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Abstract Increasing evidence of tight links among the gut
microbiota, obesity, and host health has emerged, but knowl-
edge of the ecological processes that shape the variation in
microbial assemblages across growth rates remains elusive.
Moreover, inadequately control for differences in factors that
profoundly affect the gut microbial community, hampers eval-
uation of the gut microbiota roles in regulating growth rates.
To address this gap, we evaluated the composition and eco-
logical processes of the gut bacterial community in
cohabitating retarded, overgrown, and normal shrimps from
identically managed ponds. Gut bacterial community struc-
tures were distinct (P = 0.0006) among the shrimp categories.
Using a structural equation modeling (SEM), we found that
changes in the gut bacterial community were positively related
to digestive activities, which subsequently affected shrimp
growth rate. This association was further supported by inten-
sified interspecies interaction and enriched lineages with high

nutrient intake efficiencies in overgrown shrimps. However,
the less phylogenetic clustering of gut microbiota in over-
grown and retarded subjects may offer empty niches for path-
ogens invasion, as evidenced by higher abundances of predict-
ed functional pathways involved in disease infection. Given
no differences in biotic and abiotic factors among the
cohabitating shrimps, we speculated that the distinct gut com-
munity assembly could be attributed to random colonization
in larval shrimp (e.g., priority effects) and that an altered mi-
crobiota could be a causative factor in overgrowth or retarda-
tion in shrimp. To our knowledge, this is the first study to
provide an integrated overview of the direct roles of gut mi-
crobiota in shaping shrimp growth rate and the underlying
ecological mechanisms.
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Interspecies interaction

Introduction

It is now recognized that the gut microbiota serves as a virtual
endocrine organ by acting as a barrier against pathogen inva-
sion and providing complementary metabolic pathways for
host nutrient acquisition [1, 2]. As a consequence, dysbiosis
of the gut microbial composition is tightly associated with
shrimp diseases [3] and metabolic syndrome [4], among
others. Increasing evidence has shown that developmental
stage [5], diet [6], health status [3], and the rearing environ-
mental conditions [7] are the major factors in determining the
composition and function of gut community. Recently, we
found that shrimps reared in the same pond exhibit marked
differences in body size and weight. One commonly accepted
explanation is that variations in gut microbiotas among
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individuals lead to different growth rates [1, 2]. However,
differences in gut microbiotas among identically managed
shrimp cannot be attributed to the above-mentioned driving
factors. It has been proposed that stochastic colonization of
alien taxa in larvae gut could contribute long-term effects on
the health of later life [8]. Indeed, neutral processes can ex-
plain a significant portion of the variations in fish gut commu-
nity [9]. Therefore, understanding the association between
shrimp gut community assembly and growth rates, and the
underlying ecological processes are of essential interest from
both commercial and scientific perspectives.

Recently, it has been shown that cohort pigs exhibit distinct
gut bacterial assemblages, resulting in significant differences in
their body weights [10]. One possible explanation is that di-
verse enterotypes respond differently to diet intake [10, 11].
Similarly, identically farmed sea cucumbers display distinct
growth rates, whereas differences in gut bacterial composition
are evident at the species level [12]. Several studies have un-
covered profound changes in the composition and metabolic
function of gut microbiota in obese vertebrate individuals
[13–15], whereas these studies did not adequately control for
differences in diet or environmental conditions. In addition,
invertebrate gut microbiota is dominated by Proteobacteria [3,
12], as opposed to vertebrate gut community is dominated by
Bacteroidetes and Firmicutes [13, 14, 16]. For these reasons, it
is unclear whether growth rates and the gut bacterial commu-
nity assembly are tightly connected in shrimp, mirroring what
has been observed in vertebrates [10, 15]. The notion that a host
exhibits strong selection pressures on the gut microbiota is be-
coming widely accepted as the evidence grows [3, 17].
However, substantial differences in the gut bacterial communi-
ties have been detected between cohabitating individuals [5,
12]. Consequently, it is unclear whether the gut community of
healthy shrimp (e.g., normal growth) is more or less convergent
than that of shrimp with suboptimal health (e.g., retarded or
overgrown). It has been proposed that closely related lineages
will coexist due to phylogenetic niche conservatism (the ten-
dency of lineages to retain their niche-related traits) [18]. Under
this premise, a healthy host can constrain the divergence among
closely related species, resulting in a high level of phylogenetic
relatedness in the gut bacterial community assembly. In con-
trast, diseased shrimp are more prone to invasion by alien bac-
terial species, which is concomitant with a more stochastic gut
community assembly [19]. From this ecological perspective,
the phylogenetic relatedness of gut community may offer a
surrogate index for defining a healthy gut microbiota.

