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Abstract
Honeybees are important pollinators, having an essential role in the ecology of natural and agricultural environments.
Honeybee colony losses episodes reported worldwide and have been associated with different pests and pathogens,
pesticide exposure, and nutritional stress. This nutritional stress is related to the increase in monoculture areas which
leads to a reduction of pollen availability and diversity. In this study, we examined whether nutritional stress affects
honeybee gut microbiota, bee immunity, and infection by Nosema ceranae, under laboratory conditions. Consumption of
Eucalyptus grandis pollen was used as a nutritionally poor-quality diet to study nutritional stress, in contraposition to the
consumption of polyfloral pollen. Honeybees feed with Eucalyptus grandis pollen showed a lower abundance of
Lactobacillus mellifer and Lactobacillus apis (Firm-4 and Firm-5, respectively) and Bifidobacterium spp. and a higher
abundance of Bartonella apis, than honeybees fed with polyfloral pollen. Besides the impact of nutritional stress on
honeybee microbiota, it also decreased the expression levels of vitellogenin and genes associated to immunity (glucose
oxidase, hymenoptaecin and lysozyme). Finally, Eucalyptus grandis pollen favored the multiplication of Nosema
ceranae. These results show that nutritional stress impacts the honeybee gut microbiota, having consequences on
honeybee immunity and pathogen development. Those results may be useful to understand the influence of modern
agriculture on honeybee health.
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Introduction

Western honeybees Apis mellifera are important managed pol-
linators worldwide, having an essential role in the ecology of
natural environments and agricultural production [1, 2]. In
recent years, large-scale colony losses have been reported in
different countries [3–6]. These losses have been associated
with the infection bymultiple pests and pathogens (such as the
mite Varroa destructor, the microsporidia Nosema ceranae,
and different RNA viruses), intoxication with pesticides, and
nutritional stress [7–9]. Nutritional stress is linked to the in-
crease of monoculture areas which leads to a reduction of
pollen availability and diversity for honeybees [7, 9].

Adult honeybee nutrition relies on the intake of honey and
pollen. Pollen provides proteins, lipids, and vitamins neces-
sary for the healthy growth and development [reviewed at 10,
11]. Its composition, quality, or quantity influences honeybee
physiology (protein concentrations, macromolecule
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metabolism, hypopharyngeal glands size, tissue growth and
development , glutathione S-transferase act iv i ty,
immunocompetence) [12–15], longevity [16], and resistance
to pathogens including Nosema apis and Nosema ceranae
[17–19].

Previous studies have shown that honeybee colonies sub-
jected to nutritional stress, located in a Eucalyptus grandis
plantation during the flowering period in autumn, became
rapidly infected by N. ceranae, decreasing brood and adult
population [20, 21] and undergoing high colony losses [21,
22]. These losses may be related with the poor-nutritional
quality of Eucalyptus spp. pollen, since protein percentage
decreases during the flowering period to values under 20%
[20, 21], they have low content of lipids [20, 23] and essential
fatty acid omega 3 [24], and they have deficiency in the es-
sential amino acid isoleucine [25, 26].

Besides that, it has been proposed that environmental land-
scape affects the honeybee gut microbiota, influencing the
relative abundance of some of its members [27]. This micro-
biota is dominated by eight core bacterial clusters, which com-
prise 95–99% of bacteria in the gut [28–31], including
Gilliamella apicola [32], Snodgrasssella alvi [32],
Lactobacillus Firm-4 [33], Lactobacillus Firm-5 [33],
Bifidobacterium spp. [33], Frischella perrara [34],
Bartonella apis [35], and Parasaccharibacter apium [36].
It has been involved in the defense against pathogens, metab-
olism, growth, development, and immunity [30]. Disruption
of the microbiota, named dysbiosis, may have consequences
on the bee development and immunity, affecting the ability of
bees to respond to environmental stressors [30].

