 46.4 32.2 21.4 87.8 30 0.3 27.1 6.5 530 6.2 5.3

B5 1971 4.3 4.7 7 241.7 0.3 0.4 25.9 62.7 11.4 86.7 30.7 0.3 24.2 14.7 696 6.5 4.2

B6 2676.8 4.3 4.6 7.3 237 0.1 0.2 29.3 54 16.6 90.4 28.4 0.2 20.8 15.3 955 6.7 5.7

C1 44 25 4.6 7.4 − 107.5 0.1 0.2 26.8 39.2 33.9 82.4 21.1 0.2 28.8 8.9 1035 6.8 6.3

C2 107 21.3 3.2 7.4 − 134.3 0.2 0.4 32.5 47.3 20.2 91.8 23 0.2 32.8 7.3 962 6.7 6.2

C3 473.4 9.5 2.4 7.5 − 112.1 0.1 0.2 32 48.9 19.1 84.4 23.5 0.2 31.6 9.7 682 6.4 5.2

C4 826 6.1 3.2 7.3 − 129 0.2 0.3 64.6 29.4 6 77.2 19.7 0.2 28.9 11.5 1513 7.2 5.7

D1 48.1 25 4.1 7.1 − 121.9 0.1 0.1 23.5 49.9 26.6 65.7 16.1 0.2 25.2 15 1976 7.4 6.1

D2 93 20.4 2.8 7.5 − 72.7 0.4 0.6 30.6 51.2 18.3 79.8 20.1 0.2 31.4 10.3 1109 6.9 4.7

D3 537 2.7 2.4 7.4 − 86.8 0.6 1.1 32.2 58.5 9.3 88.4 22.8 0.3 34.3 6.2 879 6.6 4.7

D4 1616 4.3 4.6 7 248.3 0.2 0.3 45.4 46.1 8.5 86.8 30.8 0.3 26.7 3.4 114 4.6 3.4

D5 1760 4.3 4.6 7.2 236.3 0.4 0.8 29.8 57.7 12.5 90.5 33.7 0.3 22.8 4.6 51 3.8 3.7

D6 3254.7 5.1 4.6 7 228.3 0.5 0.8 62.6 33.5 3.9 86.1 28.7 0.2 25.3 16.2 55 3.9 4.6

D7 3548 4.4 4.6 7.3 238.3 0.4 0.6 17.4 68.1 14.4 89.6 31.8 0.2 20.3 10.6 35 3.4 3.9

Depth, water depth (m); Temp., temperature (°C); DO, dissolved oxygen (mg/L); Redox, redox potential (mV); TOC, total organic carbon (%); OM,
organic matter (%); MS, medium sands (%); FS, fine sands (%); VFS, very fine sands (%). Heavy metals in mg/kg: V, vanadium; Ni, nickel; Cd,
cadmium; Pb, lead. THC, total hydrocarbons (mg/kg). ASVs, alpha diversity estimators as the observed ASVs;H′, Shannon diversity value. dsrB (log10
of gene copies per gram of wet sediment weight), dsrB gene

*Environmental variables related to changes in the community structure of sulfate reducing microorganisms p value < 0.05
aMeasured from bottom waters
b Environmental variables applied to surface sediments
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the second fraction, a 50:50 v/v TEDIA hexane GC grade and
TEDIA DCM (15 mL) were used. Samples were added with a
subrogated solution of deuterated PAHs (1-3 dimethyl-2 ni-
trobenzene, acenaphthene δ10, phenanthrene δ10, pyrene
δ10, triphenyl phosphate, chrysene δ10, and perylene δ10
from UltraScientific). Also, the o-terphenyl (Supelco) was
used as an internal standard. Compounds were analyzed using
a gas chromatography with a flame ionization detector (GC-
FID Agilent-7890A) and with a mass spectrometer (GC-MS
Perkin Elmer-Clarus 500). Chromatographic conditions were
as follows: GC-FID and GC-MS had an injector and oven tem-
perature of 290 °C and 50 °C, respectively, a column type of 5%
phenyl methyl siloxane (30 × 0.25 × 25) and a carrying gas of
UHPNitrogen. Detector temperature and ramp for GC-FIDwere
300 °C and 6 °C /min, respectively, and for GC-MSwere 180 °C
and 25 °C/min–160 °C and 8 °C/290 °C, respectively.

