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Abstract
Energy-dense foods and overnutrition represent major starting points altering lipid metabolism, systemic inflammation and gut
microbiota. The aim of this work was to investigate the effects of a high-fat diet (HFD) over a period of 25 days on intestinal
microbiota and inflammation in zebrafish.Microbial composition of HFD-fed animals was analysed and compared to controls by
16S rRNA sequencing and quantitative PCR. The expression level on several genes related to inflammation was tested.
Furthermore, microscopic assessment of the intestine was performed in both conditions. The consumption of the HFD resulted
in microbial dysbiosis, characterised by an increase in the relative abundance of the phylum Bacteroidetes. Moreover, an
emerging intestinal inflammation via NF-κβ activation was confirmed by the overexpression of several genes related to signal-
ling receptors, antimicrobial metabolism and the inflammatory cascade. The intestinal barrier was also damaged, with an increase
of goblet cell mucin production. This is the first study performed in zebrafish which suggests that the consumption of a diet
enriched with 10% fat changes the intestinal microbial community composition, which was correlated with low-grade
inflammation.
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Introduction

Overweight and obesity are defined as abnormal or excessive
fat accumulation and a low-grade systemic inflammatory tone
in the presence of a positive energy balance, representing a

major risk factor for a number of chronic diseases in-
cluding cancer, cardiovascular diseases, diabetes and pre-
mature mortality [1]. The consumption of a high-fat diet
(HFD) is one of the main factors contributing to the
development of obesity [2]. Human and animal studies
have shown that both HFD and obesity are associated
with changes in the gut microbiota, reducing the abun-
dance and diversity of microorganisms [3, 4] and
impacting both immunological and metabolic functions
of the host [5, 6]. To date, studies performed in zebrafish
describe microbial community changes or inflammation
developed by the consumption of a high-fat, high-protein
diet [7–9] or a high-cholesterol diet (HCD) [10].

Studies performed in rodents have shown that the
prolonged exposure to a high-fat diet (HFD) can alter the
intestinal microbiota and perturb immune homeostasis, induc-
ing intestinal inflammation [11]. These alterations lead to the
activation of an innate immunity-mediated chronic low-grade
inflammation known as meta-inflammation (metabolically
triggered inflammation) [12], suspected to be chronically ac-
tivated and modulated by pro-inflammatory cytokines. These
molecules are likely to play a key role in metabolic disease
pathogenesis which develops locally, but becomes systemic
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through the release of numerous pro-inflammatory mediators
into the blood stream [13].

Diet is an important modulator of the intestinal microbiota
in humans and other animals [2, 14, 15] and associated with
impairments in epithelial integrity and barrier function [16].
The intestinal mucosa is the first barrier where fat is absorbed
and metabolised and might therefore be involved in responses
triggered by dietary lipids [10]. Both resident antigen-
presenting cells and intestinal mucosal epithelial cells are
equipped with pattern recognition receptors (PRR), such as
toll-like receptors (TLR) and NOD-like receptors (NLR).
They detect pathogen-associated molecular patterns
(PAMPs), for instance lipopolysaccharides (LPS), flagellin
or peptidoglycans [17], and protect the organism from harmful
pathogens, thereby promoting repair, regeneration and im-
mune homeostasis of the intestine [18]. Recent findings have
demonstrated that fatty acids and cholesterol are able to attach
to those receptors, leading to inflammation [19] via stimulat-
ing inflammatory-signalling cascades, such as the IκBα
kinase/nuclear factor-KB (IKK/NF-κβ), the endoplasmic re-
ticulum (ER), the stress-induced unfolded protein response
(UPR) and the NOD-l ike receptor P3 (NLRP3)
inflammasome pathway [20].

The zebrafish (Danio rerio) has an increasing recognition
as an excellent animal model for studying human metabolic or
inflammatory diseases due to its similarity to humans in terms
of organs and genomic content, its highly conserved biochem-
ical and physiological pathways and the availability of a com-
plete genome sequence. Despite the differences between the
zebrafish and mammal microbiota composition, dominated by
Proteobacteria in zebrafish and by Firmicutes and
Bacteroidetes in mice and humans, the responses to microbial
colonisation are similar [21]. The microbiota also play a cru-
cial role in immunity and host response to pathogens in
zebrafish [22–24].