The honeybee immune system is composed of a com-
plex network of mechanisms, including cellular and hu-
moral immune defenses reviewed in [37]. In particular,
humoral defenses rely on the production of antimicrobial
peptides (apidaecins, abaecin, hymenoptaecin, and
defensins), which act generating leaks in prokaryotic mem-
branes; and inhibiting bacterial protein translation or fold-
ing [38]. Besides that, honeybees have evolved a social
immunity, a collective defense that arises from the behav-
ioral cooperation among individuals, such as grooming,
hygienic behavior or food sterilization [37, 39]. Doublet
et al. [40], identified a common set of genes that respond
to the infection by different pathogens (V. destructor,
Nosema apis, N. ceranae, and RNA viruses), including
hymenoptaecin, defensin, and abaecin, among others.

We hypothesize that nutritional stress shapes the com-
position of the honeybee gut microbiota having conse-
quences on honeybee immunity and favoring the infection
by pathogens. Therefore, we evaluated the effect of two
different pollen diets (E. grandis or polyfloral pollen) in
the composition of the gut microbiota, on the expression
of different genes involved in the humoral and cellular
immune response, and in the infection by N. ceranae.

Methods

Pollen Samples

E. grandismonofloral stored pollen samples (bee bread) were
manually collected from frames of colonies located in
E. grandis plantations during its flowering period (Rivera,
Uruguay), in April and May (autumn) 2014, for trial 1 or 2,
respectively. Polyfloral stored pollen (bee bread) was manu-
ally collected from colonies located in the experimental apiary
at the Instituto Nacional de Investigación Agropecuaria (INIA
“La Estanzuela”, Colonia, Uruguay) in April (autumn) and
October (spring), 2014 for trials 1 and 2, respectively. In all
cases, one frame per colony, from five colonies, were collect-
ed and mixed. Pollen samples were homogenized making a
paste, and no water or syrup was added. Samples were kept at
−20 °C until used or analyzed. Palynological analyses were
performed to validate their botanical composition [41]. At
least 1200 pollen grains per sample were identified [42].
Although there is a low risk of pesticide pollen contamination,
we cannot completely rule out this possibility.

Two independent trials were performed in 2014 (trials 1
and 2), and different pollen samples were used in each trial
(Fig. 1A suppl. data).

Trial 1

In spring, three healthy A. mellifera colonies, local hybrids
between A. m. scutellata, A. m. ligustica, and A. m. mellifera,
were randomly selected from the experimental apiary at INIA
“La Estanzuela”, Colonia, Uruguay. Colonies had been treat-
ed against the mite V. destructor in the previous autumn (with
Amitraz in stripes) and did not show clinical symptoms of
diseases.

One frame of brood containing last-stage pupae was
removed from each hive, taken to the laboratory, and in-
cubated at 34 ± 1 °C, 60% relative humidity in the dark-
ness until honeybee emergence, as recommended by
Williams et al. [43]. Immediately after emergence, bees
from different frames were collected. Only bees emerged
within the first 24 h were used, in order to standardize the
age. After that time, bees from different colonies were
mixed, placed in cages, and incubated at 30 ± 1 °C, 60%
relative humidity in the darkness. Six cages of bees (n =
40 per cage) were fed with E. grandis stored pollen and
other six with polyfloral stored pollen. About 3 g of pol-
len was served per cage in a sterile plastic recipient, and it
was replaced every 48 h. A sucrose solution was also
provided to bees in Pasteur pipettes (ad libitum, 50% w/
w in water). Every day, bees were monitored, dead indi-
viduals were counted and removed, and sucrose solution
was replaced (Fig. 1B suppl. data).
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Trial 2

An independent second trial was performed using three
healthy colonies from the experimental apiary of the
Universidad Nacional de Mar del Plata (Mar del Plata,
Argentina), local hybrids between A. m. ligustica and
A. m. mellifera. As in trial 1, recommendations by
Williams et al. [43] were followed. Six cages of bees
(n = 80 per cage) were fed with E. grandis stored pollen
while other six were fed with polyfloral pollen, ad
libitum. About 3 g of pollen was served per cage in a
sterile plastic recipient, and it was replaced every 48 h.
Three days post-emergence, honeybees from three cages
per nutritional regimen were individually infected with
100,000 spores of N. ceranae in 10 μl of sucrose solution
[44] and returned to the same cage with the same diet.
Honeybees from the other cages were individually fed
with the same volume of sugar syrup, as controls. Every
day, bees were monitored, dead individuals were re-
moved, pollen consumption was estimated (by weight),
and sucrose solution was replaced (Fig. 1C suppl. data).