Environmental DNA Extractions

Sediment samples were thawed and centrifuged 1 min at
10,000×g to discard the remaining water and extract DNA
from the settled microbial cells. Total DNA was extracted
from 1 g of each sediment sample using the DNeasy
PowerSoil Kit (QIAGEN, Gilden, Germany) following the
manufacturer’s protocol. All the extracted DNAs were stored
at − 20 °C for subsequent Illumina sequencing and qPCR
procedure.

dsrB Illumina Sequencing from Environmental
Sediment Samples

Barcoded dsrB amplicons for Illumina sequencing were pre-
pared from the extracted DNA by using the two-step PCR

protocol (Illumina). In the first PCR, approximately 440 bp
of the dsrB gene were amplified with the primer set
DSR1762F1/DSR2107R1 including the Illumina sequencing
adapters [42]. The first-step PCR program was performed in a
“touch-down”mode with an initial denaturation at 95 °C for 3
min, followed by 35 cycles of 30-s denaturation at 95 °C, 30-s
annealing at 60–50 °C (the temperature decreased by 1 °C per
cycle during the first 10 cycles) and elongation for 1 min at 72
°C, and a final elongation step at 72 °C for 10 min. Each PCR
reaction mixture (20 μL) included 1 μL of DMSO (5%), 1 μL
of each primer (0.5 mM), 10 μL of 2x Phusion High-Fidelity
MasterMix (Thermo Scientific, USA), and 2 μL of the DNA
template (~ 10 ng/μL).

For the second PCR, dual indices were attached during
eight cycles by using the Nextera XT Index Kit. Individual
barcoded amplicons were diluted and purified in 10 mM Tris
(pH 8.5) and pooled at 9 pM equimolar concentration. Paired-
end sequencing was performed in aMiSeq platform (Illumina,
San Diego, CA, USA) with a MiSeq Reagent Kit V3 (2x250
cycles) at CINVESTAV-Merida, Mexico.

Quantification of dsrB Gene by qPCR

The quantification of the dsrB gene copies was carried out by
qPCR with the primers DSRp2060F/DSR4R recommended
by He and colleagues [43] using the SYBR Green method.
These primers were selected due to their detection range of
SRM [44], as shown in previous studies [23, 43]. The qPCR
conditions included an initial denaturation at 94 °C for 15min,
40 cycles of 30 s at 94 °C, 20 s at 60 °C, and 30 s at 72 °C.
Each reaction of 12.5 μL contained 0.5 μL of each primer (0.4
mM), 6.5 μL Quantinova SYBR Green PCR Kit (Qiagen,
Hilden, Germany), and 1 μL of the template (normalized to

Fig. 1 Sampling stations in four
transects (A–D) extended along
the continental shelf toward the
bathyal region in the
Northwestern Gulf of Mexico
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1 ng μL−1 DNA). Data acquisition was performed in the PCR
extension step, and the amplification specificity was verified
by melting curve analysis (from temperature 72–98 °C with a
1 °C hold for 5 s) and on 1% agarose gels for visualization.
Standard curves were obtained from 10-fold serial dilutions of
a plasmid containing the dsrB gene and were linear within a
range of 10 to 107 target gene copies per μL−1 template, with
an efficiency of 101% and R2 = 0.99.

Bioinformatics Processing and Data Analyses

The Illumina paired-end reads (2x250) were processed with
QIIME2 (version 2019.10) [45]. After manual inspections,
forward and reverse reads were trimmed in position 25 in
the 5′ end and truncated in position 240 and 160 at the 3′
end, respectively. The amplicon sequences variants (ASVs)
were resolved with the DADA2 plugin [46], removing chi-
meras with the “consensus” method.