Moreover, pathways regulating microbial recognition and
activation of the innate immune response are also greatly con-
served [25]. In addition, zebrafish maintenance and manipu-
lation are cheaper than in rodent models [26–28].

In the present work, we described for the first time the
correlation between intestinal microbiota dysbiosis and in-
flammation in zebrafish, induced by the consumption of a
high-fat diet over the period of 25 days.

Materials and Methods

Zebrafish Husbandry and Experimental Diets

Zebrafish embryos were obtained from wild-type adult
zebrafish (D. rerio, Hamilton 1822) bred in the AZTI
Zebrafish Facility (REGA number ES489010006105; Derio,
Spain), following standard conditions. The fish were

maintained at 27 °C in 60-L tanks with aerated freshwater,
according to standard protocols [29]. They were fed daily with
a pellet-formulated diet (Gemma Micro 300; Skretting) and
reared on a 12-h light/12-h dark cycle. Zebrafish embryos
were collected directly from the breeding tanks immediately
after fertilisation and transferred to 2-L fish tanks. At 5 days
post-fertilisation (dpf), larvae were equally separated into two
tanks and subjected to the control and the high-fat diet (HFD).
Both were maintained in 500 mL of isowater (CaCl2
294 mg L−1, MgSO4 123 mg L−1, NaHCO3 64.7 mg L−1,
LCl 5.7 mg L−1) at 27 °C for 1 month (30 dpf).
Concentrations of nitrate, nitrite and ammonium were tested
weekly (data not shown). All experimental procedures were
approved by the regional animal welfare body (NEIKER-
OEBA-AZTI14–005).

The control diet consisted of a commercial diet for zebrafish
larvae (ZF Biolabs), prepared in Milli-Q water (1 g in 100 mL
water) [30] and autoclaved (Supplementarymaterial, Table 1). The
HFD consisted of the autoclaved control diet supplemented with
10% (w/w) of cocoa butter to enrich the fat content [31]. The cocoa
butter wasmelted and added to the liquid control diet previously to
the sterilisation. This ingredient was concretely chosen for fat en-
richment because is composed of saturated fatty acids.Dietary lipid
profiles are compiled in supplementary material, Table 2).
Zebrafish larvae were fed three times per day during the experi-
mental period, increasing the amount of food over time to facilitate
normal zebrafish development [32]. At 30 min after feeding, the
remaining food was removed. Additionally, at the end of the day,
half of the medium was replaced by fresh isowater.

Bacterial DNA Extraction and Quantification

After 30 dpf, five control larvae and five HFD larvae were im-
mersed in a bath of sterile 0.01% Tween20 (Merck). The con-
tainer was stirred for few seconds to ensure that the solution
reached all the larvae surface and subsequently in two consecu-
tive baths of sterile isowater in order to remove any bacteria from
the skin [33]. Then, each larva was placed in a sterile Eppendorf
vial and immediately frozen in liquid nitrogen. Samples were
stored at − 80 °C until further use. Genomic DNAwas extracted
from frozen samples using a QIAamp DNA Mini Kit (Qiagen
LTD, West Sussex, UK), following the manufacturer’s instruc-
tions. The DNA concentration and purity were analysed using a
Nanodrop (Thermo), measuring the absorbance at 260 nm and
theA260/A280 ratio, respectively. This experimentwas conduct-
ed once (n = 10).