Nosema ceranae spores used for infection were obtained
from foraging honeybees from a naturally infected colony and
purified by the triangulation method [45]. The spore suspen-
sion was quantified using a hemocytometer [46] and immedi-
ately used for experimental infection (Fig. 1C. suppl. data).
The species identification was carried out by multiplex PCR
according to Martin-Hernández et al. [47] (Table 1 suppl.
data).

Microbiota Analyses

DNA Extraction from Pollen

Three replicates of E. grandis and polyfloral pollen samples
(0.2 g/sample) used in trials 1 and 2 were processed according
to Anderson et al. [48]. DNA was quantified using a
NanoDrop1000 spectrophotometer (Thermo Scientific™)
and concentrations were normalized to 10 ng/μl.

DNA Extraction from Honeybees

Ten days after emergence, 20 honeybees/cage from 3
cages/treatment from trials 1 and 2 were collected.
Honeybees were externally sterilized using a chlorine so-
lution 1% [48]. Guts were extracted, pooled (n = 20/cage),
and homogenized using a glass rod and a plastic tube.
DNA was extracted using the SDS-CTAB method [49],
quantified using a NanoDrop1000 spectrophotometer
(Thermo Scientific™), and concentrations were normal-
ized to 20 ng/μl.

PCR for Detection of Pathogens

DNAs obtained from stored pollen and honeybees were sub-
jected to PCR for the detection of N. ceranae, N. apis, and
Lotmaria passim, as previously described [47, 50] (Table 1
suppl. data). PCR reactions were carried out using a
MultiGeneOptiMax Thermal Cycler (Labnet International,
USA). Positive controls (using DNA from N. ceranae,
N. apis, or L. passim) and negative controls were included.
Amplified products were analyzed by electrophoresis in a 2%
agarose gel in Tris/borate/EDTA (TBE) at 120 V for 30 min,
stained with GelRed (Biotum, USA), and visualized by UV
light.

Quantitative PCR

The quantity of 16S rRNA genes (bacterial load) in honeybees
was determined through ratio calculations using universal 16S
rRNA gene [51] and a honeybee gene (RPS5 gene [52],
Table 1 suppl. data). To quantify the total bacterial number
in pollen, a standard curve from DNA obtained from an
Escherichia coli XL1 Blue culture was used. Cycle threshold
(Ct) values of each sample were then compared to the standard
curve to approximate the number of bacteria per sample, ac-
cording to Ott et al. [53]. In both cases, PCR were carried out
in a final volume of 20 μl, comprising 1× SYBR (Power
SYBR ® Green PCR Master Mix, Applied Biosystems),
0.3 μM of each primer, 40 ng of DNA and RNAse-free water,
and PCR cycling described before. All qPCR reactions were
performed in triplicate, in a BIO-RAD CFX96™ Real-Time
system, and two negative controls were included in each run.

16S rRNA Amplicon Sequencing

DNA obtained from stored pollen and honeybees was ana-
lyzed by sequencing of V4 region of 16S rRNA gene using
an Illumina MiSeq platform and 250 paired-end (PE) cycles
(University of Texas at Austin, USA).

