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Abstract Blood feeding red poultry mites (RPM) serve as
vectors of pathogenic bacteria and viruses among vertebrate
hosts including wild birds, poultry hens, mammals, and
humans. The microbiome of RPM has not yet been studied
by high-throughput sequencing. RPM eggs, larvae, and
engorged adult/nymph samples obtained in four poultry hous-
es in Czechia were used for microbiome analyses by Illumina
amplicon sequencing of the 16S ribosomal RNA (rRNA) gene
V4 region. A laboratory RPM population was used as positive
control for transcriptome analysis by pyrosequencing with
identification of sequences originating from bacteria. The
samples of engorged adult/nymph stages had 100-fold more
copies of 16S rRNA gene copies than the samples of eggs and
larvae. The microbiome composition showed differences
among the four poultry houses and among observed

developmental stadia. In the adults’ microbiome 10 OTUs
comprised 90 to 99% of all sequences. Bartonella-like bacte-
ria covered between 30 and 70% of sequences in RPM
microbiome and 25% bacterial sequences in transcriptome.
The phylogenetic analyses of 16S rRNA gene sequences re-
vealed two distinct groups of Bartonella-like bacteria forming
sister groups: (i) symbionts of ants; (ii) Bartonella genus.
Cardinium, Wolbachia, and Rickettsiella sp. were found in
the microbiomes of all tested stadia, while Spiroplasma
eriocheiris and Wolbachia were identified in the laboratory
RPM transcriptome. The microbiomes from eggs, larvae,
and engorged adults/nymphs differed. Bartonella-like symbi-
onts were found in all stadia and sampling sites.
Bartonella-like bacteria was the most diversified group within
the RPM microbiome. The presence of identified putative
pathogenic bacteria is relevant with respect to human and
animal health issues while the identification of symbiontic
bacteria can lead to new control methods targeting them to
destabilize the arthropod host.
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Introduction

The red poultry mite (RPM),Dermanyssus gallinae (De Geer,
1778, Acari: Mesostigmata), is a hematophagous ectoparasite
preferring bird hosts [1], but it can attack also mammals and
humans [2, 3]. In humans, the RPM causes the bites,
non-specific dermatitis connected with itching, and
pseudo-scabies [2, 3]. In poultry production, severe RPM in-
festations are associated with anemia, reduced growth, and
egg production losses, or even mortality increase of poultry
birds [1, 4]. The RPMs transmit different bacterial and viral
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pathogens; however, the mode of transmissions is not yet un-
derstood [4–7]. RPMs can act either as a passive vector of the
bacteria, (i.e., bacteria did not multiply inside the mites) or as a
true vector. The most important pathogenic bacteria isolated
from RPM include the following taxa: Pasteurella multocida,
Erysipelothrix rhusiopathiae, Salmonella spp., Listeria
monocytogenes, Coxiella burnetii and Spirochetes, and there
is suspicion of the possible transmission of Borrelia anserine
(as reviewed byMoro et al. [5], Sparagano et al. [4], Pritchard
et al. [1]). Aerococcus (Aerococcus viridans and Aerococcus
urinaequi) as the human pathogen [8] and P. multocida and
E. rhusiopathiae sequences were identified in RPMs from
poultry farms in France [7]. Furthermore, Mycobacterium
sp. has been detected by reverse-transcriptome PCR
(RT-PCR) in the RPMs [9]. Mycoplasma synoviae and
Mycoplasma gallisepticum were in RPMs from Japanese
poultry farms, but the mites used in that study were not surface
cleaned [10]. In canary birds, RPMs are a reservoir of
Chlamydia psittaci [11]. Apart from pathogenic bacteria, en-
dosymbionts represent important group of bacteria associated
to RPMs. Beside pathogenic bacteria, another important
group of bacteria in RPMs are endosymbionts. To date, the
symbionts identified in RPMs include Cardinium sp.,
Spiroplasma sp., Rickettsiella sp., Anistosticta sp., and
Schineria sp. [5, 12]. Although RPM is of bacterial transmis-
sion importance, a study describing the D. gallinae
microbiome is lacking.

Recent advance in technology, high-throughput sequenc-
ing (HTS) on Illumina platforms provide an opportunity to
study microbiomes from a complex view [13, 14]. Though
the previous studies showed differentiated bacterial commu-
nity in RPM, their weaknesses was the lack of the quantitative
or semi-quantitative advantages of real-time PCR analyses
and HTS. In this study, we focused on the following goals:
(i) to characterize the bacterial community associated to four
farm populations of RPM using 16S ribosomal RNA (rRNA)
genemetabarcoding, (ii) to identify and quantify specific path-
ogenic bacteria associated to RPM, (iii) and to ascertain the
mite symbiotic bacterial community, and (iv) to compare the
microbiome of different developmental stadia. Furthermore,
we compared the data to putative 454 pyrosequencing-based
bacterial transcriptome data set of the German laboratory
RPM population. We provide the first comprehensive analysis
of the RPM microbiome.

Materials and Methods

Origin of Mites and Collection

Four sampling sites at industrial poultry farms located in
Czechia were included to the study: Ustrasice (49° 20′ 19″
N, 14° 41′ 11″ E), RPMs collected in June 2015; Bantice

(48° 52′ 47″ N, 16° 10′ 40″ E), RPMs collected in
July 2015; Mirovice near Pisek (49° 30′ 55.99″ N, 14° 2′
8.95″ E), RPMs collected in February 2016 and Pohorelice
(48° 58′ N, 16° 31′ E) collected in February 2016. The mites
were collected manually (Ustrasice) or using Tube trap [15]
(Bantice, Mirovice and Pohorelice). The traps with collected
mites were moved to the laboratory and immediately proc-
essed. The mites were sampling as (i) engorged adults/
nymphs, (ii) larvae, and (iii) eggs. The reason for mite sepa-
ration was that neither eggs nor larvae contain any sucked
blood, which is suggested as one of the source of bacteria.
The samples were pooled from the traps for every site, i.e.,
each sample contained between 50 and 100 individuals or
eggs accurately counted and placed into sterile 1.5-mL
Eppendorf tubes. The list of 36 samples and sampled condi-
tions are provided in Supplementary Table S1. The mites for
analysis of 454 pyrosequencing transcriptome sequences orig-
inated from laboratory population maintained at the Institute
for Parasitology of the University of Veterinary Medicine
Hannover, Germany [16].

