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Abstract
We assessed fungal diversity present in air samples obtained from King George Island, Antarctica, using DNA metabarcoding
through high-throughput sequencing. We detected 186 fungal amplicon sequence variants (ASVs) dominated by the phyla
Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, and Chytridiomycota. Fungi sp. 1, Agaricomycetes sp. 1,
Mortierella parvispora, Mortierella sp. 2, Penicillium sp., Pseudogymnoascus roseus, Microdochium lycopodinum,
Mortierella gamsii, Arrhenia sp., Cladosporium sp., Mortierella fimbricystis, Moniliella pollinis, Omphalina sp., Mortierella
antarctica, and Pseudogymnoascus appendiculatus were the most dominant ASVs. In addition, several ASVs could only be
identified at higher taxonomic levels and may represent previously unknown fungi and/or new records for Antarctica. The
fungi detected in the air displayed high indices of diversity, richness, and dominance. The airborne fungal diversity included
saprophytic, mutualistic, and plant and animal opportunistic pathogenic taxa. The diversity of taxa detected reinforces the
hypothesis that the Antarctic airspora includes fungal propagules of both intra- and inter-continental origin. If regional
Antarctic environmental conditions ameliorate further in concert with climate warming, these fungi might be able to reactivate
and colonize different Antarctic ecosystems, with as yet unknown consequences for ecosystem function in Antarctica. Further
aeromycological studies are necessary to understand how and from where these fungi arrive and move within Antarctica and if
environmental changes will encourage the development of non-native fungal species in Antarctica.
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Introduction

The pristine environments of Antarctica offer unique oppor-
tunities to study how biological diversity disperses and

colonizes habitats under extreme conditions. Among the bar-
riers that isolate Antarctica from other Southern Hemisphere
landmasses (such as South America, Africa and Oceania) are
the atmospheric circumpolar vortex (resulting in the consis-
tently strong westerly winds flowing around the continent)
and the continent’s extreme environmental conditions includ-
ing cold temperatures and typically oligotrophic conditions
[1–3]. Nonetheless, over time, Antarctic ecosystems receive
a rain of microbial particles from other parts of the world
[4–8], the so-called diaspore rain [9]. However, how viruses,
bacteria, microalgae, and fungi, as well as plant propagules,
arrive and circulate in Antarctica remains poorly understood
[8, 10, 11].

Fungi occur in virtually all terrestrial ecosystems of
Antarctica. Many fungi have small and light spores and other
propagules that in principle can be easily dispersed by air
currents globally, which may arrive in Antarctica. Among
the fungal diversity currently known fromAntarctica, globally
cosmopolitan taxa often appear to dominate in many
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ecosystems and are to adapt to and function well under the
environmental challenges, while few fungi are considered to
be either endemic or true psychrophiles [12, 13]. A number of
aerobiological studies have been carried out in Antarctica in
recent decades, which reported the arrival of various microbial
groups, including fungi [3–5, 14–16]. However, the majority
of these studies only used traditional culturing techniques and,
thus, are likely to have detected only a minority of the mi-
crobes present in the airspora.

In the second half of the Twentieth Century the
Antarctica Peninsula was one the three most rapidly
warming regions globally, a trend which, while recently
paused [17], is predicted to resume in the remainder of the
twenty-first century [18–20]. The rapid changes in physi-
cal and chemical environmental conditions raise concerns
of accelerating colonization of Antarctica by non-native
species, particularly through anthropogenic assistance
[19]. In the present study, we assessed fungal diversity
present in air samples obtained over one continuous
month on the Keller Peninsula, King George Island,
South Shetland Islands, maritime Antarctic, using DNA
metabarcoding through high-throughput sequencing
(HTS).

Material and Methods

Air Sampling

Air samples were collected at Punta Plaza, Keller Peninsula,
King George Island, South Shetland Islands, close to the
Brazilian Antarctic Station Comandante Ferraz (Fig. 1). Air
was collected using a polysulfone sterilized bottle top filter
(Nalgene, USA) equippedwith 0.22-μm sterilizedmembranes
(47-mm diameter; Millipore, USA) coupled with chemical
duty pump (Millipore, USA). Three systems (filter, mem-
branes, and pump) were operated in parallel, and the sampling
was performed using three membranes simultaneously for
5 days in a row during 20 days, totaling 12 membranes from
December of 2019 to January of 2020. The temporal samples
were defined as sample 1 (air obtained in December 11–16,
2019), sample 2 (air obtained in December 17–22, 2019),
sample 3 (air obtained in December 25–30, 2019), and sample
4 (air obtained in January 1–06, 2020). Membranes were
added to previously sterilized filters inside a sterile laminar
flow hood and kept in sterile bags until placed on the exper-
iment site. After each experiment, filters with membranes
were transported in sterile bags immediately back to the mi-
crobiology laboratory of Comandante Ferraz Antarctic
Station, then inside a laminar flow hood, membranes were
removed from the filters and DNA extractions were per-
formed. All equipment used (e.g. forceps, tubes, blades, and
tubes) were sterilized before use.