Immune Gene Expression Analyses

RNA Extraction and cDNA Synthesis

Ten days after emergence, ten honeybees per nutritional reg-
imen from trial 1 were collected and stored at −80 °C.
Individual honeybees were homogenized in RLT buffer
(Qiagen) and subjected to RNA extraction using the
RNAeasy Plus minikit (Qiagen), according to the manufac-
turer’s instructions. One microliter of total RNA was treated
with DNAse and used to generate first-strand cDNA using the
Quantitec Reverse Transcription kit, also according to the
manufacturer’s instructions (Qiagen).
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Quantitative PCR

Relative expression of abaecin, defensin, lysozyme, glucose
dehydrogenase, glucose oxidase, hymenoptaecin, and vitello-
genin genes were assessed using previously reported primers.
Ribosomal protein S5 (RPS5) and ß-actin were used as house-
keeping genes to normalize the variation of cDNA levels ([52,
54, 55]; Table 1 suppl. data). The reactionmix consisted of 1X
QuantiTect SYBR Green PCR MasterMix (Qiagen), 0.5 μM
of each primer, RNAse-free water and 5 μl of 1:10 diluted
cDNA in a final volume of 25 μl. PCR reactions were carried
out using a BIO-RAD CFX96™ Real-Time system and the
cycling program consisted of an initial 95 °C for 15 min, and
40 cycles of three-step PCR at 94 °C for 15 s, 52 °C for 30 s
and 72 °C for 30 s. Specificity of the reaction was checked by
analysis of the melting curve of the final amplified product
(from 65 to 95 °C, with increments of 0.5 °C every 0.05 s.).

Fluorescence was measured in the elongation step and neg-
ative controls (without DNA) were included in each reaction
run.

Quantification of N. ceranae Spores

At 4, 7, and 12 days post infection, five honeybees per cage
from trial 2 were sampled. Midguts were removed, and spore
number/honeybees (intensity of parasite infection) were quan-
tified by using a hemocytometer (Neubauer improved) [46].

Data Analysis

Honeybee Survival

The impact of nutrition and infection by N. ceranae on hon-
eybee survival was analyzed using the Kaplan-Meier method,
and statistical differences were compared using the Log-rank
test.

16S rRNA Amplicon Sequencing

For analysis of bacterial community data, the protocol sug-
gested by Engel et al. [56] was followed. Paired-end reads
were joined using the fastq-join method and demultiplexed
with QIIME software package (Qiime.org) [57]. Sequences
were analyzed using the QIIME software tool with default
parameters for each step. Reads were screened for chimeras
using the software program USEARCH 6.1. De novo
operational taxonomic unit (OTU) picking was performed
with the uclust option in QIIME [58]. Assignment of taxono-
my to representative OTUs was carried out with the
Greengenes database classifier [59] at the default 97% se-
quence identity. Sequences matching plant chloroplast or mi-
tochondrial 16S rRNA were filtered from the dataset. The
optimal sampling depth was determined through examination

of exploratory rarefaction curves of observed OTUs plotted
against sampling depth, and the dataset was rarefied.

To evaluate the impact of nutrition/Nosema spp. infection
on the composition of the gut microbiota, dissimilarity matri-
ces Unifrac weighted (by OTUs abundance), Unifrac un-
weighted (presence/absence of OTUs), and Bray-Curtis were
built. Matrices were used to produce classical multidimen-
sional scaling (principal coordinates analysis). Statistical dif-
ferences between groups were tested using PERMANOVA
(using 1000 permutations). The Shannon diversity index was
also calculated, and differences between groups were assessed
using the Student t test or Mann-Whitney Test.

Besides that, differences between abundance of the differ-
ent OTUs were examined using the DESeq2 software [60], as
described by Jones et al. [27]. Statistical analyses were per-
formed using R software [61].

Gene Expression Analyses

The geometric mean of the Ct (threshold cycle number) of
reference genes (RPS5 and β-actin) was calculated and used
for normalization. The expression ratio was analyzed as de-
scribed by Pfaffl [62]. The data corresponding to each gene
were analyzed to determine if they fitted a normal distribution
(Kolmogorov-Smirnov test) and whether there was a homo-
geneous variance (Levene test).

Gene transcript levels, bacterial abundance, andN. ceranae
infection between different groups were evaluated by Student
t test in those variables which fit parametric assumptions, and
by the Mann-Whitney test when the variables did not. P
values below 0.05 were considered significant. Statistical
analyses were performed using Past 3x version 2.17c [63, 64].

