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Abstract
The Asian citrus psyllidDiaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits
Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease,
huanglongbing or greening disease.Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically
transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura
(Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprece-
dented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts.
Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In
the present study, in an effort to obtain insights into the evolution of symbioses betweenDiaphorina and bacteria, microbiomes of
psyllids closely related toD. citriwere investigated. Bacterial populations ofDiaphorina cf. continua and Diaphorina lycii were
analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis
revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread
within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp.
(Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria:
Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects,
bacteria, and plants, which would eventually help to better manage horticulture.
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Introduction

Psyllids or jumping plant lice (Hemiptera: Sternorrhyncha:
Psylloidea) are plant sap-sucking insects encompassing about
4000 described species worldwide [1]. They exclusively feed
on phloem sap [2], a diet that is deficient in essential amino
acids [3] and some vitamins [4, 5]. This nutritional deficiency
is compensated for by vertically transmitted intracellular sym-
bionts. Psyllids possess a specialized organ called a
bacteriome [6], which typically harbors two distinct bacterial
symbionts [7–22]. One is Candidatus Carsonella ruddii
(Gammaproteobacteria: Oceanospirillales) [17], which pro-
vides the host with essential amino acids that are scarce in
the phloem sap [9, 23]. Carsonella is assumed to be present
in all psyllid species and is thus categorized as the “primary
symbiont” [7–17, 19–23]. Molecular phylogenetic analyses
demonstrated congruence between the host and Carsonella
trees [12, 16, 17, 20, 21], indicating a single acquisition of
an ancestor of Carsonella by a common ancestor of psyllids,
followed by strict vertical transmission of symbionts resulting

The nucleotide sequence data are available in the DDBJ/EMBL/GenBank
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in cospeciation between the host and symbiont lineages. In
addition, most psyllid species harbor another bacterial lineage
in the bacteriome, which is categorized as a “secondary sym-
biont” [8, 9, 11, 12, 14, 16, 18, 20]. The secondary symbionts
in the psyllid bacteriome are varied depending on psyllid spe-
cies or genera, suggesting multiple infections and replace-
ments of the symbionts during the evolution of Psylloidea.
Whereas the secondary symbionts of various insect line-
ages have diverse range of associations, from parasitic to
mutualistic, with the host [24–30], those residing in the
psyllid bacteriome appear to consistently have obligate
mutualistic, organelle-like features like the primary sym-
bionts [9, 11, 12, 14]. Such features are characteristic of
nutritional symbionts [24, 31–39]. Indeed, whole genome
analyses showed that the secondary symbionts of two
psyllid species Ctenarytaina eucalypti (Aphalaridae:
Spondyliaspidinae) and Heteropsylla cubana (Psyllidae:
Ciriacreminae) are nutritional symbionts that complement
incomplete amino acid biosynthetic pathways of
Carsonella [9]. In contrast, an unprecedented type of
secondary symbiont that falls out of this category was
found in the Asian citrus psyllid, Diaphorina citri
(Liviidae: Euphyllurinae).

Diaphorina citri is an important agricultural pest that trans-
mits Candidatus Liberibacter spp. (Alphaproteobacteria:
Rhizobiales), primarily Ca. Liberibacter asiaticus (CLas), the
causative agent of a devastating citrus disease known as
huanglongbing (HLB) or greening disease [40–42].
Diaphorina citri and CLas were originally distributed in trop-
ical and subtropical South to East Asia but were relatively
recently introduced into the Arabian Peninsula, Mascarenes,
Oceania, and Caribbean, South, Central, and North America
[40–42]. Because HLB is currently incurable, controlling
D. citri as the vector is presently the most crucial part of
HLB management [42]. Whereas the association with
Liberibacter is transient, D. citri, like other psyllid species,
has more intimate and evolutionarily long-lasting relation-
ships with bacteriome-associated bacteria. Along with the pri-
mary symbiont Carsonella, D. citri possesses Ca. Profftella
armatura (Gammaproteobacteria: Betaproteobacteriales) as a
bacteriome-residing secondary symbiont [43, 44]. Profftella is
an intracellular resident found in all D. citri individuals across
global populations and has a drastically reduced genome of
much less than 1 Mb, which is characteristic of bacteriome-
associated nutritional symbionts [24, 31, 32, 45]. However,
the genome encodes only a few genes required to supplement
the host’s diet [43]. Instead, a large part of the genome is
devoted to a gene set for synthesizing a secondary metabolite,
diaphorin, a polyketide exhibiting significant cytotoxicity to
various organisms [43, 46–48]. Thus, Profftella is considered
to be an unprecedented type of defensive symbiont with
organelle-like features. Furthermore, genomic and phyloge-
netic analyses demonstrated that the Liberibacter lineage has

horizontally acquired a gene from the Profftella lineage,
showing ecological and evolutionary interactions between
the HLB pathogen and the bacteriome symbiont [49]. In ad-
dition to these symbionts, many D. citri strains are infected
with Wolbachia (Alphaproteobacteria: Rickettsiales) [19,
50–57]. Wolbachia have various effects on arthropod hosts
behaving as reproductive manipulators, defensive symbionts,
or nutritional symbionts [58–60]. Although the role of
Wolbachia in D. citri is not known, interactions between
Wolbachia and other symbionts, including Carsonella,
Profftella, and Liberibacter, are suggested [53, 61–64].