DNA Extraction

The mites or eggs in the samples were surface cleaned and
homogenized following the protocol described previously [17].
DNA was extracted from homogenates using tissue Genomic
DNA Mini Kit (Cat No. GT100, Geneaid, New Taipei City,
Taiwan) following the manufacturer’s protocol. The extracted
DNA was stored at −28 °C until analysis. The same samples
were used for all analyses with the exception of transcriptome.

PCR

To validate the prepared templates, PCR amplification of the
16S rRNA gene was performed with universal bacterial
primers [18] on all the samples used for analyses. To avoid
contamination, the master mix was made with ddH2O instead
of template DNA, which was used as negative control; the
positive control included DNA of Escherichia coli. The am-
plification and cloning were done according to protocol de-
scribed previously [17]. Further, the PCR amplicons were
pooled per stadium and sites and cloned according to the pre-
viously described protocol [19]. The selected clones were se-
quenced (Sanger sequencing) by Macrogen (http://www.
macrogen.com, Seoul, Korea). Sequences were assembled in
CodonCode Aligner 5.1.5 (CodonCode Corporation, Victoria
Centerville, MA, USA). Chimeric sequences were identified
usingMallard and Pintail software [20, 21]. After this step, we
obtained 131 sequences that were further processed in
UPARSE-USEARCH pipeline to operational taxonomic units
(OTUs) at 97% of similarity [22]. The representative se-
quences were assigned to bacterial taxa using the Ribosomal
database project (RDP) naive Bayesian rRNA classifier [23]

948 Hubert J. et al.

http://www.macrogen.com
http://www.macrogen.com


and compared with GenBank sequences using nucleotide
BLAST [24]. The taxon-specific primers were used to verify
the presence of selected taxa in the samples (Supplementary
Table S2), the PCR products of correct size were randomly
cloned and sequenced to verify primers specificity. The
obtained Bartonella-like and Rickettsiella-like sequnces of
16S rRNA gene were deposited in GenBank - Access
Numbers: MF086616-MF086655.

Phylogenetic Analyses

Partial 16S rRNA gene sequences were assembled with
CodonCode Aligner, version 1.5.2 (CodonCode Corporation,
Dedham, MA, USA) and assigned to bacterial taxonomy using
the Ribosomal database project naive Bayesian classifier [23].
The sequences were aligned using SILVA Incremental Aligner
v.1.2.11 [25]. The best-fit model of nucleotide substitution was
selected using jModelTest v.2.1.7 [26, 27] based on the AIC
criterion. General time-reversible models were suggested for
Bartonella-like (GTR + I + G, proportion of invariable
sites = 0.337, gamma shape = 0.393), and for Rickettsiella
sequence analysis (GTR + G, gamma shape = 0.342). The
phylogenies were inferred through Bayesian analysis with
PhyloBayes-MPI v.1.4e [28–30] and maximum-likelihood
analysis in PhyML v.3.0 [31]. The phylograms were finalized
using Figtree v.1.4.2 (http://tree.bio.ed.ac.uk/; [32]).

Illumina Amplicon Analyses

The identification of bacteria by Illumina amplicon sequencing
was based on 16S rRNA using CS1_515F and CS2_806R
primers targeting the V4 of 16S rRNA gene [33] and previous-
ly described conditions [34]. The master mix with ddH2O was
used as negative control. The products were sequenced at the
DNA Services Facility, Research Resources Center, University
of Illinois (Chicago, IL, USA) on MiSeq platform (Illumina,
San Diego, CA, USA) [35]. The forward and reverse se-
quences (2 × 250 bp) were aligned and processes using
UPARSE – USEARCH Pipeline according the standard oper-
ation procedure [22]. The operational taxonomic units OTUs
were described according to the Ribosomal database project,
training set no. 15 [36]. Then, the representative sequences for
each OTU were compared to those in GenBank using the
BLASTn [24]. Raw sequences of 16S rRNA gene are accessi-
ble through SRA study accession number SRP095486.

The shared file and standardization was done inMOTHUR
v.1.36.1 software [37] according to the MiSeq standard oper-
ation procedure (MiSeq SOP [38]. The data were standardized
by subsampling to 22,615 sequences and all further analyses
were done with standardized data set in MOTHUR and PAST
3.06 software [39]. The taxonomical features of the samples
were visualized by KRONA projection [40]. The inverse
Simpson diversity index was calculated in MOTHUR. The

tested variables described the effect of site and stadium popu-
lation on OTUs distribution. For the analyses of microbiome,
we applied protocol for analyzes of Tyrophagus putrescentiae
microbiome [41]. The tested variables included the stadium of
RPM and sampled sites. At first, the effect of the variables and
their interaction was tested by two-way permutational multi-
variate analyses of variance (PERMANOVA) using the Bray–
Curtis and Jaccard distance matrices in 1000 permutations in
PAST, followed by testing the factors individually in one-way
PERMANOVA. Redundancy Analysis (RDA) models based
on the same matrices as described above were constructed
using the Bvegan^ R package [42]. To visualize the coordi-
nates resulting from the best dbRDA models, triplots were
created. A heatmap depicting OTU abundance and clustering
in dendrograms was produced using the Bgplots^ R package
[43]. The OTU abundance data were logarithmically trans-
formed as suggested by Anderson et al. [44]. We prefer the
LOG2 transformation, which permits better visualization of
less abundant species. Venn diagrams were used to highlight
shared OTUs among eggs/larvae/engorged nymphs and adults
or among the poultry houses. We included only those OTUs to
the analyses, which were present in all three replicates per
treatment. The METASTATS analyze [45] was applied to de-
scribe the differences in the microbiome of adults, eggs, and
juveniles and among the adults from different samples sites. It
was calculated in MOTHUR using 100,000 permutations.