Results

Pollen Diets

In order to evaluate the impact of nutritional stress on honey-
bees, newly emerged individuals were fed with two different
diets: E. grandis monofloral stored pollen and polyfloral
stored pollen (bee bread) (Fig. 1 suppl. data). Two indepen-
dent trials were performed; Eucalyptus grandis stored pollen
samples used in both trials had a purity of 99%, while
polyfloral stored pollen samples were composed by 18 or 23
different species (trial 1 and 2, respectively; Table 2 suppl.
Data).

Both pollen types showed similar bacterial loads and com-
position, although subtle differences were found (Table 3 and
Figs. 2 and 3, suppl. data). E. grandis pollen showed a lower
OTU diversity than polyfloral pollen, according to rarefaction
curves (Fig. 4 suppl. data) and Shannon diversity index (t-test,
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t = −15.65; t = −8.28, for trials 1 and 2, respectively, p < 0.01
in both cases).

According to DESeq2, abundance of Lactobacillus Firm-4
and Firm-5 was similar in both pollen samples in trial 1 and
trial 2, and Bifidobacterium spp. and Bartonella apiswere not
detected.

Besides that, N. apis, N. ceranae, and L. passim were not
detected in any pollen sample (data not shown).

Those results indicate that both groups of honeybees re-
ceived pollen with different botanical species compositions
and subtle differences on associated microbiota and absence
(or undetectable level) of the studied pathogens were
observed.

Impact of Nutritional Stress on Honeybee Survival
and Pollen Consumption

Honeybees fed on E. grandis and polyfloral pollen survived
almost 60 days under laboratory conditions, and survival
curves were similar in both groups. No difference was ob-
served after 30 (Log-rank test; Statistic = 0.02; p = 0.88,
Fig. 5 suppl. data) or 60 days (Log-rank test; Statistic = 5.56;
p = 0.35).

Impact of Nutritional Stress on the Gut Microbiota

The impact of different diets on the honeybee gut microbiota
was assessed through the analysis of the bacterial community
size and community composition, by 16S rRNA gene
amplicon sequencing. No significant changes in the bacterial
community size were found in the gut microbiota honeybees
fed with E. grandis monofloral stored pollen and polyfloral
stored pollen (Table 4 suppl. data). Regarding OTUs diversity,
in trial 1, polyfloral pollen intake increased the diversity ac-
cording to rarefaction curves and Shannon diversity index,
meanwhile in trial 2, no significant difference was observed
(MW test,U = 0.00 p = 0.05;U = 0.00 p = 0.14 for trials 1 and
2 (control bees), respectively (Fig. 1; Fig. 6 suppl. data).

The gut microbiota was composed by Lactobacillus Firm-4
and Firm-5, Bifidobacterium spp., Snodgrassella alvi,
Pas t eu r e l l a l e s /Orba l e s , Bar t on e l l a ap i s , a nd
Parasaccaribacter apium.

The diet did not alter the bacterial general composition of
the gut microbiota (trial 1, Unifrac weighted analysis
PERMANOVA test statistic = 5.22, p = 0.09; Unifrac un-
weighted analysis PERMANOVA test statistic = 2.21, p =
0.10; Bray-Curtis PERMANOVA analysis test statistic =
4.57, p = 0.11; non-infected honeybees (control) from trial 2,
Unifrac weighted analysis PERMANOVA test statistic =
3.44, p = 0.1; Unifrac unweighted analysis PERMANOVA
test statistic = 2.08, p = 0.1; Bray-Curtis PERMANOVA anal-
ysis test statistic = 2.24, p = 0.1; Fig. 2).

However, significant differences at OTU level were ob-
served according to DESeq2 results. Consumption of
E. grandis pollen (model of nutritional stress) decreased the
abundance of Lactobacil lus mell i fer and L. apis
(Lactobacillus Firm-4 and Firm-5) compared with polyfloral
pollen in trial 1 (Fig. 3). E. grandis pollen also decreased the
abundance of Bifidobacterium asteroids and Bifidobacterium
corineforme compared to polyfloral pollen, in trial 2 (non-
infected honeybees). On the other hand, E. grandis pollen
increased the abundance of Bartonella apis in both trials.