The association between the gut microbiota and growth
rates appears to be more complex than the simple phylum-
level Bacteroidetes/Firmicutes ratio that was initially identi-
fied [20]. Instead, it is now recognized that the microbial-
mediated function (e.g., metabolic phenotype) of a given com-
munity depends on the interdependent associations among
different bacterial species [21, 22] rather than the sum of the

individual species’ traits [23]. The additive, synergistic, and
antagonistic interactions between species are integral in
microbial-mediated functions [19, 24]. Indeed, recent network
studies have identified putative gut keystone taxa that are re-
sponsible for differences in host growth traits [10, 14]. Thus,
network analysis affords a promising avenue for exploring
these complex microbial interactions and niches [24, 25].
Evidence, albeit limited, shows that an increased shrimp gut
interspecies interaction is positively associated with enhanced
functional potentials [19]. We therefore hypothesized that the
gut microbiota of overgrown shrimp exhibits more synergistic
and complex interspecies interaction, thereby facilitating a
higher efficiency in nutrient acquisition.

Identically farmed shrimps are ruled out the confounded
factors, such as diet, age, and ambient conditions, in shaping
gut microbiota, thus offering an ideal setting to examine the
direct association among the gut bacterial community, host
growth rate, and underlying ecological processes. Here, using
the Illumina sequencing technique, we compared the gut bac-
terial community assembly among three categories of shrimp
(retarded, overgrown, and normal) (Fig. S1). This design
allowed us to (i) establish the connections among the shrimp
gut bacterial community, digestive enzyme activity and
growth rates; (ii) evaluate whether phylogenetic relatedness
correlated with shrimp health states; and (iii) assess the extent
to which gut bacterial interspecies interaction and function
varied with shrimp growth rates.

Materials and Methods

Experimental Design and Sample Collection

The shrimp ponds investigated in this study are located in
Xiangshan, Ningbo, the Eastern China. The ponds are approx-
imately uniform in size (3000 m2) and depth (1.2 m). For
subsequent standardization managements, the farmers had an-
alyzed and adjusted the water parameters before inoculation,
to make sure that the rearing conditions are similar across the
ponds. On 8 April 2016, congeneric larval shrimps
(Litopenaeus vannamei) were inoculated with a stocking den-
sity of 480,000 individuals into each pond. The ponds were
identically managed, including seawater inputs, daily water
exchange rate (5%), feed type, and schedule. After 70 days
of cultivation (17 June), we found that shrimps in the same
pond exhibited substantial differences in body size and
weight. The size that accounted for the most proportion (ap-
proximately 90%) was artificially categorized into normal
shrimps (Fig. S1). The expected size at this growth stage
was further confirmed by the farmers. Subsequently, we sorted
the sizes that markedly smaller or larger than that of normal
shrimps into retarded or overgrown individuals, respectively
(Fig. S1). We collected shrimp and water samples from each
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pond. Shrimps were separately stored and aerated in tanks
with water from the corresponding pond during transporta-
tion. To minimize the spatial variability within the ponds,
water samples were taken from six representative points in
each pond (in similar locations across the six ponds) and were
combined to form a composite sample representing each
pond. Water samples were stored in an icebox.

DNA Extraction

On the sampling day, shrimps from each pondwere sorted into
three categories according to their body size and weight
(Fig. S1). Because an adequate amount of DNA could not
be obtained from the intestine of a single retarded shrimp in
the initial trial runs, for each pond, the intestines of three
shrimp from each size category were dissected on ice and
pooled to compose one sample. To collect the planktonic mi-
crobial biomass, a 0.5-L water sample for each pond was pre-
filtered through nylon mesh (100 μm pore size) and subse-
quently filtered onto a 0.22-μmmembrane (Millipore, Boston,
MA, USA). Genomic DNA (gDNA) was extracted using the
FAST DNA Spin kit (MO BIO Laboratories, Carlsbad, CA,
USA) according to the manufacturer’s protocols. The gDNA
extracts were quantified using a NanoDrop ND-2000 spectro-
photometer (NanoDrop Technologies, Wilmington, USA) and
then stored at −80 °C prior to amplification.

Digestive Enzyme Activity

To measure the digestive enzyme activity for a given gut
community, the stomach and hepatopancreas from the
same three shrimp were extracted and pooled. For the
measurement, ice-cold distilled water with a volume (ml)
four times the weight (g) of the tissues was added. The
tissues were then homogenized at 4 °C and centrifuged at
6000 rpm for 10 min, and the supernatant was collected to
measure the digestive enzyme activity. The activities of
amylase (kit no. A016-1), pepsin (kit no. A080-1), and
lipase (kit no. A054) were measured using commercial
assay kits (Nanjing Jiancheng Institute, Nanjing, China)
in accordance with the manufacturer’s instructions.
Digestive enzyme activity was expressed as a relative unit
per milligram of soluble protein (U mg−1).