Diaphorina citri is a member of a species-rich psyllid
genus, which currently includes 78 described and many
undescribed species restricted to the Old World and main-
ly distributed in its warm and dry regions, e.g., the
Mediterranean Basin, the Sahel region, South and South
West Africa, the Middle East, and the arid parts of the
Indian subcontinent and Central Asia; these species are
associated with many different plant families [65–70].
Diaphorina has been formally classified as a member of
Liviidae: Euphyllurinae [71], but recent molecular
phylogenomic analyses place the genus as sister to
Psyllidae or Triozidae, i.e., outside of Liviidae [1].
Except for D. citri , the microbial symbionts of
Diaphorina spp. are unknown. Revealing bacterial flora
in different Diaphorina spp. would provide deeper in-
sights into the evolution of symbioses between psyllids
and bacteria. This would enhance our understanding of
D. citri biology, eventually aiding to improve the efficien-
cy of HLB control.

For this purpose, in the present study, we analyzed
bacter ia l populat ions in two European species ,
Diaphorina cf. continua and Diaphorina lycii, using the
16S rRNA gene sequencing technique. For comparison,
the bacterial flora of D. citri was also analyzed.

Materials and Methods

Insects

Diaphorina cf. continua was collected from Thymelaea
tartonraira subsp. thomasii (Thymelaeaceae) in a pine forest
1.8 km west of Moltifao village (42°29′12″N, 9°8′22″E,
300 m.a.s.l.), Haute-Corse department, Corsica island,
France, on April 9, 2017. Morphologically, these specimens
are similar toD. continua, originally described fromMorocco
[72]. Diaphorina continua was also recorded from Algeria
and Canary Islands (without host plant data) [66] and
Sardinia. In Sardinia, which is geographically close to
Corsica, D. continua was reported from Thymelaea
tartonraira [73, 74], i.e., the same host plant with the material
analyzed in this study. However, the adults fromCorsica differ
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from the published descriptions of D. continua [66, 72] in
some details, such as the male terminalia. Thus, the species
identity of Diaphorina specimens collected on T. tartonraira
in Corsica and Sardinia needs to be confirmed by a detailed
taxonomic revision.

Diaphorina lycii was collected from Lycium barbarum
(Solanaceae) in the floodplain of the Stara river 2.3 km north-
east of Byaga village (42°4′45″N, 24°24′11″E, 250 m.a.s.l.),
Pazardzhik Region, Bulgaria, on June 18, 2017. Diaphorina
lycii is narrowly oligophagous on Lycium spp. and widely
distributed in Southern Europe, North Africa, Middle East,
Central Asia, and Mongolia [65, 66, 70].

The material of D. citri was used from a laboratory stock
free of Ca. Liberibacter spp. The established colony of
D. citri, originally collected from Amami Oshima Island,
Kagoshima, Japan (28°23′46″N, 129°31′46″E, 5 m.a.s.l.),
was maintained on Murraya paniculata (Rutaceae) kept in
incubators set at 28 °C with a 16-h light:8-h dark photoperiod.

DNA Extraction

DNA was extracted from whole bodies of adult D. citri (5
males and 5 females), D. cf. continua (3 males and 8
females), and D. lycii (5 males and 5 females) using a
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany)
following the manufacturer’s instructions. The quality of
extracted DNA was assessed using a NanoDrop 2000c
spectrophotometer (Thermo Fisher Scientific, Waltham,
Massachusetts, USA), and the quantity was assessed
using a Qubit 2.0 Fluorometer with a Qubit dsDNA HS
Assay Kit (Thermo Fisher Scientific).