Impact of Nutritional Stress on Immune Gene
Expression

Diets altered the expression of genes involved in honeybee
physiology, according to quantitative PCR results (Fig. 4).
E. grandis pollen consumption decreased the expression level
of vitellogenin, glucose oxidase, hymenoptaecin, and lyso-
zyme (MW test, U = 13 p = 0.03; U = 6 p = 0.05, U = 2 p =
0.02, and U = 11 p = 0.01; respectively), in comparison to
polyfloral pollen. On the other hand, expression of abaecin,
defensin, and glucose dehydrogenase genes was not affected
(p ≥ 0.05 in all cases).

Impact of Nutritional Stress onN. ceranae and the Gut
Microbiota

To evaluate the impact of nutritional stress on pathogen infec-
tions, honeybees fed on different diets were infected with
N. ceranae spores. A higher level of N. ceranae spores was
observed in honeybees fed withE. grandis pollen compared to
bees fed on polyfloral (4 days post-infection 5.9 × 104 ± 1.2 ×
104 and 2.4 × 104 ± 8.6 × 103 spores/bee, t-test t = −4.01 p =
0.02; 7 days post-infection 2.5 × 106 ± 9.8 × 105 and 6.2 × 105

± 4.95 × 105 spores/bee, t-test t = −3.02 p = 0.04, Fig. 5).
Twelve days after infection, the number of spores was similar
in both groups, reaching 2.6 × 107 ± 2.9 × 106 and 2.3 × 107 ±
2.2 × 106 spores/bee in honeybees fed with E. grandis or
polyfloral pollen, respectively. No Nosema spp. spores were
detected in the honeybees that belonged to the control groups
(non-infected honeybees).

Nosema ceranae infection together with diet generated sig-
nificant alterations on the composition of the gut microbiota
(Figs. 1 and 2, Unifrac weighted analysis PERMANOVA test
statistic = 4.99, p = 0.001; Unifrac unweighted analysis
PERMANOVA test statistic = 2.56, p = 0.004; Bray-Curtis
PERMANOVA analysis test statistic = 5.50, p = 0.001).

Infection increased the abundance of two OTUs of
Acetobacteriaceae in honeybees fed on polyfloral pollen
(Fig. 6). However, in the case of honeybees fed on
E. grandis pollen, the impact was higher since the abundance
of five different OTUs increased (Acetobacteraceae,
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Enterobacteraceae, Bifidobacterium spp., Bartonella apis,
and G. apicola).

Interestingly, N. ceranae-infected honeybees fed with
E. grandis pollen showed a lower abundance of
Lactobacillus helsingborgensis (Lactobacillus Firm-5) and a
higher abundance of Bartonella apis than infected honeybees
fed on polyfloral pollen (Fig. 3).

Discussion

Nutritional stress has been proposed as an important driver of
honeybee colony losses [7, 9]. In a previous study, we dem-
onstrated that under field conditions, nutritional stress (feed-
ing of colonies mainly on E. grandis pollen) promoted the
reproduction of Nosema spp. and weakened the colonies, de-
creasing the adult honeybee and brood populations [20].
However, the mechanisms underlying this interaction remain
elusive.

In this study, we show that nutritional stress alters the com-
position of the honeybee gut microbiota and immunity, favor-
ing the infection by N. ceranae.

Eucalyptus grandis pollen was used as a model to
study nutritional stress, since it has a low lipid content,
the protein percentage decreases during the flowering pe-
riod to values under 20% and it is deficient in isoleucine
[20, 21].

Two independent trials using newly emerged honeybees
under controlled laboratory conditions were performed.
Although the natural establishment of the microbiota can take
about 4 days after emergence [63, 64], those bees were able to
develop a typical microbiota [28–31]. Bacteria could be ac-
quired by direct contact with the frames after emergence or
with pollen ingestion [63, 64].