Quantitative PCR

The universal primers were used to quantify the numbers of
16S rRNA copies of bacteria in the samples. To avoid the
influence of chloroplast DNA to analyzes, we selected
Com1 and 769R primers for quantification of total bacteria
copies [46]. The specific primers for Cardinium and
Wolbachia were used (Supplementary Table S2).
Amplifications were conducted using a StepOnePlus™
Real-Time PCR System (Thermo Fisher Scientific,
Waltham, MA, USA). SYBR green (Bio-Rad Laboratories,
Hercules, CA, USA) was used as a double-stranded DNA
(dsDNA) binding dye. Baseline and threshold calculations
were performed with the StepOnePlus software version 2.3.
(Thermo Fisher Scientific). The amplification consisted of 40
cycles, including a denaturation of 30 s at 95 °C, annealing for
35 s at 54–60 °C (Supplementary Table S2), and elongation
for 45 s at 72 °C. Melting curves were recorded to ensure
qPCR specificity. The design included three samples per sta-
dium and poultry house and two technical replicates. The
qPCR standard was prepared as was described previously
[47]. DNA samples were diluted by 1/10. The resulting data
were standardized by recalculation per one mite or egg. The
data were log10-transformed and analyzed by the Kruskal–
Wallis nonparametric test, using Dunn potshot comparison
and a Bonferroni correction using XLSTAT 2015.
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Analysis of D. gallinae Transcriptome Sequences-Based
454 Pyrosequencing

Dermanyssus gallinae transcriptome sequences [16] obtained
from egg, juvenile as well as adult mite stages comprised
232,097 singleton reads, 35,788 isotigs, and 56 contigs. As
analyses in Schicht et al. [16] were conducted in 2013, all
sequences were reanalyzed and blasted again by Blast2GO
software suite [48] using the nr-data base of the NCBI to
discover bacteria sequences in the transcriptome data set.
BLASTn top hits species were verified for their bacterial ori-
gin by using uniprot (http://www.uniprot.org/) taxonomy
search.

Results

Identification of Bacteria by Conventional PCR
and Sanger Sequencing

Altogether 131 cloned sequences of 16S rRNA gene by uni-
versal primers formed 26 OTUs (see the Supplementary
Table S3) in the DNA samples of eggs, larvae, or adults/
nymphs of RPM. The following OTUs were identified: The
Actinobacteria sequences (S10) showing 99% of similarity
Tsukamurella paurometabola. Rhizobiales sequences formed
five OTUs with 94–98% similarity to Bartonella (S5, S13,
S15, S31, and S32). The Ricketsiella-like sequences formed
OTU of 94% similarity to Diplorickettsia massiliensis (S24).
Further, two OTUs (2 and 3) contained sequences of 93%
similarity toWolbachia and two Sphingobacteriales sequences
formed OTU (16) with 97% similarity to Candidatus
Cardinium GenBank Access. No. KC677579 from RPM
[49]. Although Cardinium (OTU16); Wolbachia (OTUs 2
and 3); and Bartonella sequences (OTUs 5, 13, and 15) were
detected among the clones from larvae, but not in the eggs,
their presence was confirmed by taxa specific primers
(Table S1).

Phylogenetic Analyses of Bartonella-like
and Rickettsiella-like Sequences

The phylogenetic analysis of 31 Bartonella-like sequences
obtained fromRPM using universal primers revealed two sep-
arate clusters (Fig. 1). The both clusters were located between
Bartonella tamiae and the rest of Bartonella altogether with
the cloned sequences from stinkbugs [50], ants [51–55], bees
[56] including Bartonella apis [57], Varroa mites [17],
astigmatid stored product mites [58–60], and the sequences
obtained from human skin [61]. The first group (A) of 14
clones from RPM formed sister groups to Bartonella symbi-
ont from the ants [51–55]. The second group (B, 17 clones)

formed sister cluster to the whole Bartonella genus with the
exception of B. tamiae.

The analyses of cloned sequences of Rickettsiella sp. from
universal primers indicated that the sequences were related to
Rickettsiella andDiploricketssia genera (Fig. S1). Nine cloned
sequences from RPM formed sister group to Candidatus
Rickettsiella viridis symbiont of pea aphids (Acyrthosiphon
pisum) [62, 63]. The sequences were closely related to those
obtained from oribatid mite Nanorchestes [64] and bacterium
from human skin [61]. For further description, we are using
term Rickettsiella-like and Bartonella-like symbionts.

Microbiome Description Based on Illumina Amplicon
Sequencing

Altogether 1,493,621 16S rRNA sequences of V4 region were
obtained from Illumina for four tested sites in Czechia
(Bantice, Mirovice, Pohorelice, and Ustrasice). The sequences
formed 225 OTUs at 3% of dissimilarity level. The Krona
projections were constructed for developmental stadia
(Fig. S3) and sampled sites for adults/nymphs (Fig. S4). The
list of identified OTUs is given in the Supplementary
Table S4.