Construction and Sequencing of Amplicon Libraries

Bacterial populations in D. citri, D. cf. continua, and D. lycii
were analyzed using the MiSeq System (Illumina, San Diego,
California, USA). The sequencing libraries targeting V3 and
V4 regions of the 16S rRNA gene were constructed according
to the instructions by Illumina [75] but with some modifica-
tions. Briefly, amplicon PCR was performed using the geno-
mic DNA extracted from Diaphorina spp., KAPA HiFi
HotStart ReadyMix (KAPA Biosystems, Wilmington,
Massachusetts, USA), and the primer set 16S_341Fmod (5’-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACA
GYYTAMGGRNGGCWGCAG-3’) and 16S_805R (5’-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AGGACTACHVGGGTATCTAATCC-3’). Running parame-
ters were 95 °C for 3 min, followed by 25 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C for 30 s, with a final extension
step of 72 °C for 5 min. PCR product sizes were analyzed by
agarose gel electrophoresis. Amplicons were purified using
Agencourt AMPure XP beads (Beckman Coulter, Brea,
California, USA). Dual indices and Illumina sequencing

adapters were attached to the amplicons with index PCR using
Nextera XT Index Kit v2 (Illumina). Running parameters
were 95 °C for 3 min, followed by 8 cycles of 95 °C for
30 s, 55 °C for 30 s, and 72 °C for 30 s, with a final extension
step of 72 °C for 5 min. Amplicons were purified again using
Agencourt AMPure XP beads, which were then quantified
using a Qubit 2.0 Fluorometer with a Qubit dsDNA HS
Assay Kit (Thermo Fisher Scientific). The libraries were com-
bined with PhiX Control v3 (Illumina), and both ends of
250 bpwere sequenced on theMiSeq platform (Illumina) with
a MiSeq Reagent Kit v2 (500 cycles; Illumina).

Computational Analysis of Bacterial Populations

Amplicon sequence reads were demultiplexed using MiSeq
Reporter (Illumina). The output sequences in FASTQ files
per sample were imported into the QIIME2 platform (version
2019.7) [76] and processed using a set of plugins. Primer
sequences were removed using the cutadapt plugin [77] with
t h e f o l l o w i n g o p t i o n s : – p - f r o n t - f
^ Y Y TA M G G R N G G C W G C A G – p - f r o n t - r
^GACTACHVGGGTATCTAATCC –p-discard-untrimmed.
Paired-end sequences were trimmed, denoised, joined, and
dereplicated using the dada2 plugin [78] with the following
options: –p-max-ee 2 –p-trunc-len-f 230 –p-trunc-len-r 230.
During this step, chimeric sequences were detected in samples
individually, and sequences found to be chimeric in a suffi-
cient fraction of samples were removed. The q2-feature-
classifier plugin [79], a Naive Bayes classifier based on a
probabilistic machine learning algorithm, was trained using
V3 and V4 regions of 16S rRNA gene sequences in SILVA
database ver. 132 (SILVA_132_QIIME_release/taxonomy/
16S_only/99/taxonomy_7_levels.txt) that were clustered at
99% sequence similarity. Subsequently, denoised and
dereplicated amplicon reads were classified, and taxonomic
information was assigned using the trained q2-feature-classi-
fier. Obtained sequence variants (SVs) were manually
checked by performing BLASTN searches against the
National Center for Biotechnology Information (NCBI) non-
redundant (nr) database [80].

Phylogenetic Analysis of Detected Bacteria

SVs after dereplication were aligned with related sequences
using SINA (v1.2.11) according to the global SILVA align-
ment for rRNA genes [81]. Nucleotide sites corresponding to
alignment gap(s) were omitted from the data set. Phylogenetic
trees were inferred by the maximum likelihood (ML) method
using RAxML (version 8.2.12) [82]. The GTR + Γmodel was
used with no partitioning of the data matrix, with 1000 boot-
strap iterations (options -f a -m GTRGAMMA -# 1000).
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Results and Discussion

All Three Diaphorina Spp. Have Profftella
and Carsonella

The MiSeq sequencing of the amplicon libraries yielded
90,796 pairs of forward and reverse reads for D. citri,
71,195 paired reads for D. cf. continua, and 32,231 paired
reads for D. lycii. Denoising and joining of the paired-end
reads along with removal of low-quality or chimeric reads
resulted in 69,657 reads for D. citri, 55,673 reads for D. cf.
continua, and 30,004 reads for D. lycii (Table S1).
Dereplication of these reads resulted in 49 independent SVs,
among which only 12 SVs accounted for > 1% of total reads
(Table S1). Extremely simple bacterial communities of this
type have been reported for sternorrhynchan insects with the
bacteriome, including aphids, whiteflies, and other psyllid
species [11, 14, 50, 83–86]. Taxonomic classification by
QIIME2 (Fig. 1) followed by independent BLAST searches
and phylogenetic analyses (Fig. 2) revealed that all three
Diaphorina spp. possess distinct lineages of Profftella. The
q2_feature_classifier plugin assigned SV1, SV2, and SV3 to
Ca. Profftella armatura. SV1, which was derived from 55.6%
of denoised D. citri reads (Table S1), was 100% identical to
the corresponding sequence of Profftella previously reported
from D. citri populations from Japan (CP003468), China
(CP012591), and the USA (EF433792). SV2, which was