Nutritional stress (consumption of E. grandis pollen) in-
duced the decrease of the abundance of Lactobacillus mellifer,
Lactobacillus apis, or Bifidobacterium spp. and increased the
abundance of Bartonella apis, in healthy bees. Those results
were consistent when the microbiota of N. ceranae-infected
honeybees was assessed.

Pollen bacteria did not explain the differential abundance
of these bacterial species in the honeybee gut, since species of
Lactobacillus Firm-4 and Firm-5 abundances were similar in
both pollens from each trial, and Bifidobacterium spp. and
Bartonella apis were not detected.

Fig. 1 Relative abundance of bacterial genera and Shannon diversity
index of gut bacterial community of honeybees analyzed through 16S
rRNA amplicon sequencing (Illumina MySeq). a Trial 1, honeybees
were fed with E. grandis (Eg) or polyfloral (PF) stored pollen. A single
MiSeq PE run of 250 cycles resulted in 232,345 reads, of which 221,576
(95%) passed stringent quality thresholds. The data set was rarefied to
29,372 sequences, and after alignment and clustering, we identified a total

of 221,560 unique sequences and 159 OTUs (at 97% identity) across the
entire data set. b Trial 2, honeybees were fed with E. grandis or polyfloral
stored pollen and infected with Nosema spp. spores. In total, 712,706
reads were obtained of which 712,600 passed the quality filters.
Subsequently, the data set was normalized to 23,399 sequences per sam-
ple, with remaining 112 OTUs
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Analysis of complete genomes of Lactobacillus spp. re-
vealed that these bacteria possess numerous phosphotransfer-
ase systems involved in the uptake of sugars, while
Bifidobacterium spp. has abundant genes for carbohydrate
utilization [33, 65, 66]. Both genera are all able to utilize
glucose and fructose, the most abundant sugars in the honey-
bee diet. These bacteria have large putative surface proteins
which may be related to adhesion or degradation of plant
compounds, and gene clusters for biosynthesis and utilization
of trehalose, a disaccharide used for energy storage in insects
[33, 65, 66]. Besides that, it has been proposed that
Lactobacillus spp. and Bifidobacterium spp. have in vitro in-
hibitory effect against P. larvae andMelissococcus plutonius,

causative agents of American and European foulbrood, re-
spectively [67–69].

Bartonellaceae is a bacterial family that includes fac-
ultative intracellular pathogens present in a variety of
mammals, usually acquired by vector transmission or by
animal bites or scratches [70, 71]. Hubert et al. [72]
showed that V. destructor could act as a reservoir of these
bacteria, but their significance in the bee microbiota is
still unknown.

Those changes in the honeybee gut microbiota in bees sub-
jected to nutritional stress may represent an important disad-
vantage regarding the bee physiology and defense against
pathogens.

Fig. 2 Principal coordinate analysis (PCoA) of Unifrac weighted (1), Unifrac unweighted (2), and Bray Curtis (3) analyses of bacterial communities of
honeybees fed with E. grandis (red) and polyfloral (blue) stored pollen from trial 1 (a) and infected with Nosema spp. from trial 2 (b)

Fig. 3 Comparison of abundance of different OTUs between honeybees
fed with E. grandis and polyfloral stored pollen, by using DESeq2
analysis. A log2-fold change of >0 indicates that abundance was higher
in honeybees fed on E. grandis pollen. a Samples from trial 1; b samples

from non-infected honeybees (control) from trial 2; c samples from
N. ceranae-infected honeybees from trial 2. OTUs with less than 60 reads
in total were not considered
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Although under laboratory conditions consumption of
E. grandis pollen did not affect bee lifespan, it decreased the
expression level of vitellogenin, compared to polyfloral
pollen. Vitellogenin has an important role in the division of
labor, foraging specialization, queen longevity, and resistance
to oxidative stress [55, 73–75]. A low vitellogenin level is
associated with precocious foraging, low protection against
oxidative stress and a shorter lifespan [74]. Previous studies
have also evidenced that vitellogenin expression changes in
response to diet, suggesting it could be an interesting marker
of the honeybee nutritional status on healthy honeybees [13,
76–78]. The low vitellogenin expression level found on hon-
eybees fed on E. grandis pollen confirmed that honeybees are
under nutritional stress.