Both parameters, numbers of OTUs and inverse Simpson
diversity index differed in the developmental stadia,
K2,32 = 11.488, P = 0.002 and K2,32 = 12.182, P = 0.001,
respectively. Both parameters were two times higher in the
eggs and larvae microbiome samples than in adults/nymphs
samples (Fig. S5).

The developmental stadium and site of sampling and their
interaction significantly influenced microbiome composition
as showed the Bray–Curtis and Jaccard matrices: two-way
PERMANOVA (Table 1). When the factors were tested sepa-
rately, both were significant (P < 0.001) in both matrices. The
Bofferoni-corrected P values indicated differences among the
sampling sites. The larvae microbiome did not differ from the
eggs, but eggs and larvae microbiomes were significantly dif-
ferent from engorged nymphs/adults. The dbRDA using

�Fig. 1 Phylogenetic analysis of Bartonella spp. cloned fromD. gallinae.
Phylogeny was inferred by Bayesian analysis employing the GTR model
with a proportion of invariable sites (+I) and a gamma distribution with
four rate categories (+G). The initial alignment consisted of 31 nearly full-
length sequences of the 16 rRNA gene from this study, and 507 reference
sequences available in the RDP database. These sequences came from 55
type strains representing the families Bartonellaceae and Brucellaceae,
and 452 related uncultured bacteria. Branch lengths correspond to mean
posterior estimates of evolutionary distances (scale bar, 0.05). Branch
labels indicate the Bayesian posterior probability and supporting
bootstrap value for selected branches from maximum-likelihood
analysis. The phylogram was rooted with Caulobacter mirabilis
sequence AJ227774 as an outgroup

b
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Bray–Curtis and Jaccard matrix (Fig. 2a, b) confirmed that
both site and developmental stadia had significant effect to

OTUs composition, i.e., site F = 9.55; P = 0.001 and
F = 6.53; P = 0.001; stadium F = 11.04; P = 0.001 and
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F = 6.75; P = 0.001 for Bray–Curtis and Jaccard matrix, re-
spectively. Based on dbRDA, the samples of engorged
nymphs and adults were separated from samples of larvae
and juveniles. The dbRDA analysis separated OTUs to the
following groups: (i) adults associated: Bartonella-like
(OTUs 2, 72, 79); Tsukamurella strandjordii (OTU 6); and
Kocuria rhizophila (OTU 9); (ii) associated to Ustrasice site:
Rickettsiella-like (OTU 3) and Pantoea vagans (OTU 12) and
(iii) eggs and larvae associated, e.g.,Wolbachia (OTUs 5, 20),
Cardinium (OTU 1), Psychrobacter pulmonis (OTU 15) and
Romboutsia sedimentorum (OTU 13).Whenwe compared the
situation to the Krona projections (Figs. S3 and S4) it is ap-
parent that Wolbachia (OTUs 5, 20) and P. vagans (OTU 12)
had low proportions in adults, while Cardinium (OTU 1)
consisted 15% of sequences in the adult microbiome.

When the presence/absence of OTUs was compared
among developmental stadia, i.e., eggs, larvae and engorged
nymphs/adults, all of them shared between 8 and 38 OTUs
depending on the sampling site (Fig. S6). The highest unique
OTUs numbers were in the samples of larvae, i.e., from 8 to 44
OTUs, followed by eggs, i.e., 9–13OTUs and no unique OTU
was in adult samples in all four studied sites. When the
presence/absence of OTU was compared per sites in develop-
mental stadia separately (Fig. 3), six OTUs was shared in the
samples of engorged adults/nymphs in all sites, 27 and 26
OTUs in larvae and eggs, respectively. The OTUs that were
shared between adults from observed sites, which should be
considered as core species: Cardinium spp. (OTU 1);
Bartonella-like. (OTUs 2, 4, 72, 79, 142); K. rhizophila
(OTU 9); P. vagans (OTU 12); Staphylococcus saprophyticus
(OTU 14); and Bacillus toyonensis (OTU 142). On the top of

the core species, the following species/genera were also de-
tected in all the larva and egg samples: Cardinium (OTU 1),
Bartonella-like (OTU 2, 4, 72), K. rhizophila (OTU 9), and
P. vagans (OTU 12).

The heatmap (Fig. S2a, b) showed separation of the sam-
ples engorged adults/nymphs from larvae and juveniles, but
no specific OTU clusters for eggs and larvae is visible on
untransformed data (Fig. S2a). There is a specific cluster of
OTUs from the samples of eggs and larvae on LOG2 trans-
formed data (Fig. S2b). However, there is also the OTUs clus-
ter, which is not specific for developmental stadia and sam-
pled sites, composed from S. saprophyticus (OTU14),
Cardinium (OTU1), K. rhizophila (OTU9), and Bartonella-
like bacteria (OTUs2, 4, and 72).

The METASTATS analysis was used to compare
microbiome among adults, larvae, and eggs of the RPM
(Table 2). The following OTUs had relative abundance signif-
icantly higher in the sample of larvae or eggs than in adults:
Cardin ium (OTU 1) , Wolbachia (OTUs 5 , 20) ,
R. sedimentorum (OTU 13), P. vagans (OTU 12),
Alcaligenes aquatilis (OTU 7), S. saprophyticus (OTU 14),
and P. pulmonis (OTU 15). Opposite situation was found for
the following species: Bartonella-like (OTUs 2, 4, 72, 79),
T. strandjordii (OTU 6) and K. rhizophila (OTU 9). These
bacteria had significantly higher relative abundance in
microbiome of engorged adults/nymps than in larvae or eggs.
No statistically significant difference in relative abundance
among deve lopmen t a l s t age s was obse rved in
Ricketsiella-like (OTU 3). However, the adults microbiome
contained OTUs with relative abundance significantly influ-
enced by samples sites (Table 3).