The representative sequences of ASVs were analyzed with
the DIAMOND software [47], using its blastx algorithm to
compare the ASVs with the RefSeq protein database from
NCBI, with the arguments: e-value < 0.0003 and “–sensitive”.
The DIAMOND output was imported to the MEGAN6 soft-
ware [48].With the aim to identify and annotate the ASVs that
correctly codes to the dissimilatory sulfite reductase beta sub-
unit (EC 1.8.99.3) protein, we mapped the MEGAN output
file to the SEED metabolic annotation categories through the
mapping file “acc2seed” with a min percent identity: 50 and
the other LCA parameters as default. The ASVs that were not
annotated as this protein were removed. The filtered ASVs
were taxonomically assigned using the LCA classifier of
MEGAN6, using the taxonomic classification from the
NCBI (with the “prot_acc2tax” mapping file). With the fol-
lowing parameters to the LCA: min score 50; max expected
3.0E-4; min percent identity 50; top percent 60, and percent to
cover 60 with the read assigned mode as “alignedBases.” The
classification was filtered, pruning out the taxonomic levels
with a taxa path percent score < 50%, or marking it as an
“ambiguous” level by an asterisk.

The classification and the ASV abundance table were
exported to the R environment (version 3.6.0) to carry out
the diversity and statistical analysis with the phyloseq [49]
and vegan [50] packages. ggplot2 [51] was used for graphic
visualizations.

The Shannon alpha diversity index was calculated. A princi-
pal coordinate analysis (PCoA) was calculated with the Bray-
Curtis distance matrix. To identify the optimal number of sample
clusters, a gap statistical analysis was carried out on the ordina-
tion with the cluster packages, using the clusGap function with
“pam1” and 1000 bootstraps. The significant variables and clus-
ters were tested with a PERMANOVA analysis at a p value <
0.05. A Linear discriminant analysis Effect Size (LEfSe) [52]
was carried out to identify the ASVs with significant differential

abundance between clusters. The Spearman correlation analysis
between alpha diversity, dsrB gene abundance, and environmen-
tal variables was computed in R.

In order to gain insights into the phylogenetic relationship of
the dsrB sequences with no taxonomic assignment at the family
level, a phylogenetic analysis was carried out. Briefly, 3950 un-
assigned ASVs at the family level were clustered in operational
taxonomic units at 90% similarity using the V-SEARCH algo-
rithm [53], resulting in 1178 OTUs. An alignment with 1292
dsrB reference sequences [42] and all the query OTUs was per-
formed with the Mafft algorithm [54]. The alignment was
trimmed with the GBlocks algorithm [55]. ModelTest-NG soft-
ware [59] was used to select the evolutionary model from the
alignment. The phylogenetic tree was computed using RAxML
software [56], using the model “GTRGAMMAIX” selected by
ModelTest. The resulting phylogenetic tree contained 1292 tips
from the reference database and 1178 tips fromqueryOTUs. The
phylogenetic tree (Fig. 4) was edited by the i-TOL online tool
(http://itol.embl.de/) [57].

Raw input files used in this study are available in the
Online Resources 7–14. Raw sequence data were deposited
in NCBI under the Bioproject accession number
PRJNA626626.

Results

Physicochemical Determinations for Site Description

Surficial sediments had pH values from 7.01 to 7.71 (7.29 ±
0.17). Redox potential was from − 169.6 to 264.67 mV (55.21
± 176.32), from which most electronegative values were ob-
served in sites < 1000-m water depth, with the exception of
samples B1 and B2, which had electropositive redox values
(Table 1). TOC and OM contents were 0.37 ± 0.26 and 0.65 ±
0.44, respectively; and the percentage of MS, FS, and VFS
were 38.44 ± 16.03%, 48 ± 13.73%, and 13.56 ± 7.56%,
respectively (Table 1). Heavy metals concentrations were as
follows: Ni 23.6 ± 6.1 mg/kg, Cd 0.21 ± 0.1 mg/kg, V 77.8 ±
13.21 mg/kg, Pb 24.46 ± 5.1 mg/kg, and THC were 10.48 ±
4.63 mg/kg (Table 1). Finally, temperature in near-bottom
waters varied from 26.8 to 2.7 °C (11.7 ± 9) and the DO
concentration was between 2.4 and 4.66 mL L−1 (3.81 ±
0.88) (Table 1). Oxic conditions (> 2–~ 4 mL L−1) were de-
tected throughout the water column, with the oxycline occur-
ring around 50-m depth. The detection of saturated oxygen
ranged between 0 and 20 mL L−1.

