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Abstract
Phyllosphere microorganisms are sensitive to fluctuations in wind, temperature, solar radiation, and rain. However, recent
explorations of patterns in phyllosphere communities across time often focus on seasonal shifts and leaf senescence without
measuring the contribution of environmental drivers and leaf traits. Here, we focus on the effects of rain on the phyllosphere
bacterial community of the wetland macrophyte broadleaf cattail (Typha latifolia) across an entire year, specifically targeting
days before and 1, 3, and 5 days after rain events. To isolate the contribution of precipitation from other factors, we covered a
subset of plants to shield them from rainfall. We used targeted Illumina sequencing of the V4 region of the bacterial 16S rRNA
gene to characterize phyllosphere community composition. Rain events did not have a detectable effect on phyllosphere com-
munity richness or evenness regardless of whether the leaves were covered from rain or not, suggesting that foliar microbial
communities are robust to such disturbances. While climatic and leaf-based variables effectively modeled seasonal trends in
phyllosphere diversity and composition, they provided more limited explanatory value at shorter time scales. These findings
underscore the dominance of long-term seasonal patterns related to climatic variation as the main factor influencing the
phyllosphere community.
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Introduction

The diversity and composition of the plant microbiome are a
critical determinant in plant survival and success in the face of
challenging conditions [1]. Similar to other host-associated
microbial communities, bacterial populations on the plant sur-
face (the phyllosphere) are subject to different environmental
stressors depending on their location. These conditions can
disrupt or encourage both beneficial and pathogenic taxa.
Historically, research of phyllosphere microorganisms has
centered on the spread and establishment of plant pathogens.
However, a diverse community of leaf-associated microor-
ganisms may protect against plant disease, and thus, the ecol-
ogy of this microhabitat is important to promoting plant health
[2–4] (as reviewed by Stone et al. [1]).

Conditions at the leaf surface are more variable than in the
soil environment and impose several limitations on microbial
populations, such as an abundance of ultraviolet (UV) radia-
tion and frequent lack of available moisture. Microorganisms
isolated from the phyllosphere have demonstrated many ways
to mitigate these stressors including the production of pig-
ments [5, 6], formation of biofilms [7–9], and localization to
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protected microenvironments [10, 11]. The unprotected nature
of the leaf means that microorganisms on the aboveground
portion of the plant are also subject to movement from wind
and rain [12, 13]. These fluxes create local patterns in bacterial
atmospheric composition (potentially influencing immigra-
tion to the leaf surface) [10, 14] and large-scale movement
[15, 16]. Wind-induced migration from the leaf surface to
the atmosphere is readily apparent from the dominance of
phyllosphere-associated lineages in even high-elevation atmo-
sphere samples [17]. In contrast, rain is thought to be princi-
pally a mechanism of downward immigration wherein organ-
isms travel with precipitation [18]. Although splash dispersal
can remove and transport leaf epiphytes throughout a plant
canopy at small scales [13, 19], deposition of bacterial cells
on the leaf surface and, especially, population growth follow-
ing rain seem to be of far more importance [18].

Much of our understanding of the influence of climatic
variables on the phyllosphere microbiome come from studies
at the organismal or population level [10]. Further, most such
studies have been developed around a small group of cultural
microorganisms, usually plant pathogens (e.g., [19–24]).
Little is known about the effects of climate on the collective
microbial community. Temporal variation in phyllosphere
community composition likely represents the combined influ-
ence of leaf age and ecological succession, coupled with en-
vironmental changes [10] and changes in the microbial com-
position of the atmosphere [25]. However, few, if any, inves-
tigations have disentangled the effects of climatic variables
and changes from leaf characteristics that follow seasonal
trends. Furthermore, because many phyllosphere studies focus
on agricultural systems, these studies are concluded at the time
of harvest or at the end of the growing season—before sea-
sonal changes in both leaf characteristics and phyllosphere
composition may become pronounced [1]. This is
compounded by the lack of recent studies on the species-
area and species-time relationships in the phyllosphere.
Earlier work on fungal phyllosphere communities has sug-
gested that no such relationship exists between leaf size and
species count [10] but a recent study of bacterial communities
using modern sequencing methods has found a significant
relationship [26] and such relationships have been observed
for bacteria in soils, sediments, and aquatic settings both
culture-based identification and molecular methods [27].