Table 1 The results of two- and one-way PERMANOVA, the
microbiome composition was compared among the sampling sites and
observed stadia, i.e., eggs, larvae, and engorged nymphs/adults of red
poultry mite (Dermanyssus gallinae). In addition, one-way

PERMANOVA was applied for each factor separately and the
comparison for the sites and developmental stadia and pairwise
differences are showed, F values are above orthogonal line and
Bonferroni-corrected P values below

Bray–Curtis Jaccard

df F P F P

Site 2 20.117 0.001 9.1 0.001

Stadium 3 23.248 0.001 7.422 0.001

Interaction 6 6.533 0.001 2.117 0.0012

Stadium Eggs Larvae Adults Eggs Larvae Adults

Eggs 1.811 5.552 0.335 5.604

Larvae 0.1135 6.443 0.976 4.561

Adults 0.0002 0.0007 0.0004 0.0012

Site Ustrasice Bantice Mirovice Pohorelice Ustrasice Bantice Mirovice Pohorelice

Ustrasice 8.178 10.19 4.878 3.563 10.44 4.796

Bantice 0.0006 3.757 3.707 0.0612 9.092 4.479

Mirovice 0.0006 0.0546 3.402 0.0006 0.0024 2.457

Pohorelice 0.0078 0.0798 0.1812 0.0084 0.0096 0.1092

The standardized Illumina amplicon data were compared using Bray–Curtis and Jaccard matrices, the significant differences are indicated by italics
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qPCR Quantification

The numbers of copies of 16S rRNA obtained from universal
primers (Table S2) significantly differed between stadia
(K2,22 = 47.49, P < 0.001) of RPM (Fig. 4). The numbers of
copies in engorged nymphs and adults were 100-fold higher
than in eggs and larvae (Fig. 4a). The same trend was also
found for Cardinium and Wolbachia copies (K2,22 = 32.13,
P < 0.001 and K2,22 = 46.70, P < 0.001). The numbers of
Cardinium in engorged nymphs and adults were 10-fold
higher than in eggs and 100-fold higher than in larvae
(Fig. 4b) while Wolbachia had 10-fold higher numbers in
engorged nymphs and adults than in the eggs and larvae.

Predicted Microbiome Derived from NGS 454
Pyrosequencing Data

BLASTn analysis (performed in December 2016) revealed
25,525 sequences of the RPM transcriptome sequences.
Following taxonomy search of top hit species, 811 sequences
were allocated to bacterial taxa (cf. Supplementary Table S5).
Overall, 299 different bacterial taxa were obtained and the top
20 hit species/genera are shown in Table 4. More than one
fourth of the predicted bacteria sequences showed similarity
to Bartonella species and represented 11 of the 20 top hit
species. Among the Bartonella taxa, the sequences showed
similarity to Bartonella vinsonii (12 sequences, mean similar-
ity 68.3–96.0%) and Bartonella birtlesii (1 sequence, mean
similarity 81.3%) sequences. Additionally, the next sequences

Fig. 2 dbRDA of sampled site and OTUs based on Bray–Curtis (a) and
Jaccard (b) dissimilarity matrix in D. gallinae microbiome. The
comparison of developmental stadia and sites is based on ellipses
(95%). In Bray–Curtis dbRDA, the CAP1 and CAP2 explained 43 and
37% of variance in data set. In Jaccard dbRDA, the CAP1 and CAP2
explained 39 24% of variability

Fig. 3 Venn diagrams constructed form the samples of red poultry mite
D. gallinae microbiome to compare the distribution of OTUs among
sampled poultry houses (Bantice, Mirovice, Pohorelice, Ustrasice); a
eggs; b larvae; c engorged adults/nymphs
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showed similarity to Bartonella spp. (40 sequences, mean
similarity 67.4–97.0%), B. grahamii (23 sequences, mean
similarity 71.3–97.2%), Bartonella quintana (17 sequences,
mean similarity 68.5–90.6%), Candidatus Bartonella ancashi
(15 sequences, mean similarity 66–95%) and Bartonella
clarridgeiae (5 sequences, mean similarity 67.3–93.2%).

Referring to already identified endosymbionts of RPM,
top hits were obtained with two sequences of similarity to
S. eriocheiris (mean similarity 87.0%), but no sequences
for Cardinium, Rickettsiella, Anistosticta, and Schineria.
The sequences similar to different Wolbachia records
available in database were detected as top hits
(Supplementary Table S5). Except to putative symbiotic

bacteria, we found sequences similar to S. saprophyticus
(mean similarity 72.2–100%), Kocuria spp. (mean similar-
ity 93.4% and 100%) and one Alcaligenes aquatilis (mean
similarity 97.3%).

Top hit bacterial taxa of potential pathogenicity with mean
similarity values >90% were, e.g., four sequences of
Salmonella enterica (mean similarity 72.1–99%), two se-
quences of Francisella tularensis (mean similarity 82.1 and
90%), one sequence of A. viridans (mean similarity 97.1%)
and three sequences ofMycobacterium abscessus (mean sim-
ilarity 74.9 and 97.2%). Two sequences of the laboratory pop-
ulation showed top hits for P. multocida (range of mean sim-
ilarity 71.8–76.5%).