Community Structure and Abundance of SRM in
Marine Sediments

Differences in the community structure of SRM were visual-
ized with a PCoA ordination method on the Bray-Curtis
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dissimilarity matrix (Fig. 2). PCoA ordination and
PERMANOVA test revealed that SRM communities grouped
into three significantly different clusters (R2 = 0.28, F 2, 23 =
3.86, p value = 0.001) (Fig. 2). Samples in cluster I (A1, A2,
B1, B2, C1, C2, D1, and D2) were collected at a water depth
range from 44 to 107 m; samples in cluster II (A3, B3, B5, B6,
C3, C4, and D3) were collected at a water depth range from
372.5 to 2676.8 m; and samples in cluster III (A4–A6, B4, and
D4–D7) were collected at a water depth range from 1000 to
3548 m (Table 1; Fig. 2).

The differential abundance analysis of the community
composition exhibited SRB whose relative abundances dif-
fered statistically (p value < 0.05) between clusters I, II, and
III (Online Resource 1). Among the assigned ASVs with dif-
ferential abundance, genus Desulfovibrio notably accounted
for most of the ASVs, with a larger representation in samples
in clusters I and II in comparison to samples in cluster III
(Online Resource 1). ASVs with differential abundances and
low similarity scores (< 50%) were indicated as ambiguous
assignments (Online Resource 1).

PERMANOVA indicated that the differences in the com-
munity structure of SRM were significantly (p < 0.05) related
to temperature (F1, 23 = 4.15, R2 = 0.2), water depth (F1, 23 =
2.7, R2 = 0.11), Ni (F1, 23 = 2.3, R2 = 0.1), redox (F1, 23 = 2.2,
R2 = 0.1), and Cd (F1, 23 = 2.1, R2 = 0.1).

SRM communities in cluster III had lower diversity than
samples in clusters I and II. Spearman correlation indicated
positive correlations between the alpha diversity and temper-
ature, while there was a significant negative relationship with
depth, redox, and the content of Ni and Cd (Online Resource
6). The lowest abundance of SRM communities, determined

by qPCR analyses of the dsrB gene, was also in the sediment
samples from cluster III (Table 1).

Composition of Sulfate-Reducing Microbial
Communities

Sulfate-reducing microbial communities were dominated
of the phyla Proteobacteria and Firmicutes across all the
s e d imen t s amp l e s . Howeve r , Ac t i n obac t e r i a ,
Thermodesulfobacteria, and Chlorobi were also detected for
all depths (Online Resource 3). The communities were predom-
inantly composed by members of the families Peptococcaceae,
Desulfovibrionaceae, and Desulfobacteraceae (Fig. 3). At the
family level, approximately 30% of the ASVs, coding for
the dsrB gene, corresponded to unassigned sequences.
Genera Desulfotomaculum and Desulfosporosinus,
f rom Peptococcaceae , and Desul fovibr io , f rom
Desulfovibrionaceae, were consistently detected for all
depths (Fig. 3; Online Resource 5).

Phylogenetic analysis indicated that unassigned dsrB se-
quences were related to Deltaproteobacteria supercluster
(253 OTUs), Nitrospirota supercluster (238 OTUs), and with
the archaeal phyla Euryarchaeota (12 OTUs) (Fig. 4).
However, most of these sequences (556 OTUs) were related
to environmental clusters, including the Environmental super-
cluster 1 and several others indicated as reductive bacterial
type dsrAB sensu lato. Interestingly, 13 environmental line-
ages (93 OTUs) were not affiliated with members of described
taxonomic groups; these were found to contain dsrB se-
quences exclusively from this study (GoM groups 1 to 13).
Moreover, some other sequences showed phylogenetic rela-
tion with the oxidative bacterial type (Fig. 4).