To address these topics, we characterized the bacterial
community of broadleaf cattail (Typha latifolia) across an en-
tire year in a natural setting, with specific sampling on days
before and after rain events. T. latifolia was chosen as the
target species because its aboveground tissues remain stand-
ing after senescence, allowing us to observe bacterial commu-
nity development following the shift to senescence. Further,
T. latifolia leaves emerge from a well-mixed aqueous environ-
ment, rather than from soil, which may produce variation in
initial community composition due to soil heterogeneity. To

understand the effect of rain more completely, we established
a treatment group of plants covered by protective canopies on
rainy days to compare against uncovered plants. We collected
climatic data pertaining to precipitation, UV radiation, photo-
synthetically active radiation (PAR), temperature, relative hu-
midity, and wind speed from NOAA weather station data-
bases and relate them to patterns in bacterial alpha and beta
diversity. Thus, we explore the relationship between leaf size,
senescence, seasonal patterns, and short-term weather im-
pacts. We expected that reductions in bacterial diversity
would occur following leaf senescence, aligning with previ-
ous findings of fungal dominance during this shift [28]. As
most bacterial diversity exists at low abundance and is there-
fore sensitive to demographic stochasticity, we predicted that
bacterial diversity would be lower initially after rainfall and
subsequently increase, but only in plants exposed to rain (i.e.,
those not under canopies). We expected that larger leaf size
would lead to higher bacterial alpha diversity. We
decomposed bacterial beta diversity into differences driven
by either species turnover (loss of one species followed by
the gain of another) or by richness differences (asymmetric
loss or gain). Lastly, we predicted that bacterial communities
will differentiate primarily by leaf senescence and that this
difference will be driven by richness differences in bacterial
communities rather than by bacterial turnover per se. As en-
vironmental variables are often strongly correlated, we uti-
lized machine learning, specifically random forest methodol-
ogy, to model these variables against bacterial diversity.

Materials and Methods

Sample Collection

Aerial (i.e., non-submerged) leaves from standing T. latifolia
plants were collected from the University of Mississippi Field
Station (UMFS; 34.4237 N, 89.3859W) pond 80 using sterile
sampling procedures. Leaves selected did not have visible
signs of herbivory or disease, were cut from point that they
became separated from other leaves on the plant or the point
that the leaf became submerged underwater, and placed into
sterile sampling bags. Gloves and shears were sterilized be-
tween samples with 70% ethyl alcohol. The average amount
of leaf material collected was 141 ± 69.43 cm2 (mean ± 1 SD).
Sampling began on April 29th, 2015 and ended on April 25th,
2016. Collection of T. latifolia leaves occurred at regular time
intervals (semi-monthly) as well as before and after rain
events forecasted to produce > 2.5 cm of rain. For forecasted
rain events, samples were collected 1 day before, 1 day after,
3 days after, and 5 days after. On regularly scheduled sam-
pling days, the 1628-m2 pond was mapped into nine subsec-
tions (~ 180 m2 each) and leaf material was removed from a
single plant in four random subsections. On days when rain
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was forecasted, 1-m2 greenhouse polyethylene film rain can-
opies (152 μm thick) were erected using a PVC frame over
T. latifolia plants in four randomly chosen subsections (selec-
tion was independent between covered and non-covered sam-
ples, allowing sampling to occur twice in one subsection)
which were sampled along with non-covered subsections
(i.e., eight total samples collected). The canopies remained
in place until 5 days following the rain event. Because some
rain events coincided with semi-monthly sampling, a total of
84 samples were produced from 21 semi-monthly sampling
dates. No sampling was conducted when rain failed to occur
as predicted. Five rain events were sampled, totaling 19 days
and 152 samples (two rain events occurred back-to-back,
allowing the fifth day of one rain event to serve as the day-
before-rain of the succeeding rain event). Thus, a total of 236
samples were collected on 40 sampling dates during the year-
long sampling period. Samples collected from different sec-
tions on each day were not pooled and instead remained
separate.