Analysis of the Microbial Community Composition

Characterisation of the microbial community composition
was performed on an Illumina Miseq Platform by sequencing
the V3-V4 16S rRNA region, using the primers S-D-Bact-
0341-b-S-17 and S-D-Bact-0785-a-A-21 [34]. Primer
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sequences were removed with Trimmomatic and paired reads
were merged using Flash [35]. The rest of the bioinformatics
analysis was performed using the Mothur platform [36]
(1.37.2). The merged reads were quality-trimmed (with a min-
imum Phred average quality score of 35 over a 50 bp window)
and aligned against a reference SILVA alignment. The
resulting sequences were denoised by a pre-clustering method
allowing one mismatch [37], as recommended previously
[38], and Uchime was used to remove chimeras. Reads were
clustered at the genetic distance cut-offs 0.01 and 0.03 substi-
tution per nucleotide for OTU (operational taxonomic unit)
construction, using the average linkage method. The Wang
[39] approach was used for the taxonomic assignment of the
OTUs by classification with the SILVA taxonomy (version
128). Furthermore, the total number of bacteria per sample
was quantified by qPCR, as previously described by [40].

All sequences from this study are available from the
European Nucleotide Archive (ENA) (PRJEB23882).

Gene Expression Analysis by Real-Time PCR

To study gene expression levels, groups of 20 larvae were
sampled at 30 dpf. Three replicates per diet were
analysed. The gene expression was conducted in two in-
dependent experiments (n = 240). At the end of the exper-
imental period, zebrafish larvae were immediately frozen
in liquid nitrogen and stored at − 80°C until being proc-
essed. Total RNA was extracted using TRIzol Reagent
(Invitrogen) according to the manufacturer’s instructions.
The quantity and quality of RNA samples were deter-
mined by capillary electrophoresis, using an Agilent
2100 Bioanalyzer (Agilent Technologies); only RNA sam-
ples with an RNA integrity number (RIN) of at least 8.5
were used [41].

A reverse transcription reaction was performed with the
Taqman Reverse Transcription Kit (Applied Biosystems),
using synthesised cDNAs from the RNA samples containing
20 ng of RNA per assay. The mixture was incubated at 25 °C
for 10 min and at 48 °C for 30 min, and the enzyme was
inactivated at 95 °C for 10min. Changes in mRNA expression
of the genes related to the innate immune system (ASC,
CASP1A, IL1, IL1β, IL22 TNF, NFKB and MyD88), host-
microbe interactions (TLR4, TLR5, TLR2, MMP9, MPO,
NOD1and Defensin 1) and metabolic activity (iap) were mon-
itored by real-time PCR (qPCR), using β-actin (ACT) and
elongation factor 1 (EF1) as reference genes to normalise
the results. The primer sequences are listed in the
Supplementary material, Table 2. Quantitative PCR was car-
ried out with a Light Cycler 480 sequence detection system
(Roche Diagnostics). Each reaction was performed in a 10 μL
solution containing 300 nM primers, 5 μL 2× Brilliant III
SYBR Green qPCR Master Mix (Agilent) and 10 ng of
cDNA template, as previously described [42]. The qPCR

efficiency was maintained between 90 and 110%. RNA ex-
pression levels were calculated by the 2-DDCt method [43].

Evaluation of Intestinal Mucus Secretion
and Intestinal Track Histology

Intestinal mucus secretion was visualised with a Nikon
SMZ1000 stereomicroscope, staining whole larvae with
alcian blue as previously described [44]. Briefly, at 30 dpf,
five larvae per treatment were analysed and processed with
BColour Deconvolution^ plug of the ImageJ software v1.47
(National Institutes of Health, NIH) to obtain the staining area
(mm2) [45]. The alcian blue evaluation was conducted in two
independent experiments (n = 20).

In addition, five larvae of each treatment were fixed
in 10% (v/v) neutral buffered formalin, dehydrated and
paraffin-embedded. Subsequently, 4-μm sections were
stained with haematoxylin and eosin as well as with
alcian blue (n = 10). Slides were analysed under a mi-
croscope by a blind pathologist. Histological damage
was calculated using the following criteria: For muco-
polysaccharide secretion, every goblet cell per intestinal
crest was counted. Mucosal architecture and cellular in-
filtration were scored as follows: normal, moderate or
extensive damage, respectively 0, 1 or 2; and normal,
moderate and transmural infiltration, respectively, 0, 1
or 2. The scores for the last two criteria were then
summed with a maximum possible score of 4, as previ-
ously described [46, 47].