Eucalytpus grandis pollen consumption also generated a
decrease in the glucose oxidase expression, in accordance
with Alaux et al. [15]. This enzyme catalyzes the oxidation
ofβ-d-glucose to gluconic acid and hydrogen peroxide, which
has antiseptic properties. Those products reach the larval food
and honey, contributing to food sterilization and prevention of

Fig. 5 Nosema spp. infection level per honeybee, in honeybees fed with
E. grandis (Eg) or polyfloral (PF) stored pollen. Asterisks indicate
significant differences (p values under 0.05)

Fig. 4 Relative expression of glucose oxidase, hymenoptaecin,
lysozyme, and vitellogenin genes in honeybees fed with E. grandis
(Eg) or polyfloral (PF) stored pollen. Quantification of gene expression

was carried by qPCR. Ten individual honeybees per treatment were used.
Asterisks indicate significant differences (p values under 0.05)
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contamination with pathogenic microorganisms [39]. For this
reason, glucose oxidase activity is considered as a marker of
social immunity [15].

Furthermore, in this study, we confirmed that nutritional
stress also decreased the expression of genes involved in in-
dividual immunity (hymenoptaecin and lysozyme).
Hymenoptaecin is an antimicrobial peptide [79] and lysozyme
is a non-specific immunity factor that hydrolyzes (1, 4)-gly-
cosidic bonds in the peptidoglycan layer of the bacterial cell
wall [80]. Lysozyme also promotes the expression of antimi-
crobial peptides, optimizing the immune response [81]. The
decrease in the expression of those peptides in honeybees
under nutritional stress may be associated with a diminished
defensive ability against pathogens.

Finally, nutritional stress promoted the multiplication of
N. ceranae, during the first stages of infection. Although pre-
vious studies had proposed that rich pollen diets stimulated the
development of Nosema spp. [18, 19, 82], comparisons were
performed between honeybees feed with sugar syrup and hon-
eybees fed with different amounts of pollen, but not using
honeybees fed with pollen with different botanical composi-
tion. In this case, nutritional stress may accelerate N. ceranae
reproduction, although at the end of the experiment all bees
reached were infected by 2 × 107 spores/bee.

The increase of N. ceranae spores in honeybees under nu-
tritional stress may be associated with an alteration of the
honeybee gut microbiota and a depression of the immune
system, which might accelerate the microsporidium
multiplication.

In this regard, previous studies have reported that dietary
supplementation with Lactobacillus spp. or Bifidobacterium
spp. (or their metabolites) can reduce the infection level of this
microsporidium [82–84].

Infection by N. ceranae seems to generate a stronger im-
pact on the gut microbiota of nutritional stressed honeybees,
compared to honeybees fed on polyfloral pollen. In particular,
N. ceranae infection increased the abundance of five different
OTUs, including G. apicola. The association between
G. apicola and N. ceranae has previously been reported by
Rubanov et al. [85], and further studies should be carried out
to explain this interaction.

Results obtained in the present study contribute to the un-
derstanding of the influence of agriculture intensification on
honeybee colony health. Vast monoculture areas might cause
honeybee’s nutritional stress, decreasing the abundance of po-
tentially beneficial microorganisms of the honeybee gut mi-
crobiota, decreasing the expression of honeybee immune-
related genes, and favoring the multiplication of pathogens
like N. ceranae. Besides that, N. ceranae infection can also
depress the honeybee immune system [86], subtly alter the
honeybee gut microbiota [85], cause energetic stress [87]
and digestive problems affecting the nutritional status of hon-
eybees [47].

Those results evidence the existence of a complex network
between nutrition, gut microbiota, immunity, and pathogen
infection. These links, which have been profusely described
in other animal species and humans, encourage the design of
strategies for the improvement of honeybee health through
nutritional approaches or modulation of the gut microbiota
using beneficial microbes.
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