Following collection, leaf samples were immediately taken
to the laboratory and the phyllosphere community removed by
scrubbing in 6 mL of sterile 1 mM sodium bicarbonate buffer
with sterile, single-use toothbrushes. The buffer suspension
was centrifuged (7000 rcf × 2 min) and DNA extracted from
the resulting pellet using MoBio PowerSoil DNA extraction
kits (MoBio Laboratories, Carlsbad, CA) following standard
protocols. The V4 region (253 base pairs) of the bacterial 16S
rRNA gene was amplified with barcoded targeted primers
(515F forward and 806R reverse) [29]. Amplification of the
V4 region was conducted with an initial denaturation step of
95 °C (2 min) followed by 30 cycles each consisting of 95 °C
(20 s), 55 °C (15 s), and 72 °C (2 min) and with a final
elongation step of 72 °C (10 min). Amplified fragments were
purified and concentrations standardized using SequalPrep
Normalization Plates (Life Technologies, Grand Island,
NY), pooled, and paired-end sequenced on the Illumina
MiSeq platform at the University of Mississippi Medical
Center Molecular and Genomics Core Facility. After microbi-
al community removal, leaves were frozen (− 20 °C) until
imaged as jpeg files using the digital camera of a Samsung
Galaxy S4 at 2048 × 1152 resolution from a fixed height.
Total leaf area (cm2) was quantified using ImageJ 1.51 [30]
while green/brown pixel ratio, and thus green and brown sur-
face area, was obtained by calculating the proportion of green
to brown pixels in each image in R using the jpeg package
[31]. Freezing had no observable effect on the ratio of green to
brown tissue on each leaf.

Sequence Data Processing

Raw 16S rRNA gene sequence data (FASTQ) were deposited
into the NCBI Sequence ReadArchive (SRA) under accession
number PRJNA487794. The initial 9,217,422 sequences were

processed, clustered into operational taxonomic units (OTUs),
and taxonomically assigned using the mothur bioinformatics
pipeline (v.1.39.5) following standard protocols [32–34] to
remove erroneous sequences from downstream analyses.
Remaining sequences were aligned against the SILVA data-
base (version 128) of bacterial sequences [35], screened to
remove Eukarya and Archaea, and grouped to OTUs defined
by 97% sequence similarity and then classified against
SILVA. The resulting 2,885,169 sequences were classified
to 6871 OTUs. Of these, 3436 OTUs were represented only
once across the dataset and were removed leaving 3435 bac-
terial OTUs for subsequent analyses. The average number of
reads per sample was 13,642 ± 6720 (mean ± 1 SD). To re-
duce the impact of samples with poor sequencing depth on
diversity analyses, 27 samples with low sequence counts (<
2500 sequences) were removed leaving 209 samples. The
following analyses were conducted on the remaining samples
which were not rarefied [36] although the key results were
identical to those from rarefied samples.

Climatic Data Acquisition and Processing

Precipitation data were accessed from the National Oceanic
and Atmospheric Administration (NOAA) land-based station
located at the UMFS (Abbeville, MS; Station ID:
GHCND:US1MSLY0004) from April 1st 2015 through
April 30th 2016. Radiation and atmospheric data, including
direct and diffuse solar radiation, UV-B, infrared (IR), photo-
synthetically active radiation (PAR), temperature, relative hu-
midity, and wind speed, were obtained from the NOAA sur-
face radiation network station in Goodwin Creek, MS
(34.2547° N, 89.8729° W; 48 km from the UMFS) for 2015
and 2016. Radiation data (recorded every minute) were sub-
ject to quality filtering (any measurement flagged as poor
quality was coded as not available, or NA) and combined from
separate daily files into one dataset. Missing climatic data
from some variables spanned multiple days (up to 29) and
were imputed from non-missing data using loess trendlines
with the loess function in R version 3.5.1 [37].

