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Abstract
Fusarium wilt of tomato caused by the pathogen Fusarium oxysporum f. sp. lycopersici (Fol) is one of the most
devastating soilborne diseases of tomato. To evaluate whether microbial community composition associated with Fol-
infected tomato is different from healthy tomato, we analyzed the tomato-associated microbes in both healthy and Fol-
infected tomato plants at both the taxonomic and functional levels; both bacterial and fungal communities have been
characterized from bulk soil, rhizosphere, rhizoplane, and endosphere of tomatoes using metabarcoding and
metagenomics approaches. The microbial community (bacteria and fungi) composition of healthy tomato was signifi-
cantly different from that of diseased tomato, despite similar soil physicochemical characteristics. Both fungal and
bacterial diversities were significantly higher in the tomato plants that remained healthy than in those that became
diseased; microbial diversities were also negatively correlated with the concentration of Fol pathogen. Network analysis
revealed the microbial community of healthy tomato formed a larger and more complex network than that of diseased
tomato, probably providing a more stable community beneficial to plant health. Our findings also suggested that healthy
tomato contained significantly greater microbial consortia, including some well-known biocontrol agents (BCAs), and
enriched more functional genes than diseased tomato. The microbial taxa enriched in healthy tomato plants are recog-
nized as potential suppressors of Fol pathogen invasion.
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Introduction

Tomato (Solanum lycopersicum) is one of the most widely
cultivated vegetables worldwide, with a global annual yield
of more than 177 million tons (FAO, http://www.fao.org/
faostat). The production of tomato is often limited by
diseases, especially the devastating soilborne disease
Fusarium wilt, which is caused by the tomato-specific fungus
Fusarium oxysporum f. sp. lycopersici (Fol) [1, 2]. This path-
ogen can infect tomato plants at all stages of growth and is one
of the most devastating diseases of tomato [3]. Disease-
resistant cultivars, chemical fungicides, biocontrol agents
(BCAs), crop rotation, and soil fumigation are commonly
used to manage Fusarium wilt [1, 2]. Crop rotation, however,
is not favorable for greenhouse farmers who do not prefer
growing less profitable cereals. Methyl bromide (for soil fu-
migation) is quite effective but has been phased out in the
“Montreal Protocol,” due to its considerable environmental
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pollution and ozone-depleting effect [4]. On the other hand,
the BCAs have been increasingly regarded as a green and
effective solution and applied in suppressing soilborne disease
[5–7]. The increasing demand for healthy and productive food
crops requires a green and effective strategy for controlling
this plant disease.

Soil is a rich bank of potentially beneficial and antagonistic
organisms, and the status of its microbial community largely
determines the productivity of agroecosystems [8, 9]. Root-
associated microorganisms serve as important determinants of
plant health and growth by supporting disease resistance, nu-
trient uptake, and abiotic stress tolerance [10, 11]. The use of
naturally occurring microbial communities offers a safe and
effective approach for suppressing pathogens that have recent-
ly emerged, representing an ideal alternative to chemical con-
trol [12]. Several studies have demonstrated that plant endo-
phytic and rhizospheric microbes can enhance disease sup-
pression, and they are thus used for disease suppression
[13–16]. For example, many plant-associated microbes have
antagonistic activities against Fol and have been used as
BCAs, including Bacillus spp., Pseudomonas spp.,
Lactobacilli spp., Rhizobia spp., Trichoderma spp., and
Gliocladium spp. [9, 17–19]. The BCA species have different
mechanisms in disease suppression, including competition for
nutrition and ecological niches, producing antibiotics compo-
nents, and induced systemic resistance of plant [10, 13]. High
microbial diversity usually could increase resistance to patho-
gen invasions and plant infestation [10, 20]. For example, Hu
et al. [12] reported that enriched Pseudomonas diversity sig-
nificantly enhanced pathogen suppression through intensified
resource competition and interference with the pathogen. Niu
et al. [21] showed that a simplified and representative bacterial
community had a better disease suppression effect on the
Fusarium verticillioides pathogen than did single bacterial
species in maize. High diversity of microbial communities
also could increase interference competition among pathogens
and intensify resource-use efficiency, which could help mi-
crobes to better colonize and occupy the root niche [22, 23].
All these studies demonstrated that a more diverse microbial
consortium could affect the survival, establishment, and func-
tioning of pathogens and have better effects on disease sup-
pression [10].