derived from 40.6% of denoised D. cf. continua reads, was
98.4% identical to SV1. SV3, which was derived from 71.8%
of denoised D. lycii reads, was 98.4% and 99.5% identical to
SV1 and SV2, respectively. Molecular phylogenetic analysis
showed that SV2 and SV3 form a clade with SV1 corre-
sponding to Profftella of D. citri with good bootstrap sup-
port (Fig. 2), verifying that both D. cf. continua and D.
lycii possess bacterial lineages that are sister to Profftella
of D. citri. The finding implies that Profftella lineages are
widespread within the genus Diaphorina. Further studies
including more psyllid taxa are required to confirm this
and to reveal if Profftella is unique to Diaphorina or it
also occurs in other psyllid genera.

As expected, the analyses showed that all threeDiaphorina
spp. possess distinct lineages ofCarsonella (Table S1, Figs. 1,
S1) that is assumed to be universal in Psylloidea [7–17,
19–23]. The q2_feature_classifier assigned SV4, SV8, and
SV11 to Ca. Carsonella ruddii. SV4, which was derived from
30.4% of denoised D. citri reads (Table S1), was 100% iden-
tical to the corresponding sequence of Carsonella previously
reported from D. citri populations from Japan (CP003467)
and China (CP012411) and 99.8% identical to that from the
USA (AF211136). SV8, which was derived from 10.8% of
denoised D. cf. continua reads, was 99.5% identical to the
corresponding sequence of Carsonella previously reported
from D. lycii (AF280097) [21] and 98.6% identical to SV4.
SV11, which was derived from 4.3% of denoised D. lycii
reads, was 99.8% identical to SV8 and the Carsonella se-
quence previously reported from D. lycii (AF280097) and
98.4% identical to SV4. Phylogenetic analysis showed that
SV4, SV8, and SV11 form a strongly supported clade with
the Carsonella sequences previously reported from D. citri
and D. lycii (Fig. S1), verifying that these SVs correspond to
Carsonella lineages. As previously reported [12, 16, 17, 20,
21], the phylogeny of Carsonella showed general congruence
with the relationships of their psyllid hosts [1, 87].
Whereas some previous studies that analyzed psyllid
microbiomes using “universal primers” detected only a
trace amount of Carsonella reads [14, 50, 84], the present
study succeeded in detecting a large percentage of
Carsonella reads using primers appropriately modified
for highly AT-biased symbiont genes [9, 23, 43]. The ratio
of Carsonella reads to Profftella reads in D. citri was
0.55, which was consistent with previous reports of quan-
titative PCR using target-specific primers [51–53, 88].

Diaphorina cf. continua has Liberibacter
and Diplorickettsia

Taxonomic classification by QIIME2 (Fig. 1) followed by inde-
pendent BLAST searches and phylogenetic analyses (Fig. 3)
identified Ca. Liberibacter europaeus in D. cf. continua. The
q2_feature_classifier assigned SV6, which was derived from
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23.8% of denoised D. cf. continua reads, to Ca. Liberibacter
europaeus (Alphaproteobacteria: Rhizobiales) (Table S1,
Fig. 1). SV6 was 100% identical to the corresponding sequence
of Ca. Liberibacter europaeus NR-01 (FN678792) and 99.3%
identical to Ca. Liberibacter europaeus, isolate Psy6
(JX244258), and isolate BrS (JX244259). Molecular phyloge-
netic analysis showed that these sequences form a robustly sup-
ported clade within Ca. Liberibacter spp. (Fig. 3).

The genus Liberibacter currently includes eight species:
Ca. L. asiaticus (CLas), Ca. L. americanus (CLam), and Ca.
L. africanus (CLaf), which cause HLB in citrus plants
(Rutaceae) in Asia, the Americas, and Africa [41, 42]; Ca.
L. caribbeanus (CLca) that was identified in citrus in
Columbia but the pathogenicity of which is uncertain [89];
Ca. L. solanacearum (CLso), which causes diseases in sola-
naceous plants in North and Central Americas and New

SV4 Ca. Carsonella ruddii [Diaphorina citri (psyllid)] (TAAA01000004)

Ca. Nasuia deltocephalinicola NAS-ALF [Macrosteles quadrilineatus (leafhopper)] (CP006059)

Ca. Vidania fulgoroideae HO1-V [Hyalesthes obsoletus (planthopper)] (FR686932)

Ca. Zinderia insecticola CARI [Clastoptera arizonana (spittlebug)] (CP002161)

Ca. Kinetoplastibacterium sorsogonicusi MF-08 [Kentomonas sorsogonicus (flagellate)] 
(CP025628)

Collimonas sp. (KT005686)