Statistics

The p values were calculated with a t test, using the software
package Statgraphics v16.1.17 (StatPoint Technologies, Inc.).
For taxa comparisons non-parametric Kolmogorov-Smirnov
test was used. All p values were adjusted via Benjamini
Hochberg correction [48]. A p value < 0.05 was considered
statistically significant. Alpha diversity measures were calcu-
lated in Mothur and R (3.4.0): number of observed species
(SOBS), species richness (Chao1), community evenness
(Simpson’s evenness) and diversity (Shannon). Beta diversity
was analysed from a Bray Curtis distance matrix in a three-
dimensional non-multimetric scaling plot (NMDS).
Differences between treatments were determined with
AMOVA (Mothur). Comparisons at different taxonomical
levels were compared using the Kolmogorov-Smirnov test.
Discriminatory analysis between treatments at the OTU level
was performed with the LEfSe command implemented in
Mothur. Spearman correlation among genes, phylotypes and
goblet cell counts was accomplished using the Corrplot and
Hmisc R packages.
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Results

The Consumption of a High-Fat Diet Affects Intestinal
Microbial Composition

To evaluate the effect of the diet on zebrafish microbiota, the
microbial community composition of larvae fed each experi-
mental diet was analysed and described by metabarcoding at
30 days post-fertilisation (dpf). Compared to the control sam-
ples, HFD did not affect the microbial community alpha-di-
versity, calculated by different diversity indices such as com-
munity richness (measured by observed OTUs (SOBS) and
Chao1 (Chao)) (Fig. 1a). Community evenness and diversity,
tested by Simpson’s evenness and Shannon indices, were not
affected by the HFD. Beta diversity analysis revealed that the
overall composition of the microbial community did not show
significant differences due to the HFD, as control and HFD
samples were clustered together in the NMDS (AMOVA test,
p = 0.31; Fig. 1b).

However, there were significant changes in community
phylotypes. Overall, 31 phyla were characterised in both diet
conditions, of which Proteobacteria was the most abundant
one (59 and 66% of the sequences in control and HFD groups,
respectively). However, Bacteroidetes were significantly

increased (p < 0.01) in HFD samples (from 2 to 16% of the
total sequences; Fig. 2a, b). The increase of Bacteroidetes due
to the HFD was reflected at the family level in the enrichment
of the Cytophagaceae family (p < 0.01), Flectobacillus, the
NS11-12 marine group (p < 0.01) and the genus Runella
(p < 0.05; Fig. 2c). Furthermore, a tendency to increase in
the Proteobacteria phylum was observed. In contrast,
Firmicutes and Actinobacteria tended to decrease. Moreover,
the number of total bacteria from the same larvae extracted
DNAwas quantified by qPCR, showing that the consumption
of a HFD over the period of 25 days did not significantly
modify the amount of total bacteria (p = 0.60; Fig. 1c).

In addition, Linear Discriminant Analysis (LDA) effect
size (LEfSe) was used to identify microbial OTUs that dif-
fered significantly between control and HFD groups. Twenty-
one OTUs were significantly enriched or decreased in HFD
samples. The OTUs affiliated to Flectobacillus, Runella,
Flavobacterium and the NS11-12 marine group ,
Bacteroidetes phylotypes and to Acidovorax, Rhizobiales
and Acinetobacter, Proteobacteria phylotypes, increased in
HFD samples. In turn, OTUs affiliated to Proteobacteria,
Rhodobacteraceae, Meganema and Rhizobiales phylotypes,
Actinobacteria, Mycobacterium phylotype, and to
Firmicutes, Finegoldia phylotype, were depleted (Fig. 3).

Fig. 1 a Estimates of alpha-diversity represented in boxplots. b Non-
metric multidimensional scaling plot (using Bray Curtis dissimilarity) of
Control and HFD samples. Lower stress = 0.115; R2 = 0.894; p = 0.317,
calculated via the AMOVA test. c Total number of bacteria (log 16S

rRNA gene copies/larva) in control and HFD zebrafish larvae (n = 10).
Results represent the mean values of each condition in the vertical bars.
The error bars indicate the standard error of the mean
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The OTU 16, related to the genus Flectobacillus, a member of
the phylum Bacteroidetes, was the most enriched OTU in
HFD samples.