Table 2 The results of
METASTATS analyses, the
relative numbers of OTUs are
compared for eggs, larvae, and
engorged nymphs/adults of red
poultry mite (Dermanyssus
gallinae). The letters indicated
differences (α = 0.05) among the
stadia

OTU Taxon Number Adults Larvae Eggs

OTU1 Cardinium 195,142 0.149 ± 0.046a 0.346 ± 0.064b 0.224 ± 0.045a

OTU4 Bartonella-like 107,683 0.230 ± 0.020a 0.087 ± 0.019b 0.080 ± 0.021b

OTU2 Bartonella-like 76,832 0.198 ± 0.029a 0.032 ± 0.008b 0.054 ± 0.010b

OTU72 Bartonella-like 46,030 0.082 ± 0.006a 0.037 ± 0.007b 0.052 ± 0.018a

OTU3 Rickettsiella-like 45,182 0.141 ± 0.074a 0.025 ± 0.023a 0.001 ± 0.001a

OTU5 Wolbachia 36,369 0.006 ± 0.004a 0.070 ± 0.034b 0.058 ± 0.027b

OTU20 Wolbachia 30,758 0.006 ± 0.003a 0.072 ± 0.038b 0.036 ± 0.014

OTU6 Tsukamurella strandjordii 21,405 0.074 ± 0.028a 0.002 ± 0.001b 0.003 ± 0.001b

OTU9 Kocuria rhizophila 20,921 0.058 ± 0.013a 0.008 ± 0.003b 0.012 ± 0.002a

OTU13 Romboutsia sedimentorum 19,972 0.0001a 0.016 ± 0.009b 0.058 ± 0.028b

OTU12 Pantoea vagans 19,376 0.0001a 0.001 ± 0.0004b 0.070 ± 0.035b

OTU7 Alcaligenes aquatilis 16,930 0.0001a 0.051 ± 0.031b 0.012 ± 0.005b

OTU14 Staphylococcus
saprophyticus

12,915 0.008 ± 0.003a 0.010 ± 0.003a 0.029 ± 0.008b

OTU15 Psychrobacter pulmonis 11,755 0.00002a 0.003 ± 0.001b 0.040 ± 0.020b

OTU79 Bartonella-like 7906 0.026 ± 0.003a 0.001 ± 0.001b 0.001 ± 0.001b

REST 0.024 0.240 0.270

Table 3 The results of METASTATS analyses, the relative numbers of OTUs are compared for engorged nymphs/adults of red poultry mite
(Dermanyssus gallinae) on different poultry houses. The letters indicated differences (α = 0.05) among the stadia

OTU Number Ustrasice Pohorelice Bantice Mirovice

OTU1 Cardinium 195,142 0.0003b 0.019 ± 0.015b 0.256 ± 0.074a 0.320 ± 0.012a

OTU4 Bartonella-like 107,683 0.146 ± 0.029b 0.259 ± 0.030a 0.227 ± 0.017a 0.288 ± 0.039a

OTU2 Bartonella-like 76,832 0.135 ± 0.016bc 0.322 ± 0.053a 0.219 ± 0.039b 0.114 ± 0.006c

OTU72 Bartonella-like 46,030 0.063 ± 0.011c 0.076 ± 0.012a 0.100 ± 0.012ab 0.086 ± 0.009ab

OTU3 Rickettsiella-like 45,182 0.561 ± 0.044a 0.00001b 0.0005b 0.00003b

OTU5 Wolbachia 36,369 0.001b 0.018 ± 0.013a 0.004 ± 0.004a 0.00002b

OTU20 Wolbachia 30,758 0.003 ± 0.001b 0.018 ± 0.006a 0.001 ± 0.001c 0.00003c

OTU6 Tsukamurella strandjordii 21,405 0.031 ± 0.017bc 0.186 ± 0.029a 0.079 ± 0.077b 0.00002c

OTU9 Kocuria rhizophila 20,921 0.036 ± 0.011a 0.058 ± 0.026a 0.069 ± 0.047a 0.067 ± 0.014a

OTU79 Bartonella-like 7906 0.015 ± 0.003c 0.033 ± 0.003ab 0.034 ± 0.005a 0.023 ± 0.002b

REST 0.008 0.011 0.011 0.102
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Discussion

The Comparison of RPM Microbiomes

The RPM microbiome has been characterized according to
16S rRNA gene as well as the whole transcriptome data of a
laboratory RPM population from Germany [16]. The
microbiome of the field adult RPM consisted of between 15

and 64 OTUs, but 10 OTUs covered from 90 to 99.9% of all
sequences analyzed. The heterogeneity in samples among the
four poultry houses confirmed findings of previous reports
that the bacterial community varied between locations [65].
Thus, the difference between RPM populations seems to be
linked to the geographical sites and, moreover, the difference
likely influence the poultry farming practices [65]. Based on
our findings we hypothesize that the next factor influencing

Fig. 4 The quantification of numbers of copies of 16S rRNA gene in
developmental stadia in D. gallinae microbiome. The data are LOG
transformed and presented as the box and whiskers plots. a Numbers of
copies obtained by universal primers. b Numbers of copies obtained by

Cardinium specific primers. c Numbers of copies obtained from
Wolbachia. The significant differences in Kruskal–Wallis test are
indicated by different letters

Table 4 Top 20 BLASTn top hit
bacteria species/genera of 454
pyrosequencing based of red
poultry mite (Dermanyssus
gallinae) transcriptome sequences

Top Hit Species No. of
seq.