Polynucleobacter necessarius  [Euplotes aediculatus (ciliate)] (X93019)

Cupriavidus necator (AF027407)

Burkholderia sp. RPE66 [Riptortus pedestris (stinkbug)] (AB558210)

Ca. Tremblaya princeps PCIT [Planococcus citri (mealybug)] (CP002244)

96

Herbaspirillum seropedicae SARCC-RB16g (HQ877486)

Noviherbaspirillum canariense BT339 (MN204069)

Limnobacter thiooxidans APBSDSB87 (MG705633)

Oxalobacter formigenes HC-1 (CP018787)

87

63

SV3 Ca. Profftella armatura [Diaphorina lycii (psyllid)] (TAAA01000003)

SV2 Ca. Profftella armatura [Diaphorina cf. continua (psyllid)] (TAAA01000002)

SV1 Ca. Profftella armatura [Diaphorina citri (psyllid)] (TAAA01000001)
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(=CP003468, CP012591, EF433792)
Fig. 2 Phylogenetic position of
Profftella lineages within
Betaproteobacteriales inferred by
the maximum likelihood method.
A total of 427 unambiguously
aligned nucleotide sites of 16S
rRNA genes were subjected to the
analysis. On each branch,
bootstrap support values over
50% are shown. The scale bar
indicates substitutions per site.
For symbiotic bacteria, host
organisms are shown in brackets.
Profftella sequences from this
study are shown in bold.
DDBJ/EMBL/GenBank
accession numbers are provided
in parenthesis. Carsonella was
used as an outgroup
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Zealand and in carrot and celery (Apiaceae) in Europe and
North Africa [90–93]; Ca. L. brunswickensis (CLbr), a prob-
able endophyte of solanaceous plants in Australia [94];
L. crescens (Lcr) that is nonpathogenic and the only culturable
species in the genus, which was isolated from Babaco papaya
(Caricaceae) in Puerto Rico [95]; and Ca. L. europaeus
(CLeu) [96–98].

CLeu NR-01 (FN678792), which was detected in
Cacopsylla spp. (Psyllidae: Psyllinae) and their host rosaceous
plants in Italy and Hungary, was described as an endophyte, as
it caused no apparent symptoms to the plants [96, 97].
Subsequently, another CLeu lineage (JX244258/JX244259)
was found from the broom psyllid Arytainilla spartiophila
(Psyllidae: Psyllinae) and its host, the Scotch broom Cytisus
scoparius (Fabaceae) with disease symptoms in New Zealand
[98]. Arytainilla spartiophila was introduced to New Zealand
from the UK for a biological control of the Scotch broom [99].
The CLeu lineage with the sequence (MN176610) identical to
that from New Zealand was later confirmed in A. spartiophila
and C. scoparius in the UK [100]. The present study adds
another example of CLeu from another psyllid species, D.
cf. continua, in Corsica island. As field observations sug-
gested that Thymelaea tartonraira (Thymelaeaceae) is the on-
ly host plant species forD. cf. continua in Corsica, it would be
interesting to assess if this plant species, which is distantly
related to C. scoparius (Fabaceae) and rosaceous plants, is
also infected with CLeu and if it shows disease symptoms.

In the Scotch broom, the presence of CLeu is associated with
stunted growth of shoots, shortened internodes, leaf dwarfing,
and leaf tip chlorosis [98]. At the moment, data on its possible
pathogenicity in T. tartonraira are lacking.

It appears that Ca. Liberibacter lineages have evolved in
close associations with Psylloidea, and all known vectors for
all Ca. Liberibacter spp. are psyllids. The vectors reported
thus far are D. citri for CLas, CLam [41, 42], and CLca
[89]; Trioza erytreae (Triozidae) for CLaf [41, 42];
Bactericera cockerelli, B. trigonica, and Trioza apicalis (all
Triozidae) for CLso [90, 93]; Acizzia solanicola (Psyllidae:
Acizziinae) for CLbr [94]; and Cacopsylla spp. [96, 97],
Arytainilla spartiophila [98], and D. cf. continua (this study)
forCLeu. Interactions betweenCa. Liberibacter spp. and psyl-
lids are assumed to have evolved multiple times independent-
ly because of a lack of congruence between the phylogenies of
both groups (Fig. 3). This is also the case for associations
between Liberibacter and plants. Pelz-Stelinski and Killiny
reported that D. citri harboring CLas are more fecund than
their uninfected counterparts and overall population fitness
of infected psyllids is better [101]. This observed beneficial
effect may account for the close associations between Ca.
Liberibacter spp. and psyllids. Further studies are required to
assess if this hypothesis is applicable to other Ca. Liberibacter
-psyllid combinations in general.

The analysis also detected Diploricket ts ia sp.
(Gammaproteobacteria: Diplorickettsiales) from D. cf.