To understand the extent that prior climatic conditions play
in driving bacterial community patterns, additional variables
were constructed by calculating means for all climate vari-
ables at 1, 3, 5, 7, and 14-day intervals leading into each
sampling day. Net infrared and total net radiation were re-
moved due to poor data quality, and to retain some informa-
tion about hourly fluctuations, radiation features were aggre-
gated with daily maximum and minimum values as well as
daily means. Along with total precipitation, rain incidence
(rain or no rain) and heavy rain incidence (> 2.5 cm) variables
were coded as either 0 or 1 indicating either the absence or
presence of rain on a given day. From these, the number of
days since the last rain event (or heavy rain event) was calcu-
lated for each date. Both sums and means were then generated
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for precipitation features across the window intervals as
above. Samples that were experimentally covered from the
rain had all precipitation values set to 0 before these summa-
ries were calculated, and whether or not a sample was covered
was included as a factor in statistical analyses.

Statistical Analyses

Non-bioinformatic statistical analyses were conducted in R
version 3.5.1, with the exception of the indicator function in
mothur which was used to identify OTUs significantly asso-
ciated with either living or senesced leaves. Alpha diversity
was summarized by the Simpson evenness measure (Dsimp)
and Chao estimated richness (Schao). To test the effect of rain
on alpha diversity in our experimental setting, we fit quadratic
regression models of bacterial richness and evenness (both
log-transformed) against the number of days since the last rain
event (from − 1 to 5) as well as the interaction between rain
and covering treatment (covered or uncovered). Here, the lm
function in R was used, where the term describing the number
of days since the last rain event was squared. To test the effect
of rain on the abundance of individual OTUs, the same qua-
dratic model was repeatedly run using the abundance of each
OTU, in turn, as the response variable. To control for the type
I error rate acrossmultiple statistical comparisons, the p values
from all individual OTU models were extracted, ranked from
lowest to highest, and cumulatively added. Only those OTUs
whose p values fell within the cumulative 0.05 threshold were
considered to significantly respond to rain. The effect of cov-
ering on species accumulation following rain events was test-
ed by setting species richness to zero on the day preceding
rain, calculating the number of novel species gained from that
day until day 5, as if samples were pooled, and generating a
regression model with an interaction term between time and
covering. Separately from the above models, the effect of leaf
senescence on (log-transformed) bacterial richness and even-
ness was tested with one-way ANOVAs.

Random forests were used to relate alpha diversity (Schao and
Dsimp) patterns to climatic variables (precipitation, radiation,
temperature, and wind), leaf data (total leaf area and green/
brown ratio), and covering by rain shelters. Although issues of
multicollinearity do not affect random forest performance, to aid
in the interpretability of which aspects of climate are most pre-
dictive of bacterial richness and evenness, random forest models
were computed against a reduced dimension dataset of seven
variables (composite precipitation, composite radiation, com-
posite temperature, composite wind, total leaf area, green/
brown ratio, and rain shelter covering; Supplementary
Table S1). To perform dimensionality reduction, precipitation,
radiation, temperature, and wind variables were each subjected
to principal component analysis (PCA). The first principal com-
ponent was enough to explain a high proportion of variance (≥
0.9) for variables related to precipitation, radiation, temperature,

and wind resulting in a single, composite variable summarizing
each group. The random forest methodology, briefly, builds a
single predictivemodel frommultiple individual regression trees
which recursively partition samples based on logical assign-
ments of predictor variables and whose performance is mea-
sured by the mean squared error between observed values of
the response with the means of groups created by those parti-
tions [38]. To limit the influence of correlations between vari-
ables and to attain better predictive capacity, many regression
tree models are created, each containing a small subset of the
predictor variables available, and individual functions are aver-
aged to generate a single ensemble model [39]. Model fitting
was implemented using the randomForest package for R and
train/test validation through caret [40, 41]. To minimize corre-
lations between features, individual trees (500 per test) were
limited to a subset of three parameters at a time. Train/test val-
idation was performed on an initial, but unfixed (i.e., increasing
each test) window of 16 training samples and progressing chro-
nologically by four samples yielding 114 tests total. There was
no difference between random forests performance when using
all features individually or on condensed features.