Studies on tomato diseases have been mainly focused on
tomato bacterial wilt disease caused by Ralstonia
solanacearum [12, 13, 24]. Wei et al. [24] found the signifi-
cant taxonomic and functional differences between
R. solanacearum diseased and healthy tomato-associated bac-
terial communities. The bacterial community of healthy toma-
to was interacting more often and more predictably than those
of bacterial wilted tomato, which could potentially increase
the community stability against R. solanacearum invasions
[24]. The disease outcomes are affected by the composition
and assembly of the plant-associated microbiome and

physicochemical properties of the soil [2, 14]. It has, however,
remained unclear whether the microbiomes of Fol pathogen
diseased tomato plants are different from the microbiomes of
remain healthy tomato plants. Moreover, previous studies on-
ly demonstrated the bacterial community of healthy and dis-
eased tomato plants, and they excluded fungi and other im-
portant microbes [12, 13, 24]. For example, many fungi have
been shown to suppress pathogens and affect the composition
of root-associated microbial communities [2, 25]. Hence, we
need a more comprehensive understanding of the variation
between healthy and diseased tomato for both bacterial and
fungal communities. High-throughput sequencing (HTS) has
provided a powerful approach to investigate the complex in-
teractions between plants and microbial communities in situ
[23] and has identified microbial consortium and functions
associated with healthy and diseased plants [13, 24]. We in-
vestigated the taxonomic and functional differences between
healthy- and diseased-tomato-associated microbiomes using
both amplicon sequencing (targeting the 16S rRNA of bacte-
rial and ITS region of fungi) and metagenomic sequencing.
Additionally, the microbial diversity differences between dif-
ferent tomato root zone areas were also examined to reveal
microbial selection by tomato root compartments.

Materials and Methods

Experimental Design and Sampling

In February 2018, a greenhouse of ~ 660 m2 in Luojiazhuang,
Shandong Province, China (36° 55′ 26.47″ N 118° 46′ 20.75″
E) was selected for the tomato cultivation experiment. This
greenhouse has been used for monoculture tomato planting
continuously for 8 years, with two crop seasons (spring sea-
son: from February to June; autumn season: from July to
November) per year. Surface-sterilized tomato seeds (70%
ethanol for 1 min, 1% sodium hypochlorite solution for 15
min) were germinated in sterile moist filter paper and planted
into the greenhouse field. All the samples were collected at the
spring crop season, and the tomato root and bulk soil samples
were collected in June (the end of the growing period). The
numbers of healthy and diseased tomato plants were recorded,
and about 80% of the total plants showed disease symptoms.
The disease indexes were recorded using the following scale:
0, no wilting; 1, about 1–25% leaves wilted; 2, about 25–50%
leaves wilted; 3, about 51–75% leaves wilted; and 4, about
76–100% leaves wilted [13]. The tomato plants that showed
clear disease symptoms (disease index ≥ 3) and were positive
for Fol pathogen isolation from surface-sterilized roots were
classified as diseased plants [13], while the tomato plants that
showed no wilt symptoms and were negative for Fol pathogen
isolation from surface-sterilized roots were classified as
healthy plants. Twelve Fol-diseased plants and twelve healthy
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plants were collected as biological replicates for each root
compartment. In brief, samples of bulk soil and root compart-
ments (including the rhizosphere, rhizoplane, and endosphere)
were collected according to the methods described by
Edwards et al. [26]. Soil physicochemical properties, namely,
pH, total carbon, nitrogen, phosphorus, sodium ions, potassi-
um ions, calcium ions, iron ions, and magnesium ions, were
measured for each sample using standard soil testing proce-
dures (http://vdb3.soil.csdb.cn). The samples were transported
back to the laboratory in iceboxes and stored immediately at −
80 °C until use.

