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Abstract Microbial diversity patterns have been surveyed in
many different soils and ecosystems, but we are unaware of
studies comparing similar soils developing from similar parent
materials in contrasting climates. In 2008, developmental
chronosequences with ages ranging from 105 to 500,000 years
across Georgia (GA) and Michigan (MI) were studied to inves-
tigate how bacterial community composition and diversity
change as a result of local environmental gradients that develop
during pedogenesis. Geographic factors were studied between
and within locations spanning two scales: (1) regionally be-
tween 0.1 and 50 and (2) ∼1700 km apart. The diversity was
surveyed using high-throughput pyrosequencing, and variance
partitioning was used to describe the effects of spatial, environ-
mental, and spatio-environmental factors on bacterial

community composition. At the local scale, variation in bacte-
rial communities was most closely related to environmental
factors (rM = 0.59, p = 0.0001). There were differences in bac-
terial communities between the two locations, indicating spatial
biogeography. Estimates of bacterial diversity were much great-
er in MI (numbers of OTU, ACE, and Chao1) and remained 2–
3× greater in MI than GA after removing the effect of soil
properties. The large differences in diversity between geograph-
ically separated bacterial communities in different climates
need further investigation. It is not known if the rare members
of the community, which contributed to greater bacterial diver-
sity in GA relative to MI, play an important role in ecosystem
function but has been hypothesized to play a role in ecosystem
resiliency, resistance, and stability. Further research on the link
between bacterial diversity and spatial variability related to cli-
mate needs further investigation.
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Introduction

Microorganisms are considered the most diverse and abundant
organisms on earth [1]. Progress has been made in understand-
ing the distribution of bacteria across several biogeographical
scales, but questions still remain about the factors important to
community structure and diversity [2]. For example, soil prop-
erties such as pH, carbon, and nitrogen have been shown to
have strong associations with bacterial community structure,
but fewer studies have attempted to compare biogeographically
separated and climatically different soils that have comparable
parent materials [3, 4]. Most of the studies on microbial diver-
sity have focused on studying the diversity at a particular
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location, soil type, or landscape and have ignored understand-
ing the microbial community assembly across spatial scales [2,
5]. Microbial biogeography is an emerging field of microbial
ecology that studies the distribution of microbial diversity
across space and time. It not only aims to reveal the relationship
between the microorganisms and their habitat but also to deter-
mine the environmental factors that select or maintain these
organisms in those habitats [5, 6]. Studying such relationships
would provide more insights on relative influence of environ-
mental and evolutionary changes that determine the structure of
microbial communities [7, 8].

There have been varying views about microbial biogeogra-
phy over the past decade. The ubiquity model proposed by
Beijerinck [6] was considered a paradigm of microbial bioge-
ography until the advent of modern molecular techniques.
According to this theory, due to their small size, abundance,
and high dispersal rate, microorganisms have cosmopolitan
distribution. In essence, any bacterial species can be found
anywhere in the world owing to their small size and high num-
bers. This view is supported even in a recent literature [9] where
the authors argue that any organism less than 1 mm is likely to
be present everywhere due to their unlimited capability of long
distance dispersal whereas larger organisms have constrained
distribution. The underlying assumption in their argument is
that due to the higher local abundance, microbes have the ca-
pability to successfully colonize any remote location by chance
[5, 9, 10]. In contrast to the cosmopolitan theory, some re-
searchers proposed the endemicity model. According to this
model, the endemic taxon is restricted to a particular region
or habitat type, and thus, their distribution across the landscape
exhibits a nonrandom relationship. Although it has been men-
tioned in the literature [5, 11], this model is least studied. Most
of the studies supporting this theory rely on limited dispersal
and local adaptation. For example, extremophiles (microbes
that inhabit extreme habitat) and obligate symbionts
(ectomycorrhizal fungal association with tree species) have
much lesser potential for universal dispersal than the non-
extremophiles and non-symbionts [12, 13]. A conservative
middle-ground model supports the idea that microbes can exist
ubiquitously as long as the niche is suitable for their survival.
The basic hypothesis of these researches that focused on this
idea were based on the Bass-Becking’s statement Beverything
is everywhere, but, the environment selects^ [7]. According to
this idea, habitats that have similar environmental and physical
conditions would support similar microbial communities.