Discussion

SRM Community Composition in NWGoM Sediments

SRM communities from all the samples analyzed in this study
were predominantly composed of Desulfovibrio and
Desulfotomaculum (Proteobacteria and Firmicutes, respec-
tively) (Online resource 3 and 5). Desulfovibrio has been re-
ported as the dominant taxa in coastal sediments [58] and also
has been found in deep marine sediments [59, 60], while
Desulfotomaculum species have been identified from estua-
rine [61, 62], marine [63, 64], and low-sulfate habitats [65,
66]. These organisms have also been reported as dominant
bacteria in petroleum reservoirs [67]. The broad distribution
of these genera in onshore-offshore GoM sediments could be
explained for their physiological and metabolic versatility [68,
69] and by dispersal processes of water mass circulation,
which is predominantly influenced by anticyclonic eddies of

Fig. 2 Dissimilarity community structure of sulfate-reducing microor-
ganisms visualized by a PCoA ordination method. Samples are displayed
according to the Bray-Curtis dissimilarity matrix. Cluster I, sediment
samples collected from 44 to 107 m water depth; cluster II, sediment
samples collected from 372.5- to 2676.8-m water depth; cluster III, sed-
iment samples collected between 1000- and 3548-m water depth. Color
saturation is according to water depth of the samples in each transect.
Lighter tones represent shallow sites while darker tones indicate deep
sites
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warm water from the Loop Current that drift westward
influencing the entire GoM [70, 71].

Differences in the community structure of SRM observed
in the current study (Fig. 2) were related to unassigned dsrB
sequences (Figs. 3 and 4; Online Resource 1). Phylogenetic
analysis indicated that some OTUs were related to
Deltaproteobacteria lineages, including complete (i.e.,
Desulfoarculus baarsi, Desulfatiglans anilini, and
Desulfomonile tiedejei) and incomplete oxidizers (i.e.,
Desulfobulbaceae) [16, 72–74]. These taxa commonly use
sulfate as an electron acceptor; however, some specific mem-
bers have the ability to reduce other sulfur compounds and to
gain energy from other mechanisms (i.e., thiosulfate
dismutation) [73]. Nevertheless, these ecophysiological attri-
butes, such as organic substrate oxidation, substrate utilization
preferences, or mechanisms of energy conservation, were not
assessed in the present work and it must be explored in further
studies.

dsrB sequences related to Nitrospirota (formerly
Nitrospirae or Nitrospira) and Euryarchaeota were also
detected in this study (Fig. 4). These phyla include few
cultured members and environmental sequences of
Thermodesulfovibrio and Archaeoglobus, respectively.
Some metagenome-assembled genomes (MAGs) have been
done in Thermodesulfovibrio, and genes involved in dissimi-
latory sulfur metabolism have been identified in them.
However, there is still no way to discriminate between
sulfate-reducing and sulfur-disproportionating bacteria [75].
The analysis of DsrAB sequences in Thermodesulfovibrio
and Archaeoglobus species has suggested that the presence
of bacterial dsrAB genes in these organisms could be related
to lateral gene transfer from a progenitor of the
Deltaproteobacteria or from other SRM [7, 15]. Despite their
thermophilic lifestyle [76–78], these microorganisms are com-
monly detected also in non-thermal marine environments [64,
79], as occurred in this work.

The phylogenetic analysis of the unassigned dsrB se-
quences also allowed the detection of environmental groups,
composed solely by OTUs retrieved in this study (GoM
groups 1 to 13; Fig. 4). These environmental groups may

represent lineages from the GoM whose members are yet un-
cultured or not known to possess dsrAB genes, illustrating the
still unexplored diversity of dsrAB-containing microorgan-
isms in this region, as previously reported for other locations
[7]. However, these did not meet a conservative criterion to
consider them as uncultured family-level dsrAB lineages from
the GoM and further studies need to be done.