Beta diversity patterns were visualized using non-metric
multidimensional scaling (NMDS) on Hellinger-transformed
Bray-Curtis (βbc), Jaccard (βj) dissimilarity measures using
the metaMDS function in the vegan package [42]. To under-
stand the effect of environmental variation and leaf senescence
on species composition, independent of differences in alpha
diversity, Bray Curtis, and Jaccard measures were decomposed
into replacement and richness difference fractions using the
Podani method [43] provided by the beta.div.comp function
in the adespatial package [44]. Permutational multivariate anal-
ysis of variance (PERMANOVA) was used to assess the statis-
tical difference between living and senesced leaf composition
using the adonis function in the vegan package. To assess the
degree that living and senesced leaves had different degrees of
community dispersion, independent of differences in richness,
the betadisper and permutest functions were used from the veg-
an package. Local contributions to beta diversity (LCBD)
values were calculated for each sample on Bray-Curtis and
Jaccard replacement and richness components, as well as on
total beta diversity measures. Random forest models were then
run, as above, using LCBD components as the response vari-
ables. All code and associated data for statistical modeling has
been made available at http://github.com/bramstone.

Results

Experimental Mitigation of Rain Through Covering

Contrary to our predictions, we did not observe a significant
loss and regain of bacterial diversity in the phyllosphere fol-
lowing rain events. This was the case for both richness and
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evenness where no patterns were detected applying either qua-
dratic or linear trends to each measure. The effect of experi-
mentally covering plants was included as an interaction term
between covering and rain although no significant interaction
was observed (pchao = 0.50, psimp = 0.69; Fig. 1a, b). Similarly,
we observed no difference in novel species accumulation fol-
lowing rain events between covered and uncovered plants
(p = 0.82; Fig. 1c). These community-level patterns were con-
sistent at the level of individual bacterial taxa where we ob-
served no effect of leaf covering on either quadratic or linear
responses of OTU frequencies to rain (data not shown here).

Leaf Senescence and the Bacterial Community

Aligning with our initial prediction, we found that both
phyllosphere bacterial richness and evenness decreased fol-
lowing senescence of T. latifolia leaves (Fchao = 12.0, pchao <
0.001; F

simp
= 62.6, psimp < 0.001; Fig. 2) as determined by the

loss of green leaf tissue from sampled plants (dates after
December 15 , 2015 ; Supplementa l F igure S1) .
PERMANOVA analyses demonstrated significant clustering
of bacterial communities on living and senescent leaves using
both Bray-Curtis (F1,207 = 56.6, p < 0.001) and Jaccard indices
(F1,207 = 13.6, p < 0.001) (Fig. 3a, b). However, this pattern
was reduced or non-existent when community composition
was visualized using replacement-component dissimilarities
(βbc-repl: F1,207 = 34.6, p < 0.001; βj-repl: F1,207 = 0, p = 1)
which account for differences in alpha-diversity between sam-
ples (Fig. 3c, d), supporting, at least partially, our original
prediction that compositional changes in beta-diversity were
driven by alpha-diversity differences. Similarly, permutation-
al tests of dispersion on replacement-component dissimilar-
ities showed that community composition was more dynamic
in the spring and summer, and more consistent following se-
nescence (βbc: F1,207 = 91.1, p < 0.001; βj: F1,207 = 13.5, p =
0.002) (Fig. 3a, b); however, this pattern was not apparent
with either replacement component measure (βbc-repl:
F1,207 = 60.1, p < 0.001; βj-repl: F1,207 = 0.29, p = 0.62) (Fig.
3c, d), indicating that higher beta diversity during spring and
summer months was driven by greater variation in alpha
diversity.

Bacterial OTUs significantly associated with both early-
seasonal (i.e., living) and late-seasonal (i.e., senesced) leaves
grouped predominantly into the Proteobacteria (which accounted
for 44% and 48% or all sequences, respectively, Fig. 4). On
senescent leaves, a higher proportion of OTUs identified as
Actinobacteria and Bacteroidetes (5% and 28% of all sequences,
respectively) than on living leaves (3% and 10%), which had
more representat ion from the Acidobacteria and
Verrucomicrobia (8% and 3% from living leaves, respectively,
compared to 3% and 1% in senescent leaves). Specific OTUs
that were associated with living leaves significantly more so than
with senescent leaves included sequence types identified as

Acinetobacter, Clostridium, Gemmata, and Pseudomonas (p <
0.001 in all cases). In contrast, senesced leaves harbored OTUs
that included the genera Sphingomonas, Roseomonas,
Hymenobacter, and Spirosoma.