DNA Extraction from the Rhizosphere, Rhizoplane,
and Endosphere

For each plant, we extracted total DNA independently from
bulk soil, rhizosphere, rhizoplane, and endosphere samples
according to the methods described by Edwards et al. [26].
In brief, each tomato root was vigorously shaken by hand until
the loose soil was completely removed. The remaining ~
1 mm layer of soil was washed off with phosphate-buffered
saline (PBS) and kept as the rhizosphere sample. The clean
root was then washed twice to remove the remaining soil and
placed into clean PBS in a 50-ml falcon tube. The rhizoplane
sample was collected from the clean root by sonication for
approximately 30 min. The sonicated roots were washed with
PBS for three times, followed by sterilized in 70% ethanol for
1 min and finally rinsed extensively in sterile water for three
times. Then, the entire root tissues were used for endosphere
microbial DNA extraction. Total genomic DNAwas extracted
from each sample using a FastDNA® Spin Kit following the
manufacturer’s instructions (MP Biomedicals, Solon, OH,
USA). The V3-V4 variable region of the bacterial 16S
rRNA gene was amplified using the primers 338F (5′-ACTC
CTACGGGAGGCAGCAG-3′) and 806R (5 ′-GGAC
TACHVGGGTWTCTAAT-3′) [27]. The fungal ITS1 region
was amplified using the primers ITS1F (5 ′-CTTG
GTCATTTAGAGGAAGTAA-3′) and ITS2R (5′-GCTG
CGTTCTTCATCGATGC-3′) [28]. The PCR reaction was
performed with 0.2 μM forward primer, 0.2 μM reverse prim-
er, 10 ng of template DNA, and 12.5 μl of Phusion High-
Fidelity PCR Master Mix (New England Biolabs). The reac-
tion conditions were as follows: 95 °C for 2 min; 25 cycles at
95 °C for 30 s; 55 °C for 30 s; and 72 °C for 60 s; 72 °C for
10 min and held at 4 °C. The second round of PCR amplifi-
cation was performed using an Ultra DNA Library Prep Kit
for Illumina (New England Biolabs, USA) following the man-
ufacturer’s recommendations to add index codes. All PCR
products were purified with a GeneJET Gel Extraction Kit
(Thermo Scientific) before sequencing. Library quality was
checked with a Qubit@ 2.0 Fluorometer (Life Technologies,
CA, USA) and an Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA). Finally, paired-end 2 ×

300 bp sequencing was performed using IlluminaMiSeq tech-
nology (Illumina Inc., San Diego, CA, USA) atMajorbio Bio-
Pharm Technology Co., Ltd. (Shanghai, China). For shotgun
paired-end metagenomic library construction, DNA was ran-
domly fragmented to an average size of approximately 300 bp
by a Covaris M220 ultrasonicator (Gene Company Limited,
China). The paired-end Illumina library was prepared by using
a TruSeqTM DNA Sample Prep Kit (Illumina, San Diego, CA,
USA). Adapters were ligated to the blunt-end fragments by
the sequencing primer hybridization sites. Paired-end se-
quencing was performed at Majorbio Bio-Pharm
Technology Co., Ltd. (Shanghai, China) using the Illumina
HiSeq platform (Illumina Inc., San Diego, CA, USA) accord-
ing to the manufacturer’s instructions.

Quantification of Fol DNA by Quantitative Real-time
PCR

The Fol pathogen-specific virulence gene SIX1 sequenced
with primers SP1-2F (5-GCTGGCGGATCTGACACTGT-
3) and SP1-2R (5-CCTAAACCACATATCT CGTCCAAA-
3) was used to quantify the concentrations of Fol pathogen
[29]. Real-time PCR was performed by using ChamQ
Universal SYBR qPCR Mix and a Bio-Rad CFX96 Real-
Time PCR System. The 25 μl reaction mixture contained
12.5 μl of ChamQ Universal SYBR qPCR Mix, 0.5 μl of
ROX, 50 ng of template DNA, and 1.0 μl (10 μM/l) each of
the forward and reverse primers. The thermocycling condi-
tions were as follows: 95 °C for 2 min; 40 cycles of 95 °C
for 10 s, 60 °C for 30 s, and 72 °C for 30 s; and a final
elongation step at 72 °C for 10 min. For SYBR Green ampli-
fication, a melting step was added to improve amplification
specificity. The quantitative PCRs (qPCRs) were performed
in triplicate (technical replicates) for each sample, and six
independent samples per group were used as biological repli-
cates. Statistical analyses were performed using the GraphPad
Prism 8 software with one-way analysis of variance
(ANOVA) followed by Tukey’s honestly significant differ-
ence (HSD) post hoc test.

Bioinformatic Analysis

Metagenomic Sequencing and Bioinformatics Pipeline

All raw FASTQ data were filter-trimmed using Trimmomatic
to remove low-quality (length < 50 bp, quality value < 20, and/
or N bases) and adapter sequences [30]. The remaining se-
quences were compared with the host (Solanum lycopersicum)
genome, and the contaminant host reads were comprehensively
removed by the Bowtie2 software [31]. In total, 20,627,647
host genomic sequences were detected as contaminants, which
accounted for 3.5% (ranging from 0.29 to 4.44%) (Table S1) of
the total sequences for all samples. After removing non-
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microbial sequences, the taxonomic classification of the re-
maining sequences was performed using MetaPhlAn2 [32]
against the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Ortholog (KO) database with the “very sensitive”
global alignment option [33]. The humann2_renorm_table
command was used to normalize the KO abundances within
each sample by the median universal single-copy gene abun-
dance. The Statistical Analysis of Metagenomic Profiles
(STAMP) software [34] was implemented to detect significant
differences in the abundance of functional genes/pathways cor-
responding to the healthy and diseased groups.Welch’s t test (P
< 0.05) and Benjamini-Hochberg’s false discovery rate (FDR)
multiple test correction were applied to generate extended error
bar plots. The linear discriminant analysis effect size (LEfSe)
method was also used to detect the significant functional fea-
tures. The LEfSe method combines a statistical test (pairwise
Wilcoxon test or Kruskal-Wallis test) with linear discriminant
analysis (LDA) for feature selection. The threshold logarithmic
LDA score for discriminating features was 2.0, and the alpha
value employed for the factorial Kruskal-Wallis test was 0.05
[35].