DNA Extraction, Data Analyses, and Fungi
Identification

Three membranes from each sampling interval were proc-
essed together into the same DNA extraction in order to in-
crease DNA yield. Total DNA was extracted from environ-
mental samples using the DNeasy PowerWater Sterivex Kit,
following the manufacturer’s instructions. Extracted DNA
was used as template for generating PCR amplicons. The in-
ternal transcribed spacer 2 (ITS2) of the nuclear ribosomal
DNA was used as a DNA barcode for molecular species iden-
tification [21, 22]. PCR amplicons were generated using the
universal primers ITS3 and ITS4 [23] and were sequenced by
high-throughput sequencing at Macrogen Inc. (South Korea)
paired-end sequencing (2 × 300 bp) on MiSeq System
(Illumina), using the MiSeq Reagent Kit v3 (600 cycles) fol-
lowing the manufacturer’s protocol.

Raw fastq files were filtered using BBDuk version 38.34
(BBMap – Bushnell B. – sourceforge.net/projects/bbmap/) to
remove Illumina adapters, known Illumina artifacts, and the
PhiXControl v3 Library. Quality read filtering was carried out
using Sickle version 1.33 -q 30 -l 50 [24], to trim ends 3′ or 5′
with low Phred quality score, and sequences shorter than
50 bp were also discarded. The remaining sequences were
imported to QIIME2 version 2019.10 (https://qiime2.org/)
for bioinformatics analyses [25]. The qiime2-dada2 plugin is
a complete pipeline that was used for filtering, dereplication,
turn paired-end fastq files into merged, and remove chimeras
[26]. Taxonomic assignments were determined for amplicon
sequence variants (ASVs) using the qiime2-feature-classifier
[27] classify-sklearn against the UNITE fungal ITS database
version 7.2 [28] and trained with Naive Bayes classifier and a
confidence threshold of 98.5%.

Many factors, including extraction, PCR, and primer bias,
can affect the number of reads obtained [29], and thus lead to
misinterpretation of absolute abundance [30]. However, Giner
et al. [31] concluded that such biases did not affect the pro-
portionality between reads and cell abundance, implying that
more reads are linked with higher abundance [32, 33].
Therefore, for comparative purposes, we used the number of
reads as a proxy for relative abundance.

Fungal Diversity and Distribution

To quantify species diversity, richness, and dominance, we
used the following indices: (i) Fisher’s α, (ii) Margalef’s,
and (iii) Simpson’s, respectively. The relative abundances of
the amplicon sequence variants (ASVs) were used to quantify
the fungal taxa present in the air sampled, where fungal ASVs
with relative abundance > 10% were considered dominant,
ASVs with < 10% > 1% as intermediate, and ASVs with <
1% as minor (rare) components of the fungal community. All
of the results were obtained with 95% confidence, and
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bootstrap values were calculated from 1000 iterations. Taxon
accumulation curves were obtained using the Mao Tao index.
All diversity index calculations were performed using PAST,
version 1.90 [34]. Venn diagrams were prepared as described
by Bardou et al. [35] to compare the fungal assemblages pres-
ent in the air samples.

Results

Fungal Taxonomy

In the complete air sampled over the 20-day study period (total
of 1697.76 m3 or 424.44 m3 in each continuous 5-day period)
on the Keller Peninsula, King George Island, we detected 186
fungal ASVs (Supplementary Table 1; Supplementary
Table 2). The ASVs were dominated, in rank order, by the
phyla Ascomycota, Basidiomycota, Mortierellomycota,
Mucoromycota, and Chytridiomycota. Ascomycota and
Basidiomycota were detected in all samples; however,
Chytridiomycota was detected only in sample 3 and

Mucoromycota in sample 4 (Fig. 2a). At class level,
Mallasseziomycetes, Agaricomycetes, Saccharomycetes,
Leotimycetes, Eurotiomycetes, and Dothideomycetes
displayed broad distribution across all samples; in contrast,
Endogonomycetes and Exobasidiomyceteswere detected only
in sample 4 (Fig. 2b). Of the total of 187,423 reads, 19,460
(10.38%) could only be assigned as Fungi sp. and may there-
fore represent currently unknown taxa. Similarly, a number of
ASVs could only be identified to higher taxonomic levels
(phylum, class, order, family) and again may represent new
species and/or new records for Antarctica, or the unclassified
ASVs might be an artefact due to the small amplicon size. The
airborne fungal community included 14 dominant fungal taxa,
43 intermediate, and 130 minor. Fungi sp. 1, Agaricomycetes
sp. 1, Mortierella parvispora, Mortierella sp. 2, Penicillium
sp., Pseudogymnoascus roseus, Microdochium lycopodinum,
Mortierella gamsii, Arrhenia sp., Cladosporium sp.,
Mortierella fimbricystis, Moniliella pollinis, Omphalina sp.,
Mort iere l la antarc t ica , and Pseudogymnoascus
appendiculatus were the dominant fungal taxa, in rank order.