The Consumption of a High-Fat Diet Induces
the Overexpression of Immunity-Related Genes

We assessed the expression of 16 genes related to the
zebrafish immune system by qPCR at 30 dpf to test the effect
of the HFD on the immune system. Specifically, NOD1 and

TLR2,TLR4 andTLR5 are host receptors involved in the first
contact and interaction with microbiota; ASC and CASP1a
are essential parts of the NPLR3 inflammasome; NFKB,
IL10, IL22 and MyD88 take part in cellular signalling and
the triggering of inflammation; IL1훽 and TNF are cytokines
associated to the inflammatory cascade; finally, iap,
Defensin 1,MMP9 andMPO are antimicrobial peptides se-
creted by the host in response to microbial attacks.

Compared with the control, the expression levels of 12 of
the genes studied were markedly upregulated in HFD
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samples. The HFD consumption induced an immune response
mediated by IL1β activation by the canonical NF-κβ pathway,
as MyD88, NFKB and finally IL1β were significantly upreg-
ulated in HFD samples. Conversely, the NLRP3
inflammasome was not affected in HFD-fed animals, as
CASPa and ASC gene expressions did not change.
Moreover, TNF and IL22, pro-inflammatory cytokines, were
also enhanced in HFD samples. Changes in the microbial
composition, induced by HFD consumption, also increased
the expression of TRL2, TLR5 and NOD1 genes, receptors
implicated in host-microbe interactions, and iap, MPO,
MMP9 and Defensin 1, genes related to the secretion of anti-
microbial peptides as a defence strategy (Fig. 4).

Alcian Blue Staining and Histology Confirm
an Emerging Inflammation in the Gut Induced
by High-Fat Diet Consumption

Alcian blue staining of whole-mount larvae at 3 dpf revealed a
statistically significant increase in mucus production due to
HFD consumption (p < 0.05; Fig. 5a, b). Furthermore, to re-
inforce these observations, alcian blue was also used to stain
histological preparations of larvae intestines in order to ob-
serve mucus-producing goblet cells. A statistically significant
increase in goblet cells was observed in HFD-fed animals at
50 μm, based on histological preparations (p < 0.01; Fig. 5c),
counting an average of 8.6 compared to 1.8 goblet cells per
crest in HFD and control animals, respectively (Fig. 5d, e).
Moreover, a moderate loss of mucosal architecture was found

in the intestinal epithelium of two out of five HFD-fed larvae
with a score of 1 (Fig. 5h), observing apical brush border cell
fusion (Fig. 5f, g). We observed no infiltration of inflamma-
tory cells, irrespective of the diet.

The High-Fat Diet-Induced Microbiota Changes Are
Correlated to Inflammation

We found a positive correlation among microbial groups,
which shifted between diets, gene expression and goblet cell
count (Fig. 6). The major correlations were identified among
TNF, MyD88, IL1β genes and goblet cell count with
Bacteroidetes. The increase in TNF and MyD88 gene expres-
sion levels was positively correlated to the enrichment of
Bacteroidetes (genus Cytophaga and OTUs affiliated to
Flectobacillus and Flavobacterium (16, 20, 408, 247 and
449); R = .66–0.79; p < 0.05) and Proteobacteria (OTUs 40,
46 and 64 affiliated to Acinetobacter, Rhodobacter and
Rhizobiales; R = 0.65–0.88; p < 0.05). The upregulation of
the NFKB gene was correlated to the increase of
Bacteroidetes-affiliated taxa, the genus Cytophaga,
Flectobacillus OTU 247 and Bacteroidetes unclassified
OTU 147. The most correlated gene, IL1β, was strongly as-
sociated to the Bacteroidetes genera Flectobacillus, Emitricia,
Runella, Cytophagaceae unclassified,UKL 13.3, the NS11-12
marine group and the associated OTUs 16, 449, 114, 164, 480
and 147 (R = 0.70–0.93; p < 0.05). In addition, the overex-
pression of IL1β was also correlated to the Proteobacteria-
affiliated OTU 40 (R = 0.40–0.66; p < 0.05). The OTU 24,