16S rRNA Gene and ITS rRNA Gene Bioinformatics Pipeline

The fungal ITS1 and bacterial 16S rRNAV3-V4 regions were
processed using the USEARCH 10.0 and VSEARCH 2.14
software respectively [36, 37]. All 16S rRNApaired-end reads
were quality filtered using the fastq_filter command and
joined by the fastq_mergepairs command. Chimeric se-
quences were detected and removed using UCHIME against
the Ribosomal Database Project (RDP) Gold database [36].
The non-chimeric sequences were sorted by abundance,
dereplicated, and clustered into operational taxonomic units
(OTUs) using the UPARSE algorithm (≥ 97%, singletons re-
moved). Then, all non-chimeric sequences were reassigned to
formulate a final OTU table using the otutab command. The
SILVA 16S rRNA database (132 release) was used to assign
taxonomic categories to OTUs using the sintax command at a
confidence threshold of 0.8. The fungal ITS1 sequences were
processed similarly, with screening and removal of chimeric
sequences according to the UNITE CHIME reference data-
base [38]. The taxonomic classification of the representative
sequences was performed using the RDP classifier against the
Warcup fungal ITS V2 database at a confidence threshold of
0.8 [39].

Diversity and Statistical Analysis

Most diversity and statistical analyses were performed using the
vegan package as implemented in R unless stated otherwise [40].
Rarefaction curves of all samples were constructed with the
rarecurve function. The OTU tables were rarefied to the smallest
number of reads among all samples using the rrarefy command

to allow comparison on an equal basis. All bacterial and fungal
samples were rarefied to 29,805 sequences and 36,098 se-
quences, respectively, before calculating the diversity indices.
Alpha diversity was calculated based on species richness and
the Shannon-Wiener index via the diversity command [40].
ANOVA followed by Tukey’s HSDmethodwas used to explore
variation in Shannon diversity and OTU richness among differ-
ent groups. The beta diversity of the bacterial and fungal com-
munities was calculated using UniFrac distances and Bray-Curtis
distances based on a normalized OTU table, respectively [41]. A
principal coordinate analysis (PCoA) plot based on UniFrac dis-
tance and Bray-Curtis distancematrices was used to visualize the
dissimilarities among samples. Differences in microbial commu-
nity composition between root zone groups were measured by
mult ivar ia te permutat ional analys is of var iance
(PERMANOVA) and analysis of similarities (ANOSIM) with
the adonis and anosim commands, respectively. The relation-
ships between environmental factors and microbial community
composition were calculated using the envfit command (999 ran-
dom permutations). The significance of each variable (P < 0.05)
was calculated based onBray-Curtis distances using the capscale
command in the vegan package [40]. The negative binomial
generalized linear model in the edgeR package was used to iden-
tify and visualize significantly (P < 0.05) enriched OTUs in
healthy or diseased tomato samples [42]. We used the
estimateGLMTagwiseDisp and estimateGLMCommonDisp
functions to estimate common and tagwise dispersion, respec-
tively. TheOTU read counts were fittedwith a negative binomial
generalized log-linear model, and differential OTU abundances
were evaluated by the glmFit function. Correction for multiple
testing was carried out by the false discovery rate (FDR) with aP
value of less than 0.05. The ggplot2 package was used to gener-
ate all graphs and plots [43].

Co-occurrence Network Construction and Analysis

Co-occurrence networks of microbial communities were con-
structed based on OTU relative abundance for both healthy
and diseased tomato. For all networks, we utilized OTUs with
a sequence abundance greater than 0.01% for network con-
struction. We calculated descriptive and topological network
properties with the R package igraph [44]. These properties
included the sums of network nodes (representing OTUs),
sums of edges (significant correlations between OTUs), and
co-occurrence degrees (number of direct correlations to a
node). For this task, we combined the bacterial and fungal
OTUs into one OTU table for both healthy and diseased to-
matoes. The pairs of OTUs with a positive Spearman rank
correlation value (ρ) > 0.7 and a significant P value (<
0.001) were identified. To explore community structure with-
in the healthy and diseased networks, the network modules
with a greater edge density within groups than between groups
were identified by using the “greedy optimization of the
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modularity” algorithm [45]. Ecologically important microbes
frequently co-occur with other microbes in co-occurrence net-
works and potentially play a key role within the microbiome
in ecosystems [46, 47]. The keystone taxa in healthy and dis-
eased networks were identified using the NetShift method
(https://web.rniapps.net/netshift) based on differences in
network interactions between healthy- and diseased-tomato
microbiomes [48]. The co-occurrence networks were con-
structed and visualized using the “Fruchterman-Reingold”
layout with 104 permutations in igraph [45].