Climate and the Bacterial Community

Climatic variables were consistently the more informative pre-
dictors of phyllosphere bacterial richness, while T. latifolia
leaf traits were more informative predictors of bacterial even-
ness. Random forest models were able to predict 40.7% and
35.6% of bacterial richness and evenness, respectively
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(determined from model R2 values; Supplemental Figure S2)
when modeled against composite precipitation, composite ra-
diation, composite temperature, composite wind, total leaf ar-
ea, green/brown ratio, and rain shelter covering (Supplemental
Table S1). Precipitation was more important to bacterial rich-
ness than evenness and whether or not a sample was covered
from rain provided minimal explanatory power (Fig. 5).

Random forest models were less effective predictors of
LCBD values, predicting 31.8% of local Bray-Curtis

contributions and 30.3% of Jaccard contributions (with similar
fits for individual beta diversity components). Aligning with
alpha diversity models, green leaf area, and precipitation were
the driving variables of LCBD patterns, although some differ-
ences emerged between different components of each beta
diversity measure (Fig. 6). Bray-Curtis and its replacement
component were driven strongly by how much green area
was present on T. latifolia leaves, indicating a strong influence
of this variable on the relative abundances of bacterial OTUs.
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The Bray-Curtis richness component emphasized precipita-
tion and temperature – variables with strong seasonal
trends—as much as leaf condition (Fig. 6). Total Jaccard
dissimilarities—which emphasize changes in presence or
absence—were strongly influenced by precipitation and tem-
perature, while individual replacement and richness compo-
nents were more strongly influenced by the percentage of
T. latifolia leaves that remained green (Fig. 6). This suggests
that leaf senescence drove Jaccard dissimilarities through
changes in alpha diversity (richness component) as well as
turnover in the composition of bacterial OTUs (replacement
component). Similar to alpha diversity patterns, whether or
not a sample was isolated from rain by experimental covers
offered little predictive value to differences in LCBD values
(Fig. 6).

Discussion

Taken together, our results support previous conclusions of
strong seasonal signals in the phyllosphere microbiome [23,
45–48]. Bacterial community richness corresponded more to
environmental parameters than did community evenness.
Evenness, in contrast, remained low following senescence,
suggesting that bacterial communities were dominated by
fewer species than when leaves were alive. Individual rain
events exerted little influence on bacterial diversity, patterns
of individual OTUs, or composition. Consistent with these
findings, multivariate ordinations of bacterial community

composition demonstrated that after accounting for differ-
ences in alpha-diversity [43], clear grouping based on senes-
cence was highly diminished, confirming that differences in
alpha-diversity were important in driving distinction between
bacterial communities on living and senesced leaves. Notably,
Jaccard-based composition on living and senescent leaves was
virtually identical after accounting for differences in alpha
diversity. This suggests that differences remain in relative
abundances between living and senescent leaves, after ac-
counting for alpha-diversity differences, as captured by
Bray-Curtis dissimilarities. By contrast, Jaccard dissimilar-
ities, which lack information on change in relative abundance,
could differentiate living and senesced leaves only by their
difference in alpha diversity. Overall, random forest predictive
performance was not particularly high, indicating that other,
non-climatic variables—such as those associated with the
quality of the leaf habitat—may be important in predicting
bacterial diversity in the phyllosphere.

In contrast to longer seasonal patterns, short term changes
did not seem to have a strong effect on bacterial community
diversity or composition. Specifically, with regard to precipi-
tation, experimentally covering plants did not change the ac-
cumulation of new bacterial species to the T. latifolia
phyllosphere or the level of local diversity therein. Although
rain was an important predictor variable in random forest
models of bacterial diversity, the lack of response to individ-
ual rain events supports our conclusion that seasonal patterns
collectively exert a stronger effect on bacterial communities.
Previous work has demonstrated a surge in abundance of
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Fig. 4 Comparison of changes in the relative abundance of major
bacterial phyla occurring in the phyllosphere of Typha latifolia leaves
across the sampling period against seasonal changes in precipitation and
temperature. Vertical black bars represent the time of leaf senescence as
determined by the loss of green leaf tissue from sampled plants. a Bar
heights represent weekly averages of relative abundance, across all leaves
sampled during a given week, of the six most abundant bacterial phyla