Bacterial 16S rRNA Gene Amplification and MiSeq
Sequencing

The bac t e r i a - spec i f i c p r ime r s 338F (5 ′ -GTAC
TCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGAC
TACHVGGGTWTCTAAT-3′) were used to amplify the V3–
V4 regions of bacterial 16S rRNAgene [26]. Polymerase chain
reaction (PCR) condition was performed as previously de-
scribed [25]. PCR products were visualized in 1.5% agarose

gel to verify product band size. Each sample was amplified in
triplicate and pooled to minimize the reaction-level PCR bias.
Amplicons for eachsamplewerecombinedandpurifiedusinga
PCR fragment purification kit.

After purification, DNA concentration was measured using
a PicoGreen-iT dsDNA Assay Kit (Invitrogen, Carlsbad, CA,
USA). Identical amounts of amplicons from each sample were
pooled in a single tube, and the amplicons were sequenced
using MiSeq platform (Illumina, San Diego, CA, USA), pro-
ducing 2 × 300 bp paired-end reads.

Processing of Illumina Sequencing Data

The paired-end reads were joined with FLASH [27]. The as-
sembled sequences were processed following the Quantitative
Insights IntoMicrobial Ecology pipeline (QIIME v1.9.0) [28].
Briefly, the sequences with ambiguous bases or truncated at
any site of more than three consecutive bases receiving a
Phred quality score (Q) < 20 were deleted, as were truncated
reads that had <75% of their original length. Chimeric se-
quences were identified using the UCHIME algorithm [29]
and removed, as were singletons. Bacteria phylotypes were
identified using UCLUST [30] and classified into the opera-
tional taxonomic units (OTUs) at a 97% cutoff. The most
abundant sequence of each OTU was selected as the represen-
tative sequence and then taxonomically assigned in the
Greengenes database (release 13.8) [31] using PyNAST
[32]. After taxonomies had been assigned, OTUs that were
affiliated with Archaea, chloroplasts, Eukaryota, and those
unassigned at the Bacteria domain level were excluded from
the dataset. The filtered alignments were then used to generate
a maximum-likelihood tree using FastTree [33] for phyloge-
netic analysis. To correct for unequal sequencing depth, we
used a 20× randomly rarefied subset of 15,600 sequences per
sample to calculate the diversity and distance between sam-
ples. Sequence data are deposited in Sequence Read Archive
at DDBJ under the accession no. DRA005153.

Statistical Analysis

Shrimp body weight, digestive enzyme activity, and bacterial
diversity among categories were compared using a one-way
analysis of variance (ANOVA) followed by Tukey’s post hoc
test. Non-metric multidimensional scaling (NMDS) and anal-
ysis of similarity (ANOSIM) were performed to evaluate the
overall differences in bacterial community structure [34]. The
correlations among the shrimp gut bacterial community, di-
gestive enzyme activity and growth rates were examined by
the Mantel test using the ‘vegan’ package in R v3.1.0 [35].
Then, structural equation modeling (SEM) was used to eval-
uate the interrelationships among these variables in Amos
18.0 (IBM, Chicago, IL, USA). The a priori and theoretical
assumptions made to establish the SEM were as follows: (i)
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the gut bacterial community can directly influence shrimp
growth rate, and (ii) the gut bacterial community can lead to
changes in enzyme activity, which subsequently affects
shrimp growth rate. The data matrix was fitted to the model
using the maximum-likelihood estimation method. Favorable
model fits were suggested by non-significant χ2 test
(P > 0.05), high goodness-of-fit index (GFI >0.90), and low
root square mean errors of approximation (RMSEA <0.05).
The indicator values (IndVal) method was used to identify
indicative bacterial families associated with each investigated
group [36]. Only the IndVal values that were both significant
(P < 0.05) and >0.4 were considered, using the package
‘labdsv’ in R [35, 37].

A null model analysis of multivariate dispersion
(PERMDISP) was performed to test whether the dispersion
among biological replicates for each group is indistinguish-
able from the null expectation [38]. In quantifying the phylo-
genetic diversities (i.e., phylobetadiversity) among the three
shrimp groups, we calculated the mean nearest taxon distance
(MNTD) separating OTUs into three communities [39].
MNTD is the mean phylogenetic distance separating each
species in the community from its closest relative, which is
sensitive to changes in lineage close to the phylogenetic tips
[40]. To evaluate the degree of non-random phylogenetic re-
latedness, the ‘standardized effect size’ of the phylogenetic
community structure (ses.MNTD) was calculated for MNTD
based on the difference between phylogenetic distances in the
observed communities versus null communities generated
with 999 randomizations divided by the standard deviation
of phylogenetic distances in the distribution [40, 41].
Negative ses.MNTD values with low quantiles (P < 0.05) in-
dicate that co-occurring species are more closely related than
expected by chance (i.e., convergence), whereas positive
ses.MNTD values with high quantiles (P > 0.95) suggest an
overdispersion (i.e., divergence) of co-occurring species [39,
41]. Further, a larger absolute magnitude of ses.MNTD value
reflects the stronger effects of deterministic processes [5].
These analyses were implemented in the R environment with
the package ‘Picante’ [35, 40].