Data Accessibility

All raw paired-end Illumina sequence data have been depos-
ited in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive database (https://www.ncbi.
nlm.nih.gov/sra/?term=SRP156834) under BioProject no.
PRJNA485233.

Results

Data Summary and Variation in Alpha Diversity

After sequence quality filtering and reference-based chimera re-
moval, approximately 22.9% nonbacterial sequences and 1.7%
non-fungal sequences were removed. A total of 1,842,109 fungal
ITS1 sequences and 2,148,761 bacterial 16S V3-V4 region se-
quences remained. All the non-chimeric fungal sequences were
clustered into 539 fungal OTUs (singletons removed), with an
average of 37,954 sequences per sample. All the non-chimeric
prokaryotic sequences were clustered into 3682 bacterial and
Archaea OTUs (singletons removed), with an average of
45,763 sequences per sample. Comparative analyses of alpha
and beta diversity were performed after fungal and bacterial se-
quences were normalized to 29,825 and 36,098 reads, respec-
tively. The rarefaction curves of both bacterial and fungal com-
munities approached an asymptote, indicating the sufficiency of
our sequencing depths (Fig. S1). The microbial diversity of
healthy tomato was significantly higher (Tukey’s HSD test, P
< 0.05) than that of diseased tomato in both the bacterial and
fungal communities (Fig. 1a–d). The differences in microbial
diversity between healthy tomato and diseased tomato indicated
that healthy tomato contained significantly (Tukey’s HSD test, P
< 0.05) more microbial taxa. In addition, the differences in di-
versity between root compartments (bulk soil, rhizosphere, rhi-
zoplane, and endosphere) were also significant. For example,
bacterial diversity significantly decreased in the order bulk soil
> rhizosphere > rhizoplane > endosphere (Tukey’s HSD test,P <
0.05) for both healthy and diseased tomato (Fig. 1a and b ).
However, for the fungal community, the healthy tomato plants
did not exhibit differences in diversity among bulk soil and the
root compartments (Fig. 1c and d ).

Composition of and Environmental Influence on the
Tomato Microbial Community

In the PCoA of the bacterial community, the unweighted and
weighted UniFrac distances explained 67.76 and 78.45% of
the total variation, respectively (Fig. 2a and b ). ANOSIM
revealed significant differences between healthy- and
diseased-tomato bacterial communities (r = 0.08287, P =
0.026). Moreover, the bacterial communities of tomato root
compartments were significantly (P < 0.001) separated from
the bacterial community of the bulk soil (Fig. 2a and b ). In the
PCoA of fungal communities, the unweighted and weighted
Bray-Curtis distances explained 51.78% and 72.24% of the
total variation, respectively (Fig. 2c and d ). The ANOSIM
revealed a striking difference between the fungal communities
of healthy tomato and diseased tomato (r = 0.3281, P =
0.001). Distance-based redundancy analysis (db-RDA) was
employed to illustrate the influence of environmental factors
on microbial community composition. However, no signifi-
cant differences (P > 0.05) were found between the healthy
and diseased tomato in terms of soil physicochemical proper-
ties (Table S2). This result suggests that abiotic environmental
factors have a limited influence on tomato microbial commu-
nities. The densities of Fol were one of the most important
drivers for causing the tomatoFol disease. To confirm this, the
concentration of Fol pathogen was detected and compared
among all the samples using qPCR targeting a Fol-specific
gene. We extracted the OTUs (OTUs3) which belong to the
Fol species and compared the relative abundance for both
healthy and diseased tomato groups (Fig. S2a). The results
suggested that the relative abundance of Fol in diseased root
compartments were significantly (P < 0.001, Student’s t test)
higher than the healthy root compartments (Fig. S2a).
Moreover, the Fol absolute concentrations of diseased root
compartments were also significantly (P < 0.001, Student’s t
test) higher than those of healthy root compartments (Fig.
S2b). Similar trends were also found for the bulk soils, with
the Fol concentrations of diseased-tomato bulk soils being
significantly (P < 0.001, Student’s t test) greater than those
of healthy-tomato bulk soils (Fig. S2). Crucially, the absolute
concentrations of Fol in the rhizosphere of healthy tomato
plants were very low (Fig. S2). These results demonstrated
that outbreaks of Fol disease are significantly correlated with
the concentration of Fol.