Phylotypes related to sulfur-oxidizing bacteria (SOB) were
also observed in this study forming a deep branching lineage
clearly separated from the SRM (GoM group 13; Fig. 4).
These phylotypes may represent sulfur oxidizers containing
dsrAB genes in their genome. Previous studies have also de-
tected dsrAB genes in SOB using primers for PCR amplifica-
tion of reductive bacterial-type dsrAB sequences [7]. Other
primers targeting aprAB and soxAB genes have been used as
an alternative molecular marker to evaluate environmental
SRM and SOB since these genes encode key enzymes for
microbial sulfate reduction and sulfur oxidation processes
[67, 80, 81]. Therefore, a better description of the diversity
of SRM and SOB in the NWGoM could be addressed in
further studies targeting other functional molecular marker
genes (e.g., 16S rRNA, dsr, sox, apr).

SRM Communities and Environmental Variables

Although it has been reported that bottom-water oxygen levels
may influence the sediment biochemistry [82] and the distri-
bution and survival of SRM [83, 84], DO concentration in
near-bottom waters was not related to SRM communities in
the present study. According to the determined DO concen-
trations, oxic bottom-water conditions (> 2 mg L−1) [85] were
found in all the studied sites (Table 1), and it is congruent with
previous reports for the region of the GoM [37, 86]. SRM are
able to cope with the oxygen exposure from the overlying
water by different strategies, such as oxygen tolerance, oxy-
gen reduction, chemotactic behavior, or cell aggregates [83,
87–91]. Thus, the presence of oxygen in near-bottom waters
does not appear to restrict the distribution of SRB in surficial
sediments.

Fig. 3 Community composition
of sulfate-reducing microorgan-
isms at the family level in surficial
sediments from the Northwestern
Gulf of Mexico
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Negative redox values found in shallow sediments (<
1000-m water depth) (Table 1) suggested reducing conditions
for these sites. It is coherent with the oxygen depletion in the
first few millimeters of the sediment layers in the continental
margin sediments due to respiratory processes [92–94].
Nonetheless, positive redox values were also found in these
sediments (Table 1) which could be attributed to sediment
disturbance events that led to an influx of DO from the over-
lying water, resulting in a positive change in the redox condi-
tion, as it has been previously reported for shelf sediments [95,
96]. In these oxidized sediments, the diversity and abundance
of SRM were relatively high (Table 1, Online Resource 2),
supporting the idea that SRM could be adapted to oxygen
exposure, or maybe a brief oxygen exposure by sediment dis-
turbances could be beneficial to these anaerobes, as it has been
suggested for other marine sediments [97].

Oxidizing conditions in deep-sea surficial sediments (≥
1000 m; Table 1) could be attributed to the oxygen from the
deep-water masses which is not consumed in the first centi-
meters, and it may diffuse into the sediment at a greater depth
[98]. Diversity and abundance of SRM decreased with depth
(Table 1, Online Resource 2 and 6). However, phylotypes
related to Desulfovibrio and Desulfotomaculum persisted in
deep-sea sed iment s , and phy lo types re l a t ed to
Desulfosporosinus, Desulfobacteraceae, and Chlorobi even
increased their abundance in samples from deep-sea sedi-
ments (Fig. 3; Online Resource 3 and 5). SRM related to
Desulfovibrio, Desulfotomaculum, and Desulfosporosinus
can grow autotrophically with hydrogen plus sulfate, to use
other electron acceptors, including oxygen, and the latter
two can form endospores to resist unfavorable conditions
[8, 88, 89, 101, 102]. Microorganisms affiliated to
Desulfobacteraceae exhibit high oxygen tolerance [84] and
are commonly observed in high abundance in surface marine
sediments [17, 99]. In the case of microorganisms related to
the SOB Chlorobi, they have the potential of aerobic oxida-
tion of sulfur compounds for autotrophic carbon fixation
[100]. These metabolic features may explain the detection of
these microorganisms in these deep-sea sites in which the
presence of both SRM and SOB may indicate syntrophic cy-
cling of sulfur in these oxic deep-sea environments.