Interspecies interaction was evaluated using an open-
accessible pipeline (http://ieg2.ou.edu/MENA) [42]. To
quantitatively compare the differences in gut interspecies
interaction among shrimp categories, a set of topology
properties was calculated, including average path length,
clustering coefficient, modularity, and positive co-
occurrences [42, 43]. The network was visualized in
Cytoscape 3.3.0 [44].

To obtain bacterial metabolic functional traits, the sequenc-
ing data were re-analyzed as described above, with the excep-
tions for taxonomical classification, against a closed reference
(Greengenes database 13.8) and then rarified to 10,870 reads
per sample. Subsequently, the OTUs table was normalized by
dividing the abundance of each OTU by its predicted 16S

copy number to produce the KEGG (Kyoto Encyclopaedia
of Genes and Genomes) classified functions of the community
by Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) [45]. The
significances in the KEGG pathways between normal and
retarded/overgrown shrimp were tested using a response ratio
analysis at a 95% confidence interval [46].

Results

Shrimp Categories and Digestive Enzyme Activity

We sorted shrimp into three categories according to size:
overgrown (8.27 ± 0.39 cm, mean ± standard deviation),
normal (6.47 ± 0.09 cm), and retarded (4.50 ± 0.19 cm) sub-
jects (Fig. S1). The average body weights of these three
categories were 24.07 ± 3.07 g, 12.15 ± 1.29 g and
3.62 ± 0.48 g, respectively, which were significantly differ-
ent among categories (FANOVA = 167.5, P < 0.001). In ad-
dition, the measured digestive enzyme activity, including
amylase, pepsin, and lipase activities, exhibited consistent
differences across the three categories, with the highest ac-
tivity in overgrown shrimp and the lowest in retarded
shrimp (Fig. 1). Notably, amylase, pepsin and lipase activ-
ities were positively and significantly (Pearson r > 0.81,
P < 0.001 in all cases) correlated with shrimp body size
and body weight (Table S1).

Distribution of Taxa and Phylotypes

After quality control, we obtained a total of 577,456 high-
quality sequences and 15,697–32,578 sequences per sample
(mean = 24,060 ± 3952, standard deviation). Then, the un-
equal sequencing depths were rarified to 15,600 sequences per
sample, resulting in 8373 OTUs across the samples. The dom-
inant phyla were Gammaproteobacteria (mean relative abun-
dance, 41.1%) and Alphaproteobacteria (30.3%), followed by
Bacteriodes (16.3%) and Actinobacteria (4.5%) (Fig. S2).
Deltaproteobacteria (0.82%), Betaproteobacteria (0.47%),
and Firmicutes (0.32%) were found at low abundances (data
not shown). The relative abundances of the dominant phyla/
classes in water samples and in shrimps from the three size
categories were distinct and significantly different among the
groups (Fig. S2). For example, the relative abundance of
Gammaproteobacteria was low in water samples
(5.3 ± 0.2%) but was dramatically enriched in retarded
shrimps (73.7 ± 20.4%) and significantly decreased to
33.3 ± 9.5% in normal ones. In contrast, the relative abun-
dances of Alphaproteobacteria and Actinobacteria exhibited
an opposite pattern (Fig. S2).
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Variation in Bacterial Communities across Habitats
and Shrimp Categories

The evenness and α-diversity of bacterial communities
were compared among categories that were defined a priori,
including the number of observed species, Shannon index
and phylogenetic diversity. The evenness was significantly
lower in the retarded shrimp but was comparable in the other
groups (Fig. S3). However, there were significant differ-
ences in α-diversity (P < 0.001 for the three diversity indi-
ces) among groups. In general, theα-diversity was higher in
water samples than in shrimps. Furthermore, normal
shrimps harbored a higher bacterial α-diversity than did
retarded shrimps, with an intermediate α-diversity level in
overgrown shrimps (Fig. S3).

Based on the UniFrac distance of OTUs detected across the
samples, an NMDS ordination biplot revealed a clear cluster-
ing in the bacterial communities (Fig. 2a). This pattern was
further corroborated by an ANOSIM, which demonstrated
that both the habitats (R = 0.498, P = 0.0006) and shrimp
categories (Global r = 0.549, P < 0.0001) were important
determinants of bacterial community composition. In addi-
tion, the bacterial community compositions were significantly
distinct between each pair of groups (Table S2). A permuta-
tional multivariate analysis of variance showed that shrimp
category explained 20.1% (P = 0.014) of the variation in gut
bacterial communities.