Range of sequence
lengths

Range of e values Range of mean
similarity (%)

Bartonella spp. 40 149–2205 1.45E-178-0.00E+
00

67.40–97.00

Bartonella
schoenbuchensis

28 181–490 6.92E-99-9.99E-10 68.10–87.50

Bartonella grahamii 23 172–1477 1.10E-104-0.00E+
00

71.30–97.20

Bartonella henselae 20 223–825 3.96E-84-5.58E-11 66.2–82.10

Bartonella tribocorum 20 96–397 1.72E-89-8.31E-10 71.00–88.75

Bartonella quintana 17 97–432 1.47E-166-1.27E-06 68.50–90.60

Ca Bartonella ancashi 15 109–2204 1.40E-76-0.00E+00 66.00–95.00

Bartonella australis 14 55–406 8.94E-41-4.18E-06 67.20–76.33

Staphylococcus
saprophyticus

14 222–2039 1.80E-178-0.00E+
00

72.20–100.00

Bartonella bacilliformis 13 132–373 1.49E-108-5.51E-11 69.25–89.40

Ochrobactrum
pseudogrignonense

13 93–2190 1.85E-46-0.00E+00 68.00–93.00

Arthrobacter spp. 12 56–431 2.06E-163-7.03E-06 87.90–95.40

Bartonella vinsonii 12 234–1439 8.57E-98-0.00E+00 68.30–96.00

Citrobacter amalonaticus 12 101–415 1.53E-158-2.95E-37 86.20–98.90

Rhodococcus
erythropolis

9 171–346 8.15E-162-1.06E-50 77.30–98.70

Staphylococcus equorum 9 134–391 1.21E-178-4.31E-30 77.00–92.80

Sphingobacterium spp. 8 129–466 1.00E-160-2.09E-15 70.00–99.00

Stigmatella aurantiaca 8 1577–1597 2.99E-11-2.96E-11 72.9%

Acinetobacter baumannii 7 260–424 3.01E-162-1.06E-08 65.75–98.50

Bartonella rochalimae 7 179–360 3.36E-66-2.53E-16 68.40–78.50
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the microbiome structure would be the different developmen-
tal stage of these mites.

Moro et al. [7] determined phylotypes in RPM and sug-
gested that the bacteria are saprophytes, symbionts, opportu-
nistic pathogens, or pathogenic agents. Our results obtained of
the RPMmicrobiome analyses from the four poultry houses in
Czechia and the German laboratory population confirmed this
classification. However, the function of different bacterial taxa
might be distinct than previously suggested [4, 1] due to the
more accurate identifications in this study or new information
available in the literature. Among the putative saprophytes,
Kocuria consisted from 4 to 7% of sequences in the adult
RPM microbiomes of Czechia. We detected Kocuria also to
be low abundance in the transcriptome of the German labora-
tory RPM population. In this context, Kocuria have been re-
cently identified in stored product mites (Acari: Astigmata)
and are suggested as the bacterial species present in the envi-
ronment [66, 67].

Undetermined Rhizobiales taxa identified by Moro et al.
[7] were suggested as saprophagous species. Here, we identi-
fied Bartonella-like sequences among the cloned 16S rRNA
sequences from universal eubacterial primers and, moreover,
confirmed Bartonella classification by the taxa specific
primers. In addition, the obtained sequences from universal
bacterial primers clustered with Illumina amplicon obtained
Bartonella-like sequences. OTU2 is similar to cluster B, while
OTUs 4 and 72 to cluster A (Fig. 1). The clones’ sequences of
16S rRNA gene showed 97% similarity to previously depos-
ited RPM sequences of Rhizobiales (EF674511 and
EF674514) [7]. We ascertained that the OTUs of Bartonella
species hold between 30 and 65% of sequences in the adult
RPM microbiome. This proportion is even higher than was
observed for Alphaproteobacteria (lower than 5%) of RPM,
previously [65]. Analysis of the German laboratory RPM pop-
ulation transcriptome confirmed high-abundance Bartonella-
like sequences, being more than a quarter of the predicted
bacterial sequences similar to Bartonella species.

Bartonella are Gram-negative, slow-growing, and faculta-
tive intracellular bacterial pathogens that infect mainly mam-
malian hosts causing them intraerythrocytic bacteremia.
Bartonella transmission is possible via blood-sucking arthro-
pod vectors [68], including ticks andmites [69, 70]. Following
a family outbreak of B. quintana infection, the suspected vec-
tors were RPMs, which migrated into the apartment from a
hole in the roof [71]. The phylogenetic analyses of cloned
Sanger sequences from RPM, however, showed that the se-
quences belonged to Bartonella suggested as symbionts of
honeybees [57], bumble bees [56], ants [51–55], [72], stink-
bugs [50],Varroamites [17] and astigmatid mites [60, 67, 73].
The sequences formed two groups indicating that additional
Bartonella-like bacteria taxa are associated to RPM. This fact
supports high diversity of Bartonella-like OTUs from
Illumina amplicons in RPM. Unfortunately, the weakness of

this study is that Bartonella was identified based on 16S
rRNA gene, which is, however, not suitable marker for the
identification this genus [74, 75]. Future studies are necessary
to demonstrate pathogeny or symbiotic-related genes and
transmission models of Bartonella-like bacteria in RPM.

The reported symbiotic taxa in RPM includeCardinium [7,
9, 49] and Wolbachia [7]. In this study, Cardinium sequences
had a low percentage (<1%) in the adult microbiome in
Pohorelice and Mirovice, but 25 and 32% in Bantice and
Mirovice areas, respectively. Among the bacterial sequences
of the German laboratory RPM, Cardinium was not detected
differently from the caseWolbachia and S. eriocheiris, which
were absent in that sample. The Wolbachia sequences of
Czech RPM populations covered only low percentage (<1%)
in the adult microbiomes in poultry houses from Bantice,
Mirovice, and Ustrasice; however, ca. 4% was observed in
Pohorelice. In the RPM isolate from Germany, top hits for
Wolbachia resulted in 1.2% of predicted bacterial data.
These results indicated that the observed populations varied
in proportion of these intracellular symbionts. Previously,
Rickettsia sequences were detected and suggested as RPMs
symbionts [7, 12].