Fungal and Bacterial Taxa in Healthy and Diseased
Tomato Roots

For the bacterial community, the phyla Proteobacteria
(28.8%), Actinobacteria (11.7%), Firmicutes (9.4%),
Bacteroidetes (8.2%), Acidobacteria (6.3%), Candidatus
Saccharibacteria (3.1%), Verrucomicrobia (2.3%),
Planctomycetes (1.6%), Chloroflexi (1.5%), and Chlamydiae
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(1.0%) were most dominant in the tomato roots (Table S3).
For the fungal community, the most dominant phyla were
mainly Ascomycota (57.5%), Basidiomycota (19.9%),
Mortierellomycota (5.4%), Rozellomycota (2.8%),
Aphelidiomycota (2.0%), and Olpidiomycota (1.9%)
(Table S3). The 16S rRNA analyses showed that the genera
Ar throbac ter , Pyrenochae ta , Plec tosphaere l la ,
Pseudomonas, and Sphingobium were selected from the bulk
soil and enriched in the root compartments of both healthy and
diseased tomato plants (Fig. 3a and b). We next explored
significantly enriched microbial taxa associated with healthy
and diseased tomato plants. A total of 186 bacterial and 168
fungal OTUs were found to be significantly enriched in the
healthy tomato plants, accounting for 7.44% and 9.54% of the
total sequences, respectively (Fig. 4a and b; Table S4). Of
these discriminating OTUs, the bacteria associated with
healthy tomato with high abundances belonged to
Acinetobacter, Aeromonas, Bacillus, Chloroflexus,
Lys in ibac i l lus , Paenibaci l lus , Planococcaceae ,
Pseudomonas, and Streptomyces. For the fungal community,
the taxa associated with healthy tomato with high abundances

were members of Aspergillus, Cladosporium, Chaetomium,
Cordyceps, Conocybe, Cutaneotrichosporon, Metarhizium,
Mortierella, Olpidium, Penicillium, Ramicandelaber, Tuber,
Uncinocarpus, and Vermiculariopsiella. On the basis of com-
parison analysis, we found many enriched taxa of healthy
tomato with potential use as BCAs to inhibit Fol disease
(Table S4).

Network Analysis

Separate co-occurrence networks were constructed for
healthy and diseased tomato to explore differences in co-
occurrence patterns. The healthy-tomato networks differed
profoundly from the diseased-tomato networks, with the
healthy-tomato networks characterized by more links be-
tween nodes, longer average path lengths, and greater clus-
tering coefficient (Fig. 5a and c; Table S5). The co-
occurrence networks of diseased tomato were more isolat-
ed and less dense than those of healthy tomato (Table S5).
Moreover, the greater complexity of the healthy-tomato
networks was reflected by their greater average degree
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(average 120.92 vs. 13.76) and higher network connectiv-
ity (connectance 0.23 vs. 0.06) than observed in the dis-
eased tomato networks (Table S5). According to the tax-
onomy annotation, the healthy-tomato network was mainly
dominated by phyla of Acidobacteria, Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria (Fig. 5a).
For the diseased tomato, the most dominant phyla for this
network include Acidobacter ia , Act inobacter ia ,
A s c omyco t a , B a c t e r o i d e t e s , F i rm i c u t e s , a n d
Proteobacter ia (Fig. 5c) . The fungal phylum of
Ascomycota was markedly increased (P < 0.05, Student’s
t test) in the network of diseased tomato than that in the
healthy-tomato network. Based on the NetShift analysis,
Arthrobacter , Agromyces , Bacillus , Buttiauxella ,
Microbacterium , Lacibacterium , Methylobacillus ,
Pedobacter , Pseudomonas , Lentzea , Rhizobium ,
Streptomyces, and Plectosphaerella genera were identified
as potential keystone taxa associated with Fol pathogen
suppression in the healthy-tomato roots (Fig. 5b).