Notably, the shrimp gut bacterial communities were signifi-
cantly (Mantel test, P < 0.05 in all cases) correlated with shrimp
weight/size and enzyme activities (Table S3). For this reason, we
constructed SEMs to explore the direct and indirect effects of the
shrimp gutmicrobiota on digestive activity and bodyweight/size.
The model fit the data well: χ2 = 1.52, P = 0.45, GFI = 0.96,
RMSEA = 0.001. Our SEMs explained 83.7% of variance in
shrimp body weight/size (Fig. 2b). Gut bacterial community
was found to have significantly positive (λ = 0.56, P = 0.015)
effects on enzyme activities, which in turn substantially promot-
ed (λ = 0.68,P = 0.002) shrimp bodyweight/size. In contrast, the
direct effects of gut bacterial community on shrimp bodyweight/
sizewere relativelyweak (λ= 0.19,P = 0.045) (Fig. 2b). Overall,
the shrimp growth rate was directly determined by the gut
microbiota-mediated digestive activities (Fig. 2b).

Identification of KeyGut Bacterial Families for Indicating
Shrimp Categories

Given that the gut bacterial communities were distinct among the
shrimp categories, we next investigated which assemblages char-
acterized such differences. It has been shown that ecological
cohesion is highest at the bacterial family level, which can accu-
rately indicate shrimp health status [7]. Thus, we screened the
indicators at the bacterial family level using IndVal values >0.4.

Fig. 2 Non-metric multidimensional scaling (NMDS) ordination of the
dissimilarity (UniFrac distance) in bacterial community composition (a).
The structural equation model shows the effects of the shrimp gut
bacterial community on enzyme activity and body weight/size (b).
Numbers on arrows are standardized path coefficients. Arrow widths
show the strength of the causal relationship. Percentages (R2) indicate
the variance explained by the gut bacterial community and enzyme
activity. *P < 0.05; **P < 0.01

Fig. 1 Comparison of digestive
amylase (a), pepsin (b), and lipase
(c) activities among the three
shrimp categories. Different
lowercase letters indicate
significant differences among
groups. Means were compared
using one-way analysis of
variance (ANOVA), with
P < 0.05 considered significant
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Twenty-six bacterial families were identified, with significant
(P < 0.05 in all cases) changes in their relative abundances
among the three categories (Fig. 3). A majority (16 of 26) of
these indictor families was most abundant in normal shrimps.
In contrast, the relative abundances of Rhodospirillaceae,
Saprospiraceae, Bdellovibrionaceae, and Marinicellaceae were
highest in overgrown shrimps. Interestingly, two potential path-
ogens, Pseudoalteromonadaceae and Vibrionaceae, had enriched
relative abundances in retarded shrimps (Fig. 3).

Ecological Processes Governing Shrimp Gut Bacterial
Community Assembly

Using the MNTD, we compared the phylogenetic community
composition of shrimp gut microbiotas among the three cate-
gories. The mean MNTD value was highest in normal shrimp
and was significantly lower in retarded shrimps (Fig. 4), sug-
gesting that phylogenetic clustering is stronger in normal
shrimps than that in retarded and overgrown subjects. In ad-
dition, the ses.MNTD values obtained using the null model
were significantly less than zero (Fig. 4); thus, the shrimp gut
bacterial communities tended to be more phylogenetically
clustered than would be expected by chance, regardless of
the shrimp category. Similarly, the Bray-Curtis distance-based
PERMDISP results also significantly (P < 0.001 in all cases)
varied from the null random expectation for each category
(Table 1). However, it should be noted that the absolute mag-
nitude of ses.MNTD value in normal shrimps was the highest
(Fig. 4), indicating a greater importance of deterministic pro-
cesses in shaping the gut bacterial community in normal
shrimps.

To further test the possible effects of phylogenetic patterns
on shrimp growth rate, we evaluated interspecies interaction in
each shrimp category. The OTU table was split into three
datasets: retarded, overgrown, and normal shrimp gut
microbiotas. The OTUs detected in five or more replicates
were selected for correlation calculation, resulting in 299,
548, and 734 OTUs obtained from retarded, overgrown, and
normal shrimp samples, respectively (Table 2). In all cases,
the network connectivity distribution curves fitted well with
the power law model (R2 > 0.80, Table 2), which suggested
that the constructed networks were scale-free. However, the
network plots revealed that interspecies interaction was more
complex and better connected in retarded and overgrown
shrimps than in normal shrimp (Fig. 5), although more
OTUs in normal shrimps were retained in the analysis
(Table 2). This pattern is evidenced by the lower average path,
higher average clustering coefficient and average degree
(Table 2), revealing that the nodes in the network are closer
[47], are better connected with their neighbors [48], and have
more strength connections in overgrown and retarded shrimps
[42]. In contrast, the network is better to be separated into
modules (as evidenced by higher modularity; Table 2) in

normal shrimps, which suggests that the niches are occupied
by different patches of co-located functional units [47].
Interestingly, the percentage of positive co-occurrence was
highest in overgrown shrimps (Table 2), indicating a higher
degree of cooperative activities in the gut microbiota of over-
grown shrimps.