accounting for > 95% of sequences on average. Remaining phyla were
combined into “Other” category. b Daily precipitation (mm) and mean
daily temperature (degrees C) occurring at the field sampling site.
Bacterial community composition shows a clear shift following leaf se-
nescence, with greater proportional representation from theBacteroidetes.
Down-facing arrows represent rain events where sampling frequency was
increased to two-day intervals
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some microbial taxa following rain [20], but this phenom-
enon does not appear to lead to an appreciable change in
diversity at the level of the whole community. Another
seasonal phyllosphere study drew similar conclusions with
respect to rain [48], with strong seasonal trends and a high
initial variability in community composition followed by
convergence. While the possibility of rain aiding the suc-
cession process was highlighted, there were no other clear
consequences of rain on either bacterial community diver-
sity or composition [48]. A subsequent study of the effect
of rain on the phyllosphere communities throughout the
tree canopy found similar results [26]. Thus, it appears that
the bacterial community response to rain in the
phyllosphere may not be strongly affected by the response
of individual constituents.

Important taxa associated with living and senescent leaves
were those generally found in the phyllosphere and soil.
Prominent OTUs indicative of senescent leaves were typically
aerobic chemoheterotrophs, likely functioning as decom-
posers. Bacterial taxa in the phyllosphere may respond purely
to changes in the living vs. senescent leaf surface over time,
but seasonal patterns also appear in the phyllosphere of plants
that do not show seasonal senescence [45, 46], suggesting that
there is at least some climatic influence. Similarly, progressive
fungal colonization occurs in the phyllosphere also following
seasonal trends and leaf senescence [10, 49]. Generally, fun-
gal composition transitions to filamentous lineages to
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capitalize on plant cellulose on senesced leaves [28]. These
fungal groups are the principal drivers of microbial decompo-
sition of aerial leaf material which can proceed quickly. In
other Typha spp., up to 50 or 60% of leaf carbon may be
converted to fungal biomass and CO2 by the summer follow-
ing leaf senescence [50, 51]. It is likely that bacteria play some
role into this process, although their exact relationship with
fungi or the degradation of leaf litter is unknown.

Several bacteria in this dataset were significantly associated
with senescent leaves, occurring in high abundance. Here,
Sphingomonas was associated with senescent leaves and was
the single most abundant OTU. Given that Sphingomonas is a
common phyllosphere constituent [52] and can utilize a large
spectrum of carbon sources [53], this prominence is not sur-
prising. Hymenobacter has been isolated from soil and air-
borne settings and like Spirosoma, which is phototrophic
[54], has been isolated in habitats with high UV radiation, a
useful trait in the phyllosphere [55, 56]. Moreover,
Hymenobacter has been observed to degrade fungal chitin,
and likely utilizes fungal carbon as an energy source [57].
Roseomonas is a ubiquitous environmental organism, isolated
from freshwater sediment, air, water, contains bacteriochloro-
phyll-a, and includes psychrophilic lineages [58–62].
Similarly, Spirosoma has been isolated from Arctic permafrost
soils [63]. As senescent leaf sampling coincided with colder
winter months, these bacteria likely reach high abundances due
to their adaptations to cold and radiation intense environments.

Our conclusions demonstrate that seasonal contributions to
phyllosphere bacterial diversity and composition are detect-
able at multiple ecological levels. More importantly, the sep-
aration of isolated weather patterns from broad-scale seasonal
trends is an important distinction that is often overlooked in
surveys of phyllosphere communities. R2 values of random
forest predictor models were low compared to those built on
very large datasets (e.g. such as for commercial purposes),
suggesting either the need for more samples or that other fac-
tors not measured in the present study may be important
drivers of phyllosphere diversity. We conclude that bacterial
diversity in the phyllosphere is largely unaffected by short-
term weather patterns but is particularly sensitive to climatic
and leaf-associated changes that occur during seasonal
progression.
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