Structure and Function of Healthy- and Diseased-
Tomato Root-Associated Microbiomes

Metagenomic sequencing (MGS) was employed to reveal
the functional differences between the healthy- and
diseased-tomato microbial communities. In total, approxi-
mately 587,047,580 raw paired-end reads were generated
from all tomato rhizosphere samples. Of these reads,
566,419,933 clean reads were used for de novo assembly,
and we obtained 10,509,668 contigs, with a maximum
contig length of 784,595 bp and an N50 of 928 bp (all
contigs ≥ 300 bp) (Table S1). In total, 13,678,714
protein-coding genes with an average length of 464 bp
were predicted from the assembly. After removing redun-
dant sequences (identity > 95%), 8,598,069 unigenes were
obtained. The taxonomic annotations revealed that bacteria
were the predominant domain, with smaller fractions of
eukaryotes, Archaea, and viruses detected based on the
annotated unigenes. For the bacterial community,

−0.2

0.0

0.2

−0.2 0.0 0.2 0.4
PCoA 1 (59.4%)

PC
oA

 2
 (1

9.
05

%
)

Bacterial weighted UniFrac

d

b

−0.05

0.00

0.05

0.10

−0.2 −0.1 0.0 0.1 0.2 0.3
PCoA 1 (62.12%)

PC
oA

 2
 (5

.6
45

%
)

Bacterial unweighted UniFrac
a

Zone
Bulk
Endospheric
Rhizoplane
Rhizosphere

Group
Healthy
Diseased

−0.6

−0.4

−0.2

0.0

0.2

0.4

−0.25 0.00 0.25 0.50
PCoA 1 (51.91%)

PC
oA

 2
 (2

0.
33

%
)

Fungal unweighted Bray Curtis

c

−0.2

−0.1

0.0

0.1

0.2

−0.4 −0.2 0.0 0.2
PCoA 1 (44.46%)

PC
oA

 2
 (7

.3
23

%
)

Fungal weighted Bray Curtis

Fig. 2 Principal coordinate analysis (PCoA) of fungal and bacterial communities based on UniFrac distances and Bray-Curtis distances. a and b
Weighted and unweighted UniFrac distances of bacterial communities. c and dWeighted and unweighted Bray-Curtis distances of fungal communities

1010 Zhou X. et al.



Proteobacteria (63.78 ± 6.10%), Actinobacteria (22.78 ±
4.12%), Bacteroidetes (5.37 ± 3.88%), and Acidobacteria
(1.96 ± 1.06%) were the dominant phyla (relative abun-
dance ≥ 1%) (Fig. S3). For the fungal community,
Ascomycota was the most abundant phylum (0.48 ±
0.06%). At the genus level, Pseudomonas, Sphingobium,
and Microbacterium were highly abundant, followed by
Sphingopyxis, Streptomyces, Sphingomonas, Variovorax,
Devosia, Agromyces, and Mesorhizobium (Fig. S4).
According to the KEGG level 2 pathway annotations, car-
bohydrate metabolism, amino acid metabolism, global and
overview maps, and energy metabolism were the most
abundant functions (Table S6). Statistical analysis by the
LEfSe software revealed a set of functional features that
were significantly different between the healthy and

diseased tomato plants. Compared with the microbes of
diseased tomato, those of healthy tomato were associated
with more functional genes (Fig. S5). The healthy-tomato
microbiomes significantly enriched functions like fatty ac-
id degradation and biofilm formation could respond to the
pathogen suppression and nutrition exchange of healthy-
tomato plants (Kruskal-Wallis test, P < 0.05) (Fig. S5).
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a Differential abundance of bacterial OTUs of healthy vs diseased tomato
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Discussion

Previous studies revealed that the variation in bacterial
communities between healthy and diseased tomato may
be related to the health of individuals [20, 24]. However,
which microbes are enriched and the primary taxonomic
and functional differences between tomato plants that re-
main healthy and those that become diseased are still