In this study, Rickettsiella-like sequences formed 56% of
the microbiome in adults from Ustrasice, while in the samples
from other poultry houses of Czechia, it was a very low per-
centage (<1%) in their microbiomes. Moreover, Rickettsiella-
like bacteria has not been detected among data of the labora-
tory RPM population from Germany [16]. In this study, the
cloned Sanger sequences from RPM showed lower similarity
(94%) to D. massiliensis, which has been described as an
obligate intracellular gamma-proteobacterium in the tick
Ixodes ricinus [76]. Regarding our phylogenic analyzes were
the sequences closely similar to Candidatus Rickettsiella
viridis symbiont of pea aphids (A. pisum) [62, 63] and se-
quences of bacteria in oribatid mite Nanorchestes [64], there-
by, we indicated that the sequences belong to novel RPM
symbiotic bacterium. This bacterium should be described to
more detail in the future.

One opportunistic pathogen Tsukamurella was suggested
in RPM [7]. It was confirmed in our study and the cloned
Sanger sequences of 16S rRNAs showed 99% similarity to
T. paurometabola and T. strandjordii [77]. In the present
study, Tsukamurella represented from 3 to 19% of sequences
of the adult RPMmicrobiome. Tsukamurellae are members of
the mycolic acid-containing aerobic actinomycetes and
T. paurometabola originally isolated from the mycetomes
and ovaries of bed bugs [77]. Human infections with
Tsukamurella are very rare and connected to immunosuppres-
sion and postoperative wounds [78]. The occurrence of
T. paurometabola in bodies of the bugs suggests endosymbi-
otic relationships in RPM. The sequences of 98% identity to
Spiroplasma have been reported from mites in France [7]. No
Spiroplasma was found in microbiome neither was detected
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by specific primers in the RPMs populations of Czechia.
Differently, in the transcriptome of laboratory RPM, two se-
quences were found, the sequences showed 87% similarity to
S. eriocheiris. His result suggests that the Spiroplasma can
occur in some RMP populations.

Microbiome Differences between Developmental Stadia
and Symbionts

The life cycle of RPM includes eggs from which after 2 days
the larval stage would hatch from. The larvae are non-parasit-
ic, but then they change into protonymph, deuteronymph, and
finally adults, which are all blood-sucking stages found on the
host [1]. It means that eggs and larvae should be considered
free of bacteria joined with feeding of blood on the host.
However, these non-hematophagous stages might contain
those bacteria transmitted maternally (transovarial transmis-
sion). In this study, the eggs and blood unfed larvae were
surface cleaned by routinely used protocols [12], the high
bacterial diversity in the eggs and larvae should be the result
of surface contamination. The surface of the eggs contains
micro-structures [79] suitable for bacterial attachment and it
is possible that not all bacteria are remove by the cleaning
method. We observed from 86 to 208 those OTUs among
the samples. It means that the surface cleaning of eggs or
larvae is not absolute or might be linked to transovarial trans-
mission. The relatively high bacterial diversity might be ex-
plained by the presence of low numbers of various bacteria,
which occurs in the Bdirty^ RPM environment. These bacteria
formed the Illumina amplicon profiles from the samples. It is
supported by the differences in the numbers of 16S rRNA
gene copies observed by qPCR, i.e., the engorged adult/
nymph stages had 100-fold more copies of 16S rRNA than
eggs and larvae. The bacteria might just have been in the
blood meal of engorged mites without any colonization of
the mites, but the low number of OTUs and presence in the
eggs/larvae did not support this suggestion.

We found Cardinium sequences most prevailing in eggs
and larvae microbiome, i.e., 22 and 35% of obtained se-
quences were detected. Symbiont Wolbachia covered from 4
to 7% of the sequences in egg and larva microbiomes; how-
ever, in adults, it was lower than 1%. It, itself, indicates the
transovarial and transstadial transmission of Cardinium and
Wolbachia. This is not surprising due to the cases described
in mites [80, 81].

RPM as the Reservoir of Human Pathogenic Bacteria

Previous studies provided the findings that RPMs are
reservoirs or passive vectors for some human pathogens,
because the multiplication of pathogenic bacteria in
RPM mite bodies is unknown (Moro et al. [5],
Sparagano et al. [4], and Pritchard et al. [1]. Moro

et al . [7] observed sequences of similar i ty to
E. rhusiopathiae and suggested importance of pathogen
associations to these mites [65]. Here, we found 192 out
of 1,493,621 analyzed sequences of 97% identity to this
pathogen. E. rhusiopathiae bacteria were reported caus-
ing erysipelas in poultry, which is characterized as an
acute septicemic infection that may result in sudden
high mortality [82]. The bacteriological analyses of lay-
ing hens and mites during erysipelas disease outbreaks
caused by E. rhusiopathiae in poultry flocks, revealed
that RPM collected from the same house at the end of
the production period of the following flock were neg-
ative for the presence of E. rhusiopathiae [83]. It
should be noted, that the observed hens in this study
were of good health and no signs of disease were re-
corded. In the field samples, we did not find sequences
similar to P. multocida, which occurs in RPM and is
suggested as an important pathogen [7]. However, two
sequences of the laboratory population showed top hits
for P. multocida (range of mean similarity 71.8–76.5%).
The next analyses are necessary to identify if these bac-
terial taxa are of human pathogenic importance.

Conclusions

At population level, the mites are infested by various intracel-
lular symbionts and putative symbiotic bacteria simultaneous-
ly. The differences also influence the way of bacterial trans-
mission depending on the distribution of the bacteria inside
the mites. The association of the RPM to Bartonella-like pu-
tative symbiotic bacteria was indicated. This study suggests a
potential transovarial transmission and transstadial transmis-
sion of Cardinium and Wolbachia. There is also hint of the
transovarial transmission of Bartonella-like bacteria, because
the relative proportion of Bartonella-like sequences in the
eggs and larvae microbiomes is similar as in the case of
Cardinium. A different situation to Bartonella-like was ob-
served for Tsukamurella, which represents only a small pro-
portion of the sequences found in the eggs and larvae.
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