Fig. 3 Linear Discriminant Analysis (LDA) effect size (LEfSe). OTUs and associatedOTU taxonomy significantly enriched in HFD are plotted in black,
whereas grey bars correspond to OTUs enriched in the control samples. Differences were considered statistically significant at p < 0.05
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related to Acinetobacter, was the most correlated OTU in the
experiment, with the major correlation coefficients being re-
lated to the genes IL22,CASPA, IL10 andASC (R = 0.90–0.96;
p < 0.05).

Furthermore, the increase in goblet cells in HFD samples
was significantly positively related with the enrichment of
Bacteroidetes (Runella, Pseudarcicella and the NS11-12 ma-
rine group, OTUs 20, 114 and 164; R = 0.65–0.93; p < 0.05)
and to Proteobacteria (OTUs 40, 46, 64 and 56; R = 0.65–
0.81; p < 0.05). Cellular receptors TLR 2, 5 and NOD1 were
positively correlated to Cytophagaceae unclassified (TLR5)
and Flectobacillus genus, and OTUs 24 (NOD1 and TLR2)
and 247 (TLR2 and TLR5) related to Acinetobacter and
Flectobacillus (R = 0.58–0.93; p < 0.05). No significant neg-
ative correlations were found. Significant correlations are rep-
resented in Fig. 6.

Discussion

In the present study, we report that the consumption of a 10%
fat diet, enriched with cocoa butter (HFD), induces intestinal
microbiota dysbiosis and inflammation in zebrafish larvae.
Cocoa butter-enriched diet, which is mainly composed by

saturated fatty acids, has been described to induce body fat
accumulation in zebrafish [31]. In addition, there is a strong
evidence supporting that an overconsumption of nutrients ini-
tiates and triggers meta-inflammation, altering metabolic ho-
meostasis [49]. Our results are in accordance with studies
carried out in rodent models which showed that HFD con-
sumption leads to intestinal inflammation, related to microbial
dysbiosis [4]. Up to date, diet studies performed in zebrafish
have focused on the effect of diets on other physiological
aspects [8, 50]. Furthermore, most of these experiments were
performed in adults [31].

In this work, we used zebrafish larvae to study the effects of
a HFD on the intestinal microbiota and inflammation, taking
into consideration that the larval adaptive immune system is
not fully mature until 4–6 weeks post-fertilisation, and there-
fore does not interfere with the innate [51]; in addition, the
transparency of the larvae allows whole-mount microscopy.
The zebrafish anterior-mid and posterior gut segments are
functional analogues of the mammalian small and large intes-
tines. In addition, most of the differentiated epithelial cell
types found in mammals and the architectural organisation
of the intestines are also conserved [52].

As previously shown, the gut microbiota can be directly or
indirectly affected through diet in humans [53], mice [54] and
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zebrafish [8], which can in turn influence host physiology
[55]. In this report, the consumption of a high-fat diet did
not affect the total number of bacterial copies and the alpha
and beta community diversity of 30 dpf zebrafish larvae, as
previously described in reports studying the relationship be-
tween the intestinal microbiota and a high-fat diet or
chemically-induced inflammation [8, 10, 56]. Although
Wong et al. [8] did not report alpha diversity changes with
diets, they detected a significant dietary fat effect on the beta
diversity at 35 and 75 dpf when HFD-fed larvae (28% fat)

were compared to larvae fed a low-fat diet (10% fat). In this
work, the enrichment of the diet with 10% of cocoa butter did
not affect the diversity of the community. However, the mi-
crobial composition changed at different taxonomic levels,
which correlatedwith an acute inflammation. Thus, nutritional
intervention from an early stage could lead to a difference in
the gut microbiota assembly, with potential consequences on
host physiology in the adult stage [8]. The phylum
Bacteroidetes was increased via the HFD. At the OTU level,
the majority of the OTUs significantly enriched in HFD