unclear [49]. According to the CCA test, no significant
differences were found in soil physicochemical factors
across all healthy and diseased samples. However, the root
microbial communities of healthy and diseased tomato
were significantly different, suggesting that abiotic envi-
ronmental factors may not be the determinants of the di-
vergence in the microbial community composition be-
tween healthy and diseased tomato in this study.
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Fig. 5 Visualization of microbial community co-occurrence network
properties between healthy and diseased tomato plants. a Co-occurrence
networks of healthy tomato samples. b Co-occurrence networks of dis-
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phylum. Links between the nodes indicate significant correlations. c
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Plants can achieve specific suppression by selecting and
enriching some microbial community members [23, 50].
Due to the close relationship between the microbes and their
host plants, certain microbes are enriched from the outer layer
of bulk soil to the root compartments, as driven by plant se-
lection [51, 52]. Our results demonstrated that the bulk soil
samples had the highest bacterial diversity and that only some
of the bulk soil taxa are present in the root compartments. For
example, we found that the genera Arthrobacter ,
Pyrenochaeta, Plectosphaerella, Pseudomonas, and
Sphingobium were strongly selected from the bulk soil and
enriched in the root compartments. Previous studies suggested
that plants lacking genetic resistance to specific pathogens
may enrich particular microorganisms for pathogen suppres-
sion [13, 50]. Our results demonstrated that microbial diver-
sity was significantly higher in tomato plants that remained
healthy than in those that became diseased, while the concen-
tration of Fol pathogen was significantly lower in the healthy
tomato than in the diseased tomato (P < 0.001). The differ-
ences in Fol pathogen density between healthy and diseased
tomato imply that microbial diversity plays an important role
in Fol disease outbreaks [24]. Several studies had found that
high microbial diversity has been associated with higher resis-
tance to pathogen invasions and plant infestation [10, 12, 20];
for example, increasingPseudomonas species diversity signif-
icantly increased pathogen suppression and decreased the dis-
ease incidence through intensified resource competition and
interference with the pathogen [12]. Moreover, the healthy
tomato plants harbored more known BCA taxa than the dis-
eased tomato plants, and these taxa may inhibit Fol disease
[10, 23, 53]. For example, Pseudomonas, Trichoderma, and
Bacillus species can suppress the Fol pathogen by producing
antibiotics, regulating the jasmonic acid (JA)-/salicylic acid
(SA)-related defensive pathways and forming biofilms to pro-
tect the plant in vitro or under artificial conditions [25, 54].
These enriched microbial species may help tomato to gain
resistance against Fol pathogens. Together, these results sug-
gested that Fol pathogen suppression is driven by microbial
consortium rather than individual microorganism [23], and
future studies could try to isolate these taxa and verify their
disease suppression ability [7, 55].

According to the shotgun metagenomic data, pathways in-
volved in biofilm formation were significantly enriched in
healthy tomato compared with diseased tomato, suggesting
that the microbial community in healthy tomato is beneficial
for biofilm formation, which occupies the root-surface niches
and prevents tomato infection by Fol [54]. Previous studies
revealed that nutrient resource competition can indirectly im-
pact pathogen inhibition by mediating processes involved in
nutrient dynamics [13, 56]. We found several metabolisms
and degradation-related pathways were significantly enriched
in healthy tomato, suggesting greater access of the microor-
ganisms to nutrient resources in the roots of healthy tomato

than in those of diseased tomato, indicating the presence of
more active nutrition exchange and microbe-plant interactions
in the healthy tomato plants. Our results revealed that the
diseased-tomato microbes contained significantly less func-
tional features, such as the relative abundance of amino acid
metabolism, fatty acid degradation, and tricarboxylic acid
(TCA) cycle functions compared with healthy-tomato mi-
crobes. These findings demonstrated the negative effects of
Fol on the tomato root zone microbiome at the community
function level.

Poudel et al. [49] pointed out that co-occurrence network
analysis of plant microbiomes can provide new perspectives
for enhancing disease management and identifying candidate
microbes affecting plant health. Our data showed that the mi-
crobial co-occurrence networks of healthy and diseased toma-
to were significantly different. In general, the network associ-
ated with healthy tomato comprised more connections and
associated species, displayed longer average path lengths,
and had higher clustering coefficient in structure. Similar to
the differences in community composition, diversity, and
functions, the network differences between tomato plants that
remained healthy and those that became diseased were clear.
Previous studies indicated that keystone taxa frequently co-
occur with other microbes, and they may play primary roles in
ecosystems by determining community dynamics, maintain-
ing network structure, and connecting with other microbes in
the network [46, 57, 58]. Based on NetShift analyses, several
keystone OTUs in the healthy-tomato networks were charac-
terized. According to the taxonomic annotation, the keystone
taxa included Arthrobacter spp., Agromyces spp., Bacillus
spp., Buttiauxella spp., Microbacterium spp., Lacibacterium
spp., Methylobacillus spp., Pedobacter spp., Pseudomonas
spp., Lentzea spp., Rhizobium spp., Streptomyces spp., and
unassigned Plectosphaerella. Among these, Arthrobacter,
Bacillus, Microbacterium, and Pedobacter [12, 59–61] are
well known genera that comprise BCAs. Together, these find-
ings suggest that fungal and bacterial communities have more
interaction in healthy tomato than in diseased tomato and that
the related keystone microbes may be positively correlated
with suppression of Fol disease.

Based on these findings, we suggest an approach to
controlling Fol soilborne disease by managing the natural
fungal and bacterial community as a whole instead of
selecting only one or several BCA species for disease
suppression. These hypotheses need to be verified by
culture-based experiments. Beyond the scope of this
study, further studies should try to isolate these keystone
taxa, as well as the species enriched by plant root exu-
dates, and evaluate the consistency of disease suppres-
sion ability in vivo. Our study provides important base-
line information for implementing agricultural manage-
ment strategies to control Fol wilt disease using mi-
crobes that contribute to plant health.
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