Changes in Functional Composition among the Shrimp
Categories

The mean nearest sequenced taxon index (an index for evalu-
ating the accuracy of PICRUSt [45]) in the community to its
nearest relative with a sequenced reference genome was
0.16 ± 0.03 (mean ± standard deviation) across the gut sam-
ples. A comparable mean NSTI was detected for the human
gut microbiota, for which PICRUSt produced an accurate
metagenome prediction [45]. Thus, the predicted functional
traits in this study are reliable. The carbohydrate and protein
digestion and absorption pathways were all significantly de-
creased in retarded shrimps compared with normal shrimps,
whereas those in overgrown shrimps exhibited an opposite
pattern (Fig. 6). Compared with normal shrimps, divergent
responses of environmental information process and carbohy-
drate metabolism were also observed between retarded and
overgrown shrimps (Fig. 6). In contrast, pathways of

Fig. 3 The 26 indicative bacterial families among the shrimp size
categories, with their indicator values and significance. The diameters
of the circles are proportional to the relative abundances of the family,
with red, blue, and green circles indicating the peak relative abundances
in retarded, overgrown, and normal shrimp, respectively

Ecologcal Processes of Gut Microbiota Determines Shrimp Growth 993



infectious disease were consistently enriched, whereas the im-
mune system (with the exception of the RIG-I-like receptor
signaling pathway) was decreased in retarded and overgrown
shrimps (Fig. 6). Thus, it is likely that retarded and overgrown
shrimps are more prone to pathogen invasion.

Discussion

Accumulating evidence has disclosed a tight connection
among the gut microbiota, obesity, and host health [49,
50]. Thus, unraveling the ecological mechanisms that gov-
ern gut microbiota assembly is expected to guide microbial
modifications for sustaining host health [49, 51]. However,
previous studies have only focused on the biogeochemical
factors that determine the differences in gut bacterial com-
munities between lean and obese animals and humans [10,
16]. This study is thus the first attempt to jointly define the
underlying ecological processes of the gut microbiota in
contributing shrimp with distinct growth rate.

It is a challenge to identify the causal relationship between
the gut microbiota and obesity due to inadequately control for
differences in host age, diet, environmental conditions, and

other factors that have profound impacts on the gutmicrobial
community [3, 5]. However, the gut bacterial communities
were significantly distinct among the shrimp categories in
the present study (Fig. 2), which was also evident at the
coarse phylum/class level (Fig. S2). This pattern raises the
question of which factors drive such variations. A plausible
explanation is that stochastic processes contribute to the di-
vergence of gut bacterial communities [9]. However, this
would not be the case here because the gut bacterial commu-
nities significantly deviated from the null random expecta-
tion for each category (Table 1). Alternatively, it is likely that
priority effects cause a contingency in the structure of com-
munities, resulting in alternative stable states [52]. This as-
sertion is supported by recent data showing that the early
colonizers of the larval gut exert a long-term effect on the
risk of chronic disease and health later in life [8].
Consistently, substantial inter-individual variations in the
gut bacterial composition have been observed in cohabiting
larval Atlantic cod [53] and juvenile sea cucumbers [12].
However, it should be noted that the priority effects do not
rule out host selection on the gut microbiota from the local
species pool. For example, Alphaproteobacteria and
Actinobacteria lineages were strongly selected against by
shrimp, whereas Gammaproteobacteria species appear to
be adaptive to shrimp gut conditions (Fig. S2). In agreement
with our previous report showing that the relative abun-
dances of Alphaproteobacteria and Actinobacteria were
higher in healthy shrimps than in diseased ones (here, retard-
ed and overgrown shrimp), while Gammaproteobacteria
species exhibit an opposite pattern [3]. Notably, the varia-
tions in gut bacterial community could directly translate into
changes in digestive enzyme activities, which in turn shape
shrimp growth rate (Fig. 2). Similarly, close associations

Fig. 4 Variation of mean nearest
taxon distance (MNTD) and the
standardized effect sizes of
MNTD (ses.MNTD) of gut
bacterial communities in retarded,
overgrown, and normal shrimp

Table 1 Significance test of centroid differences between the observed
communities and the null model simulations for each shrimp category
using Bray-Curtis distance

Category Actual centroid Null centroid F value P value

Retarded 0.269 0.628 21.9 0.0009

Overgrown 0.373 0.610 18.3 0.0016

Normal 0.292 0.602 307.9 <0.0001
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have been described between the gut bacterial community
and host bodyweight in cohabiting pigs [10] and sea cucum-
bers [12]. These findings corroborate the notion that
dysbiosis of the gutmicrobiota is linked to host growth traits,
mirroringwhat has been observed in vertebrates [10, 13, 14],
although shrimp gut assemblages are apparently distinct
from those of vertebrates.