Wolbachia pipientis A (EU096232) [Drosophila melanogaster] 

Liberibacter crescens BT-1 (NC_019907)

Ca. Liberibacter brunswickensis Asol15 (KY077741) [Acizzia solanicola (Psyllidae: Acizziinae)]

Ca. Liberibacter asiaticus Ishi-1 (AP014595) [Diaphorina citri (Liviidae: Euphyllurinae)]

Ca. Liberibacter africanus PTSAPSY (NZ_CP004021) [Trioza erytreae (Triozidae)]
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Ca. Liberibacter caribbeanus (KP012551) [Diaphorina citri (Liviidae: Euphyllurinae)]

Ca. Liberibacter solanacearum NZ083338 (EU935004) [Bactericera cockerelli (Triozidae)] 

83

63

Ca. Liberibacter americanus Sao Paulo (NC_022793) [Diaphorina citri (Liviidae: Euphyllurinae)]

Ca. Liberibacter europaeus Psy6/BrS (JX244258/JX244259) [Arytainilla spartiophila (Psyllidae: Psyllinae)]

SV6 Ca. Liberibacter europaeus (TAAA01000007) [Diaphorina cf. continua (Liviidae: Euphyllurinae)] 

100

97

97

0.1
= Ca. Liberibacter europaeus (FN678792) [Cacopsylla pyri (Psyllidae: Psyllinae)]

Fig. 3 A maximum likelihood
phylogram of Liberibacter spp. A
total of 402 unambiguously
aligned nucleotide sites of 16S
rRNA genes were subjected to the
analysis. On each branch,
bootstrap support values over
50% are shown. For insect-
associated bacteria, host insects
are shown in brackets. Psyllids
are shown in orange. Families and
subfamilies of the host psyllids
are shown in parenthesis. The se-
quence from this study is shown
in bold. DDBJ/EMBL/GenBank
accession numbers for sequences
are provided in parenthesis. The
scale bar represents nucleotide
substitutions per position.
Wolbachia was used as an
outgroup
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continua. The q2_feature_classifier assigned SV9, which was
derived from 9.1% of denoised D. cf. continua reads
(Table S1), to Diplorickettsia. SV9 was 98.8% identical to
the corresponding sequence of Diplorickettsia sp. MSebKT1
(AB795342), 98.6% identical to the sequence of
Diplorickettsia massiliensis 20B (NR_117407), and 97.7%
identical to the sequence of Diplorickettsia sp. NS15
(JN606082). Molecular phylogenetic analysis showed that
SV9 forms a well-supported clade with these Diplorickettsia
spp. (Fig. 4). To our knowledge, this is the first report of
Diplorickettsia detected in psyllids.

Diplorickettsia massiliensis was first isolated from the
European sheep tick Ixodes ricinus (Arachnida: Acari:
Ixodidae) collected in Slovakia and proposed to be the type
species of a newly described genus Diplorickettsia [102]. The
following study detected D. massiliensis from serum samples
of human patients with suspected tick-borne disease, suggest-
ing that the bacterium is a human pathogen, like most other
bacteria and viruses found in I. ricinus [103]. Diplorickettsia
sp. MSebKT1 was found in the leafhopper Macrosteles
sexnotatus (Hemiptera: Auchenorrhyncha: Cicadellidae) in
Japan, a plant sap-sucking insect that is closely related to
psyllids [104]. The clade of Diplorickettsia clustered with
Rickettsiella spp. (Gammaproteobacteria: Diplorickettsiales)

with a high level of bootstrap support (Fig. 4), corroborating
that the genus Diplorickettsia is closely related to the genus
Rickettsiella comprising intracellular bacteria that are associ-
ated with various arthropods (insects, arachnids, and isopods),
including also psyllids [14, 20]. Whereas many Rickettsiella
spp. are pathogenic to arthropods, Ca. Rickettsiella viridis
[105] found in the aphid Acyrthosiphon pisum (Hemiptera:
Sternorrhyncha: Aphidoidea: Aphididae), which is also a
close relative of psyllids, alters the aphid body color, poten-
tially affecting the attractiveness of aphids to natural enemies
including parasitoids and ladybirds [106]. As little is known
about the functions of Diplorickettsia on host arthropods, it
would be worth assessing ecological effects ofDiplorickettsia
to Diaphorina spp., including D. citri.

Four Wolbachia Strains Reside in Diaphorina spp.