Fig. 1 Satellite images a, b, and c (obtained in Google Earth Pro, 2019)
and the site where the air was sampled. a Antarctic Continent with the
Antarctic Peninsula inside the red rectangle. b Antarctic Peninsula with
the South Shetland Islands archipelago inside the red rectangle. c King

George Island with the Keller Peninsula inside the red rectangle. d Keller
Peninsula, Punta Plaza (red arrow) at 62° 5′ 23.695″ S, 58° 24′ 24.162″
W. Photo (d) by L.H. Rosa
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Fungal Diversity

The Mao Tao rarefaction curves of the fungal assemblages
detected in the different samples reached asymptote (Fig. 3),
indicating that the data provided a good description of the
diversity present. The total fungal community detected in the
air displayed high indices of diversity (Fisher α), richness
(Margalef), and dominance (Simpson). However, the indices
varied among the different samples, and the diversity and
richness were higher in the first and final samples (Table 1).
Of the total fungal ASVs detected, only 20 (10.75%) were
detected in all samples, with these including known
Ascomycota airborne fungi such as Aspergi l lus ,
Cladosporium, and Penicillium taxa (Fig. 4).

Discussion

Fungal Taxonomy and Diversity

The fungal component of the airspora circulating in Antarctica
is poorly characterized, with the few previous studies based
only on traditional morphological methods [36].Marshall [14]

characterized airborne fungal spores over a period of
13.6 months on Signy Island (South Orkney Islands, also in
the maritime Antarctic), reporting Epicoccum spp. and
Cladosporium spp. to be dominant. Duncan et al. [37] sam-
pled the air inside the historic explorers’ huts on Ross Island
and found viable fungal propagules dominated by
Cladosporium cladosporioides, Pseudeurotium desertorum,
P s e u d o g ym n o a s c u s s p . , a n d A n t a r c t om y c e s
psychrotrophicus. Archer et al. [3] assessed the microbial cul-
tured diversity in air in one of the Victoria Land Dry Valleys
and detected basidiomycetous yeasts and unclassified fungi as
dominant taxa. However, studies of fungal diversity using
metabarcoding approaches remain scarce. Recently, Rosa
et al. [36] used this approach to study the airspora fungi pres-
ent in air and snow on Livingston Island, South Shetland
Islands, detecting a rich fungal diversity mostly including taxa
that are not usually detected in culture approaches.

In our study, application of metabarcoding revealed the
presence of high fungal diversity in the air sampled, dominat-
ed by members of the phyla Ascomycota and Basidiomycota,
but also with dominant members of Mortierellomycota,
Mucoromycota, and Chytridiomycota that are typically un-
common in the air. The detection of DNA of Ascomycota
and Basidiomycota taxa in all four samples (across one whole
month of air sampling) suggests that these fungal groups are
the most dominant in the Antarctic Peninsula region as pro-
posed by several studies [13]. In contrast, those belonging to
Chytridiomycota and Mucoromycota were detected only in
one sample, suggesting that they are uncommon fungi in the
air. Fungi included in the classes Mallasseziomycetes,
Agaricomycetes , Saccharomycetes , Leotimycetes ,
Eurotiomycetes, and Dothideomycetes, which occurred in all
samples, include taxa with different ecological characteristics
such as cosmopolitan, cold-tolerant taxa, and endemic [13].
The detection of the DNA of a rich and diverse fungal com-
munity in the air samples obtained here is consistent with the
hypothesis proposed by Rosa et al. [9] that many of these

Fig. 2 Relative abundance values of a phylum and b class hierarchical level of the fungal amplicon sequence variants (ASVs) present in the four air
samples collected on the Keller Peninsula, King George Island, South Shetland Islands, Antarctica

Table 1 Ecological indices of the fungal DNA recovered from air
samples obtained on the Keller Peninsula, King George Island, South
Shetland Islands