dsrB gene sequences closely related to thermophilic
spore-forming SRM of the class Clostridia (e.g.,
Desulfotomaculum) were detected in all the studied sites
(Online Resource 4 and 5). However, the measured

environmental temperature was not in the range previously
reported to allow their vegetative growth (> 50 °C) [63, 64,
79, 101, 102]. Thus, we hypothesize that these microorgan-
isms could be found as dormant endospores in the analyzed
s amp l e s . The rmoph i l i c endo spo r e s r e l a t ed t o
Desulfotomaculum have been previously detected in marine
sediments in the Northern region of the GoM [70]. As endo-
spores, often considered to be metabolically inert [103], they
could not contribute to sulfate reduction in the studied sites.

Previous studies have concluded that SRM in sedimentary
habitats appeared to be tightly coupled to both water depth and
the organic carbon content [23, 30, 84, 104, 105]. In our study,
differences between SRM communities were related to water
depth too, but not to TOC andOM contents which varied in all
the sites (Table 1). Moreover, Ni and Cd concentrations were
related to differences in SRM community structure (F1, 23 =
2.3, R2 = 0.1 and F1, 23 = 2.1, R2 = 0.1, respectively). The
enrichment of Ni and Cd toward deep-sea sediments (Online
Resource 6) may derive from different sources that are likely
not related to oil inputs, since they were not correlated to THC
content (Online Resource 6). However, anthropogenic dis-
charges may disperse heavy metals (HM) by marine currents
prior to deposition [106]. HM, such as Ni and Cd, can influ-
ence SRM diversity and activity, having inhibitory effects
[107, 108], specially Cd which may inhibit microbial growth
inhibition or even cause cell death at a concentration of 0.1
mg/kg [109]. However, such metals can be precipitated with
sulfide, the end-product of microbial sulfate reduction, and
thus metal sulfide formation can mitigate metal toxicity. The
participation of SRM in the precipitation of metal sulfides is
well recognized [5, 110, 111]. Some SRM seem to display a
degree of metal tolerance and resistance [66, 112, 113], such
as the production of polypeptides that bind Ni in response to
toxic levels of soluble Ni observed in Desulfovibrio and
Desulfotomaculum species [114]. Given that some
Desulfovibrio species possess periplasmic nickel containing
hydrogenases, such as NiFeSe and NiFe hydrogenases for
hydrogen oxidation [115], Ni could be a nutrient rather than
a pollutant for them. In the present study, phylotypes related to
Desulfovibrio were enriched in deep-sea sediments (Online
Resource 1). Thus, although most of the dsrB-containing mi-
croorganisms observed in the present study (Figs. 3 and 4)
have been previously reported in metal-contaminated environ-
ments [112], Desulfovibrio species could contribute to the
resilience and stability of the sediment microbial communities
experiencing metal pollution.

In conclusion, the results obtained from this study contrib-
ute with the understanding of the diversity of dsrAB contain-
ing microorganisms related to previously described taxonom-
ic groups, as well as groups that may represent lineages from
the GoM. Changes in community structure and abundance of
SRM suggested that microbial sulfate reduction in continental
sedimentary habitats gradually decreases toward deep-sea

�Fig. 4 Phylogeny of dsrB amplicons. The phylogenetic tree was
computed using RAxML software with the GTRGAMMAIX model.
The phylogenetic tree contains 1292 tips from the reference database
and 1178 tips from the query OTUs. Nodes were manually collapsed.
Groupswith dsrB sequences obtained from the current study are indicated
in bold showing the number of OTUs in parenthesis. The image was
generated using the Interactive Tree of Life (iTOL; http://itol.embl.de/)
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sites in the NWGoM, due to environmental response variation
in water depth, temperature, redox, and Ni and Cd content, as
important environmental drivers throughout the transition be-
tween the continental margin and the deep seabed in the re-
gion of study.
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