Taxonomic classification by QIIME2 (Fig. 1) followed by
independent BLAST searches and phylogenetic analyses
(Fig. 5) identified four SVs corresponding to distinct lineages
of Wolbachia (Alphaproteobacteria: Rickettsiales). Namely,
both D. citri and D. lycii were shown to have two strains of
Wolbachia, one of which was shared by the two psyllid spe-
cies, whereas D. cf. continua possessed a single Wolbachia

Ca. Carsonella ruddii [Diaphorina citri (psyllid)] (CP003467)

Coxiella burnetii Heizberg (CP014561)

Rickettsiella agriotidis JKI_E1959/09D (HQ640943)

Rickettsiella melolonthae BBA1806/LAM6-D/2004 (EF408231)

Rickettsiella symbiont [Asellus aquaticus (waterlouse)] (AY447041)

Rickettsiella viridis Ap-RA04 (AP018005)

Rickettsiella grylli (U97547)

Rickettsiella endosymbiont [Ixodes tasmani Ixotasmani1 (tick)] (KP994858)

81

Diplorickettsia sp. MSebKT1 (AB795342)

Diplorickettsia sp. NS15 (JN606082)

Diplorickettsia massiliensis (NR_117407) 

SV9 Diplorickettsia sp. [Diaphorina cf. continua (psyllid)] (TAAA01000010)

71
86

98

0.5Fig. 4 Phylogenetic position of
Diplorickettsia lineages inferred
by the maximum likelihood
method. A total of 427
unambiguously aligned
nucleotide sites were subjected to
the analysis. On each branch,
bootstrap support values over
50% are shown. The scale bar
indicates substitutions per site.
For symbiotic bacteria, host
organisms are shown in brackets.
The sequence from this study is
shown in bold, and
DDBJ/EMBL/GenBank
accession numbers are provided
in parenthesis. Carsonella was
used as an outgroup
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strain that was previously reported from another psyllid genus.
SV5 (Wolbachia_i), which was derived from 12.4% of
denoised D. citri reads and 16.6% of denoised D. lycii reads
(Table S1), was 100% identical to the sequence ofWolbachia
previously reported from D. citri in China (GU563890), the
planthopper (Hemiptera: Auchenorrhyncha: Delphacidae)
Nilaparvata lugens in China (FJ774974) [107], and the aphids

(Hemiptera: Sternorrhyncha: Aphidoidea: Aphididae)
Phloeomyzus passerinii in China (HQ843849), Cervaphis
quercus in China (JN635325), and Cinara cedri in Israel
(JN384059) [108]. SV7 (Wolbachia_ii), which was derived
from 15.7% of denoised D. cf. continua reads (Table S1),
was 100% identical to the sequence of Wolbachia detected
from the following insects: the psyllid Bactericera cockerelli

Ca. Liberibacter asiaticus Ishi-1 (AP014595)

Wolbachia <E> [Mesaphorura italica (springtail)] (AJ575104)

Wolbachia <E> [Folsomia candida (springtail)] (EU831094)

Wolbachia <L> [Radopholus similis (nematode)] (EU833482)

Wolbachia <I> [Ctenocephalides felis (flea)] (AY335923)

Wolbachia <I> [Orchopeas leucopus (flea)] (AY335924)

Wolbachia <K> [Bryobia sp. (mite)] (EU499316)

Wolbachia <O> [Bemisia tabaci (whitefly)] (KF454771)

Wolbachia <F> [Coptotermes acinaciformis (termite)] (DQ837197)

Wolbachia <F> [Nasutitermes nigriceps (termite)] (DQ837204)

Wolbachia <D> [Wuchereria bancrofti (nematode)] (AF093510)

Wolbachia <D> [Brugia malayi (nematode)] (NR_074571)

Wolbachia <J> [Dipetalonema gracile (nematode)] (AJ548802)

Wolbachia <C> [Onchocerca volvulus (nematode)] (HG810405)

Wolbachia <C> [Dirofilaria immitis (nematode)] (Z49261)
67

99

94

79

Wolbachia <B> [Armadillidium vulgare (woodlouse)] (AJ133196)

SV12 Wolbachia_iv [Diaphorina citri (psyllid)] (TAAA01000013) (=EF433793)

Wolbachia [Diaphorina citri (psyllid)] (EF433793)

Wolbachia <B> [Nasonia vitripennis (parasitoid wasp)] (M84686)

SV10 Wolbachia_iii [Diaphorina lycii (psyllid)] (TAAA01000011)

Wolbachia <B> [Tetranychus urticae (mite)] (EU499319)

Wolbachia <B> [Drosophila simulans (fly)] (CP003883)

Wolbachia [Bactericera cockerelli (psyllid)] (EF372596)

SV7 Wolbachia_ii [Diaphorina cf. continua (psyllid)] (TAAA01000008)

SV5 Wolbachia_i [Diaphorina citri/lycii (psyllid)] (TAAA01000005) 

57

87

72

82

54

79

97

99

Wolbachia <A> [Drosophila simulans (fly)] (CP001391)