Fig. 5 a and b Alcian blue-
stained control larva and HFD
larva. Arrows indicate goblet cells
stained blue. c Percentage of
alcian blue-stained area in control
and HFD larvae, represented as
the mean of three replicates; error
bars indicate the standard error of
the mean (n = 20). Differences
were considered statistically
significant at p < 0.05 (*). d and e
Goblet cells stained with alcian
blue in control and HFD intestine
histological preparations at
50 μm. Arrows show goblet cells.
f and gHistological damage in the
HFD zebrafish intestine,
haematoxylin- and eosin-stained
at 50 μm. Arrows show
enterocyte degeneration points. h
Histological assessment of
intestinal damage. Values
represent means ± SEM, with n
being the number of larvae (n =
10). Differences were considered
statistically significant at p < 0.01
(**)
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samples were affiliated to Bacteroidetes of the genera
Flectobacillus, Flavobacterium and Runella. Some other in-
creased OTUs were members of Proteobacteria, namely of the
genera Acinetobacter, Rhizobiales, Acidovorax and
Rhodobacter, the most abundant phyla in all zebrafish devel-
opmental stages [7]. Proteobacteria and Firmicutes tended to
increase and reduce, respectively, as described by Qi He et al.
[56]. They also related the overrepresentation of
Proteobacteria and the lack of Firmicutes to the upregulation
of TNF and, finally, to intestinal inflammation induced by
chemicals [56]. As expected, the diet-induced inflammation
only slightly affected the microbiota compared to chemicals.

Obesity-induced inflammatory mechanisms in human in-
volve the activation of genes encoding for cytokines,
chemokines and other immune inflammatory mediators
through the activated transcription factors NFKB and
inflammasome, resulting in the proteolytic conversion of
pro-IL1β to activated IL1β [57]. Zebrafish possess both in-
nate and adaptive immunity. In addition, key mediator-
signalling proteins and cytokine [58] as well as the major
mammalian blood cell lineages [25] have been identified in
the zebrafish. The canonical NF-κβ pathway and NLRP3
inflammasome are also conserved between zebrafish and
mammals [10, 59].

In the present study, we observed the activation of the IL1β
gene by the canonical NF-κβ pathway, suggesting that in
zebrafish larvae, IL1βmight be activated by the consumption
of HFD at least by this pathway. This is in agreement with
Landgraf et al. [6], who observed HFD-induced metabolic
alterations in adult zebrafish (e.g. hyperglycaemia and ectopic

lipid accumulation in the liver and a metabolically unhealthy
adipose tissue phenotype with adipocyte hypertrophy), ac-
companied by changes in the expression of marker genes such
as IL1β [6]. It would be very interesting to corroborate this
information with inflammatory metabolite measures. Our re-
sults suggest that HFD consumption induced changes in the
relative abundance of Bacteroidetes. Specifically, these chang-
es enriched the genera Flectobacillus, Cytophaga and
Runella, which may activate an inflammatory response medi-
ated by IL1β via the NF-κβ pathway. Furthermore, shifts in
Proteobacteria in HFD samples were correlated to the overex-
pression of the TNF gene, as previously described in a chem-
ically induced inflammation [56]. The activation of IL1β via
the NPLR3 inflammasome was not upregulated. However,
there was a strong correlation between Proteobacteria OTU
24, affiliated with Acinetobacter, ASC and CASP1a; NPLR3
components needed to activate this pathway. A major increase
of Proteobacteria might correlate with the activation of the
inflammasome.