Air samples

Ecological indices 1 2 3 4 Total

Number of reads 32,551 47,161 43,223 64,488 187,423

Number of fungal ASV 46 58 101 133 186

Fisher α 5.27 6.65 12.52 16.16 20.5

Margalef 4.33 5.4 9.5 12 15.32

Simpson 0.78 0.84 0.87 0.78 0.90

ASV amplicon sequence variant
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Fig. 3 Rarefaction curves of fungal amplicon sequence variants (ASV)
obtained in weekly air samples on the Keller Peninsula, King George
Island, South Shetland Islands, Antarctica. Fungal ASVs sampled in (a)

sample 1, (b) sample 2, (c) sample 3, (d) sample 4, and (e) total. Blue lines
represent 95% confidence limits

Fig. 4 Venn diagram showing the fungal amplicon sequence variants (ASVs) detected in air sampled on the Keller Peninsula, KingGeorge Island, South
Shetland Islands, highlighting those detected in all samples
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fungi might have mechanisms enabling survival during trans-
port into and within the Antarctic atmosphere.

The dominant fungi detected in the air were mainly repre-
sented not only by known airborne taxa such as Penicillium and
Cladosporium but also by Microdochium lycopodinum,
Pseudogymnoascus roseus, and P. appendiculatus, which are
rarely recorded as airborne species. In addition, we detected
many other fungi in the air sampled, mainly as intermediate
andminor components.Many of the taxa could only be assigned
to higher taxonomic levels, suggesting that the real fungal diver-
sity present in Antarctica (and elsewhere) is still poorly known.

The genusMicrodochium includes about 20 known species
[38], some described as plant pathogens of cereals and grasses
in cold regions [39, 40]. On the Antarctic Peninsula,
M. phragmitis has been reported in freshwater lakes [41] and
M. nivale as an endophyte of Colobanthus quitensis [42].
Microdochium lycopodinum (previously known as
Monographella lycopodina) was originally recovered from
living and recently dead stems and leaves of Spinulum
annotinum (syn. Lycopodium annotinum) and has a known
distribution in boreal Central Europe (Austria, Germany)
[43]. However, Carvalho et al. [44] also reported
M. lycopodium as an endophyte of the moss Polytrichastrum
alpinum on the Antarctic Peninsula.

Pseudogymnoascus (syn.Geomyces) is a fungal genus well
known from cold environments, including Arctic, alpine, tem-
perate, and Antarctic ecosystems [13, 45–47]. Cultivable
Pseudogymnoascus taxa have been detected in soils [45,
48–50], associated with plants [44, 51, 52] and macroalgae
[53, 54], in freshwater lakes [41], and associated with lichens
[55]. Cladosporium and Penicillium are fungal genera previ-
ously reported in the global airspora. In Antarctica,
Cladosporium species have been described as dominant in
association with plants and soil [13]. Representatives of
Penicillium appear to be ubiquitous in Antarctica and have
been reported in many studies of different habitats such as
soils [50, 56, 57], permafrost [58, 59], associated with
macroalgae [60], snow [6], and ice [7]. The DNA of both
genera was detected in the air and snow of Livingston Island
by Rosa et al. [8], again supporting their broad distribution
and dominance in Antarct ica. The dominance of
Pseudogymnoascus, Cladosporium, and Penicillium in air
sampled on King George Island is similar to the results de-
scribed by Rosa et al. [8] from air sampled on Livingston
Island. Together, these studies suggest the importance of ae-
rial transport of fungal spores and/or propagules at different
scales both globally and regionally within Antarctica.

Conclusions

Using a metabarcode approach, this study of the fungal
airspora sampled over a 20-day period on Keller Peninsula,

King George Island, revealed a rich airborne fungal diversity,
much of which would be unlikely to be detected using tradi-
tional culture methods. Among the fungi dominant within the
airspora, we detected representatives of the known cosmopol-
itan generaCladosporium and Penicillium, commonly present
in temperate and tropical environments, which have high dis-
persal capabilities. However, apparently psycrotolerant fungi
were also detected, such as members of the genus
Pseudogymnoascus, which are widely reported from different
Antarctic and other cold habitats. The majority of fungal taxa
detected were of intermediate and minor abundance, including
taxa of saprophytes, mutualists, parasites, and opportunistic
fungi already reported in culture-based studies in Antarctica.
The diversity of taxa detected reinforces the hypothesis that
the Antarctic airspora includes fungal propagules of both
intra- (local) and inter-continental (distant) origin, such as
from South America, Africa, and Oceania. It is possible that
aerially dispersed propagules of non-native fungi, often unde-
tectable by culture methods, may remain in dormant but viable
forms in Antarctica. As environmental conditions become less
severe with ongoing climate change particularly in the
Antarctic Peninsula region, these propagules may become
able to grow and colonize different ecosystems in the region,
with unknown impacts. Further aeromycological studies
across Antarctica are required in order to understand how
and fromwhere fungi arrive and disperse within the continent.
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