Wolbachia <A> [Drosophila melanogaster (fly)] (EU096232)
84

94

0.05

(=GU563890)

(=KM267305)

Fig. 5 A maximum likelihood
phylogram of Wolbachia. A total
of 402 unambiguously aligned
nucleotide sites of 16S rRNA
genes were subjected to the
analysis. On each branch,
bootstrap support values over
50% are shown. Host organisms
are shown in brackets. The
sequence from this study is shown
in bold. DDBJ/EMBL/GenBank
accession numbers for sequences
are provided in parenthesis.
Supergroups ofWolbachia are
shown in angle brackets. The
scale bar represents nucleotide
substitutions per position.
Liberibacter was used as an
outgroup
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(Triozidae) in the USA (KM267305) [109], the whiteflies
(Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae)
Bemisia tabaci (MG977008) and Bemisia tuberculata
(MG977007) in Brazil, the aphid Cinara cedri in Israel
(JN384060) [108], the planthopper Nilaparvata lugens in
China (KX280764), the leafhoppers (Hemiptera:
Auchenorrhyncha: Cicadellidae) Homalodisca coagulata in
the USA (AF501664) [110] and Hishimonoides sellatiformis
in Japan (AB073729) [111], the spittlebugs (Hemiptera:
Auchenorrhyncha: Aphrophoridae) Philaenus maghresignus
in Spain (AB772263) and Aphrophora quadrinotata in the
USA (AB772260) [112], the grasshoppers (Orthoptera:
Acrididae) Chorthippus parallelus in the Pyrenees
(FJ438533) [113] and Stenobothrus lineatus in the UK
(EU727131) [114], the mosquito (Diptera: Culicidae) Aedes
fluviatilis in Brazil (GQ981315) [115], and the weevil
(Coleoptera: Curculionidae) Naupactus cervinus in Brazil
(GQ402143) [116]. SV10 (Wolbachia_iii), which was derived
from 7.2% of denoised D. lycii reads (Table S1), was 99.8%
identical to the sequence of Wolbachia detected in various
arthropod hosts including the psyllid Mycopsylla fici
(Homotomidae) in Austra l ia (KT273277) . SV12
(Wolbachia_iv), which was derived from 1.1% of denoised
D. citri reads (Table S1), was 100% identical to the sequence
of Wolbachia in D. citri in the USA (EF433793) [117] and
Bemisia tabaci in the Philippines (MK157177), Bangladesh
(MH370786), Indonesia (KM404233-KM404238), India
(KM404186, KM404191, KM404193), Japan (AB981359),
China (AY850932, KF454756), and Australia (KF454754).

Wolbachia are rickettsial bacteria widely distributed among
various clades of arthropods and nematodes [58–60], and the
strains are currently classified into supergroups A–Q [118].
Supergroups A and B are monophyletic and are the most
common supergroups that infect arthropods, while super-
groups C and D infect nematodes. Supergroups E–Q infect a
variety of hosts including nematodes, springtails, termites,
fleas, aphids, and mites [60]. The molecular phylogenetic
analysis in the present study placed SV5, SV7, SV10, and
SV12 from Diaphorina spp. in the robustly supported clade
of Wolbachia supergroup B (Fig. 5).

Many Wolbachia strains manipulate the reproduction of
arthropod hosts through cytoplasmic incompatibility, femini-
zation, male killing, and parthenogenesis, to increase the fre-
quency of infected females in host populations [58–60]. With
this ability of promoting dissemination, Wolbachia are pro-
posed as promising agents to control insect pests by affecting
host traits or microbiomes, including pathogens therein [119,
120]. Because infectious rates ofWolbachia are high in world
populations of D. citri [19, 50–57], and interactions between
Wolbachia and other symbionts, including Carsonella,
Profftella, and Liberibacter, are suggested [53, 61–64], the
application of Wolbachia to control D. citri and/or HLB is
anticipated [52, 53, 55, 57, 62]. The present study suggests

rampant horizontal transmissions of Wolbachia among vari-
ous insect lineages including Diaphorina spp., implying that
artificial infection and/or removal ofWolbachia are feasible in
D. citri. Such techniques would facilitate exploitation of
Wolbachia as a tool to control D. citri and/or HLB.

Conclusion

The present study revealed that all three Diaphorina spp. ex-
amined harbor Profftella as well asCarsonella lineages, imply-
ing that Profftella is widespread within the genus Diaphorina.
Moreover, the analysis identified Ca. Liberibacter europaeus
and Diplorickettsia sp. in D. cf. continua and a total of four
Wolbachia supergroup B lineages in the three psyllid species.
These results provide deeper insights into the evolution of in-
teractions among insects, bacteria, and plants, which could
eventually help to better manage horticulture.
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