Then, we examined which assemblages contribute to the
differences in shrimp growth rates. Opportunistic pathogens
of the Pseudoalteromonadaceae and Vibrionaceae lineages,
their relative abundances were highest in retarded shrimps and
were lowest in normal shrimps (Fig. 3). Our previous work has
shown that the relative abundance of Vibrionaceae is closely
associated with shrimp disease severity [3]. Under this premise,

Fig. 5 Network interaction graph for retarded (a), overgrown (b), and
normal (c) shrimp gut bacterial communities. Each node represents a
bacterial OTU. The colors of the nodes indicate the OTUs affiliated to

different major classes. A blue edge indicates a positive interaction,
whereas a red edge indicates a negative interaction between two
individual nodes

Table 2 Topological properties of the empirical molecular ecological networks (MENs) of bacterial communities and their associated randomMENs
in each shrimp category

Topological properties Retarded Overgrown Normal

Empirical networks

Similarity threshold (st) 0.90 0.95 0.94

Network size(n) 299 548 734

Links (n) 1013 2985 1867

Links per node 3.39 5.45 2.54

R2 of power law 0.81 0.87 0.85

Average path (GD) 5.66 5.26 10.12

Average clustering coefficient (avgCC) 0.354 0.447 0.408

Average degree (avgK) 6.78 10.89 5.09

Positive co-occurrence 86.8% 93.7% 68.5%

Modularity (M) 0.608 0.636 0.855

Random networks

Average path (GD) 3.158 ± 0.032 2.897 ± 0.021 3.884 ± 0.026

Average Clustering coefficient (avgCC) 0.065 ± 0.008 0.113 ± 0.006 0.020 ± 0.003

Modularity (M) 0.329 ± 0.006 0.234 ± 0.003 0.428 ± 0.004
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retarded and overgrown shrimps are at an increased risk for
developing disease. Prevotellaceae and Enterobacteriaceae are
known to be positively associated with host obesity in verte-
brates [10, 54], whereas no difference was detected between
large and small sea cucumber cohorts [12]. In contrast, we found
that overgrown shrimpwere characterized bymaximum relative
abundances of Rhodospirillaceae, Saprospiraceae,
Bdellovibrionaceae, and Marinicellaceae (Fig. 3). Therefore, it
is likely that the connection between obesity and gut bacterial
family profile depends on the host trophic level. Nevertheless,
we canmake educated guesses regarding functionality based on
the current knowledge of the biology and ecology of these in-
dicative bacterial families. For example, Saprospiraceae and
Marinicellaceae species harbor demonstrated abilities for hydro-
lysis and utilization of complex carbon sources [55, 56], thereby
aiding host in the acquisition of additional nutrients. Consistent
with this idea, in the present study, the relative abundances of
Saprospiraceae and Marinicellaceae were positively (Pearson
r > 0.60, P < 0.01 in all cases, data not shown) correlated with
the measured digestive enzyme activities. A loss of microbial
diversity appears as the most constant finding of intestinal
dysbiosis [4]. However, we found no significant difference in
gut bacterial diversity (Fig. S3), although the community com-
positions changed significantly between overgrown and normal
shrimps (Fig. 2; Table S2). A possible explanation for this dis-
crepancy is that a high abundance of Bdellovibrio species
(Fig. 3) restores the gut bacterial diversity and maintaining host
health [57]. Indeed, the reintroduction of key predators in

digestive ecosystem has been proposed as a therapeutic ap-
proach for restoring the disease-associated dysbiosis of gut mi-
crobiota [4]. To conclude, the enrichment of predators might
limit the population of dominant species, which is a probable
mechanism to maintain gut species diversity in obese shrimps.
However, it is worthwhile to note that an altered gut community
might be a stable but harmful balance [58].

The ses.MNTD distribution mean deviated significantly
from zero (Fig. 4); thus, the gut bacterial assemblages exhibited
a significantly higher phylogenetic clustering than would be
expected by chance (Table 1), which suggests that the gut bac-
terial communities were structured by host filtering (akin to
environmental filtering) [41]. Notably, we found that phyloge-
netic clustering was stronger in normal shrimps than in retarded
and overgrown subjects (Fig. 4), revealing that the importance
of host filtering decreases in sub-healthy (retarded and over-
grown, if not termed as diseased) shrimps. In other words,
sub-healthy shrimps exert a weaker selection on the gut micro-
biota, thereby resulting in less phylogenetically convergent
communities. This view arises from the fact that, the occurrence
of shrimp disease reduces the strength of selection on the gut
microbiota [19]. How can phylogenetically related species co-
exist in the shrimp gut? In theory, closely related species occupy
a similar niche and should thus compete more intensively than
species of distinct lineages [41]. However, in praxis, biological
invasion studies have demonstrated that the presence of phylo-
genetically related species in a resident community can increase
the success of alien colonizers [59]. One possible explanation