In addition, to initiate the inflammation in human andmice,
the binding to cellular receptors of endogenous danger-
associated molecular patterns (DAMPs) is required [60].
Orthologs of mammalian TLR and NLR have been identified
in zebrafish [58]. Microbial signals such as LPS and lipid
compounds are able to bind to these receptors, inducing ex-
pression [61, 62]. Dietary fatty acids affect the development of
many human chronic diseases, in part mediated through the
modulation of TLR [63]. Dietary saturated fatty acids such as
palmitate, stearate and oleate, the main components of cocoa
butter, used to enrich the diet in the current study (HFD), can

Fig. 6 Correlation plot showing
Spearman’s correlations between
gene expression fold changes,
goblet cell count and significantly
different genera within
Bacteroidetes and LEfSe; OTUs
are represented by coloured dots.
Positive correlations are in blue.
Only significant correlations are
represented (p < 0.05)
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activate TLR2 and TLR4, stimulating the expression of IL1β
via NF-κβ [64]. As a result, other molecules involved in the
inflammatory process, such asMyD88 orMMP9 [65], are also
activated, as observed in our experiment. These interactions
are well described in diabetes [66] or obesity [64] in human. In
the present study, the genes TLR5, TLR2 and NOD1 were
overexpressed, correlating to the increase of Bacteroidetes
and Acinetobacter. Altogether, these results suggest that the
consumption of a high-fat diet activates the host immune re-
sponse via the NF-κβ pathway, initiated by cellular receptor
stimulation through changes in the microbial community.

The inflammation process also triggers the secretion of a
vast number of molecules by the host, which are required for
the maintenance of the intestinal barrier function, a viscoelas-
tic protective layer composed of mucins secreted by goblet
cells [67], defensins (including Defensin 1) [68, 69], matrix
metalloproteinases (MMPs) [70] and enzymes such as iap
[71]. The increase in antimicrobial peptides (AMP) (MMP9,
MPO, iap andDefensin 1) gene expression levels, as occurred
in chemically and microbiologically induced intestinal inflam-
mation [23, 69, 72], together with the increase in mucus pro-
duction by goblet cells, correlated with the increase in
Bacteroidetes and Proteobacteria. Il-22, a cytokine with pro-
tective effect, regulates the mucus production by goblet cells
in mice [73]. The gene encoding for this cytokine was the
most upregulated in the experiment. These results suggest that
the host defence mechanisms are active and regulate the ex-
tracellular matrix, protecting the epithelium from the inflam-
mation induced by HFD consumption. In contrast, intestinal
tissue damage was not observed in histological preparations,
as reported by Falcinelli et al. [74]. Changes exerted by the
diet are not as aggressive as alterations induced by chemicals
or antibiotics [75], as a detectable injury in the intestinal bar-
rier has not yet developed.

Host physiological and morphological changes during
development have significant effects on microbiota [8].
We suggest that the maturation of the innate immune sys-
tem at 4–5 weeks post-fertilisation, together with the mi-
crobial colonisation and evolution in zebrafish, might be
related to some of these changes and powerfully affected
by the diet. Therefore, the use of this diet-induced inflam-
mation larvae model might be highly recommended to un-
derstand how dietary compounds interact with the micro-
biota and the host innate immune system, with the aim to
mitigate the inflammation process. In the present work, we
have achieved a dietary-induced inflammatory state, corre-
lated to microbial changes, in 30 days, whereas dietary
experiments in adults generally last 6–8 weeks [31, 76].
In contrast, it is of tough to remove and analyse each organ
due to the size of the larvae, being complex to separate
local from global effects. Performing the experiment with
zebrafish adults might solve this limitation. Nevertheless,
the easy and cheap maintenance, the reproducibility and

the high number of individuals achieved per spawning con-
fer the high potential of the larvae model.

In conclusion, the present study supports the assumption
that in zebrafish, the consumption of a HFD over the period of
1 month leads to microbiota dysbiosis and inflammation. We
suggest that the fatty acids present in a 10% fat diet, enriched
with cocoa butter, could modify the intestinal ecosystem,
changing the microbial composition and favouring the in-
crease of Bacteroidetes and Proteobacteria. These bacterial
changes activated the innate immune system, inducing an in-
flammation via NF-κβ activation and the secretion of protec-
tive molecules by the host. We therefore demonstrated that
zebrafish larvae are a reproducible and adequate model to test
nutritional interventions in early stages; this model allows us
to study the effects of a particular diet on microbiota compo-
sition and the innate immune system.
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