Fig. 6 Comparisons of gut
bacterial KEGG pathways
between retarded and normal and
between overgrown and normal
shrimp using the response ratio
methods. Circles in the right
column indicate a significant
increase in the abundance of the
corresponding pathway, and those
in the left column indicate a
decrease compared with normal
shrimp
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for this discrepancy is that bacterial strains can switch to the
utilization of a different available nutrient source, thereby facil-
itating the closely related species exhibit niche differences. This
assertion is supported by the evolutionary plasticity and redun-
dancy theory, which infers that close relatives have differently
routed pathways, thus allowing the coexistence of phylogenet-
ically related species [60]. According to frequency-dependent
regulation, niche differences promote coexistence by favoring
species when they drop to low density and are threatened with
extinction [61]. As a consequence, bacterial evenness and di-
versity were higher in normal shrimp (Fig. S3). Alternatively,
gut species are strongly selected by similar selective pressures
in normal shrimp, thereby eliminating more different and less
related taxa [62]. Consistent with this notion, it has been shown
that gut bacterial communities tend to be less physically
inhibited (e.g., host filtering) in diseased shrimp, which leads
to a stochastic gut community assembly [19].We therefore infer
that the convergence of gut bacterial phylogenetic clustering
depends on the host health state but warrant further study to
validate this pattern.

It has become clear that interspecies interaction determines
the microbial-mediated functions [10, 14, 19]. We found that
the interspecies interaction was more complex, better connect-
ed, and more cooperative in retarded and overgrown shrimps,
whereas normal shrimps have a greater modularity, correspond-
ing to functional units [47] (Table 2). Given the key function-
alities encoded and conferred by the gut microbiota [2, 15], it is
tempting to speculate that the increased interspecies interaction
in overgrown shrimps would promote digestive capacity.
Consistently, we found that the measured digestive activities
were the highest in overgrown shrimps (Fig. S2). This en-
hanced digestive activity could be due to the bloom of lineages
with efficient nutrient intake, such as Marinicellaceae and
Saprospiraceae species (Fig. 3). Similarly, a recent network
analysis showed that the gut microbiota of obese children had
a higher correlation density than that of normal-weight children,
which is coincident with an increased fermentation capacity
[14]. In contrast, the gut microbiota of normal shrimps exhibits
a lower percentage of positive co-occurrence (Table 2). This
result adds to the increasing evidence that strong competition,
as occurs in a diverse community, favors allelopathic species
[63, 64]. It has been proposed that increased allelopathic inter-
actions could facilitate the resident community barrier against
pathogen invasion [64]. Under this scenario, retarded and over-
grown shrimps are more prone to pathogen invasion.
Consistently, the abundances of functional pathways involved
in diseases infection increased significantly in overgrown and
retarded shrimps (Fig. 6). In addition, compared with normal
shrimps, the metabolic pathways divergently changed between
overgrown and retarded shrimps, whereas other pathways were
less altered in overgrown shrimps (Fig. 6). It is known that
organisms are capable of reallocating energy from anabolism
to immunological activity in response to infection [65]. Thus,

these differences may explain why the growth rates are diver-
gent (retarded and overgrown), although both states exhibit
higher percentages of cooperative syntrophy in relation to nor-
mal shrimps. Apparently, obesity is not a serious concern in
aquaculture. However, it is worth noting that overgrown shrimps
that have been threatened by pathogen invasion (Fig. 6) may
spread these pathogens and impact their cohorts [66]. Indeed,
there was a disease outbreak in the later stage (data not shown).
For these reasons, additional studies are required to characterize
the temporal dynamic of the gut microbiota in retarded and over-
grown shrimps.

To the best of our knowledge, this is the first attempt to ex-
plore the direct connection between the gut microbiota and the
shrimp growth rate. We found that marked changes in the gut
bacterial community contributed to variations in digestive activ-
ities, subsequently affecting shrimp growth rates. The high effi-
ciency of nutrient intake in overgrown shrimpswas evidenced by
an intensified interspecies interaction in the gut bacterial commu-
nity and enriched lineages with high nutrient intake efficiencies.
However, the less phylogenetic clustering of gut microbiota in
retarded and overgrown shrimps may offer empty niches for
pathogens invasion. Given the adequate control for differences
in factors that have profound impacts on the gut microbiota, we
speculate that the differences in gut community assembly can be
attributed to the legacy of random colonization in larval shrimps
(priority effects) and that an altered microbiota may be a causa-
tive factor for retardation or overgrown. The results further val-
idate our previous idea that the larval stage is likely the best
opportunity to establish the desired gut microbiota via the pre-
emptive colonization of probiotics [51]. Together, these findings
greatly add our understanding of the causative role of the gut
microbiota in retarded and overgrown shrimp as well as the
underlying ecological processes, instead of well-studied verte-
brate microbiota.
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