Theories that have been established in macro-ecology have
recently been tested in microbial systems, with the aim of
describing the factors that determine population abundance
patterns [5, 14]. These factors are often divided into two major
groups: environmental and spatial. Though these groups can
co-vary and care must be taken during interpretation, these
factors have been shown to effect bacterial community struc-
ture [4, 5, 15, 16].

In this study, bacterial community composition and diver-
sity were described across a series of dune chronosequences
developing with similar parent materials but varying climatic
conditions. The goal was to compare the environmental soil
gradients created by pedogenesis in two climatically different
(subtropical and cool-temperate) locations in the continental
US. Habitat filtering along the pedogenic gradients were hy-
pothesized to be a major determinant of bacterial community
change (using 16S rRNAgene sequences), but that differences
between locations would help to explain some of the biogeo-
graphic differences related to factors such as climate and veg-
etation. We hypothesized that the geographic distribution of
bacterial communities will be more closely related to local
environmental variations (soil physico-chemical characteris-
tics) than the physical distance between the soils.

Materials and Methods

Site Description

Two sites were chosen for this study, one located in Emmet
County of the lower peninsula of Michigan in Wilderness
Park. The GA dunes are located in the Altamaha and
Ohoopee river valleys of southeast Georgia. The reason for
selecting these sites was that they were sandy with similar
parent materials in different climate zones (Table 1). At MI
study site, a series of beach-dune ridges form a series of ap-
proximately 108 eolian deposits that run parallel to Lake
Michigan. Depositional ages of the parentmaterials from pres-
ent day to approximately 4500 years [17] were derived from
glacial deposits and Paleozoic bedrock underlying the lake
basin. The soil type is fine sand dominated by quartz but
containing numerous other minerals in minor quantities. The
chronology of the dunes was estimated using accelerated mass
spectroscopy (AMS) radiocarbon dating of the macrofossil
remains from each dune [17]. The ridges are approximately
2.5 km long, 10–30 m wide, and vary between 3 and 5 m in
height along the shore and reaching 15 m high in the inland
[18]. A set of nine differentially aged dunes (105, 155, 210,
450, 845, 1475, 2385, 3210, and 4010 years) were sampled. A
previous study [18] has shown patterns of primary succession
with grasses and shrubs on younger dunes to mixed conifer-
ous forests dominating the older dunes.

The GA dunes are located in the Altamaha and Ohoopee
river valleys of southeast Georgia. Chains of eolian deposited
parabolic dunes ranging from 3.7 to 14.0 m high at the crests
are found ∼6 km away from the modern river channel [19].
They are formed from a well-drained sandy parent material
surrounded by coastal plain lowlands that are greater than
165,000 years old. The chronology of the dunes was estimated
using optically stimulated luminescence procedure (OSL)
[20]. The GA dunes are eolion, blown into ridges from fluvial
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deposits of the Altamaha river valley. The dunes were stabi-
lized once they were dominated by vegetation [20]. A set of
four differentially aged dunes (21, 38, 45, and 77 K; K =
1000 years) were sampled. The oldest soils were deposited
during the Pleistocene interglacial period and were assigned
an age of 500 K based on their geology and proximity to the
present coastline. These deposits are sedimentary but repre-
sent sandy marine deposits that are much older formations
than the dunes.

Soil and vegetative sampling

Five replicate soil samples were taken at an interval of 20 ft
between each sampling spot across a 100-ft transect along the
crest of each dune. From each sampling spot, 5–6 cores (0–
10 cm depth, 5-cm diameter) were collected from the zone of
dominant root activity (A-horizon) using a stainless steel soil
corer. After sampling, soil from other zones were carefully
removed, and A-horizon soil from the same plot were homog-
enized with and quickly transferred to a Whirlpak® bag. The
sample bags were frozen immediately in cooler pack filled
with dry ice. Upon arrival in the laboratory, soils were thawed
for 25–30 min and homogenized through a 4-mm sieve; ex-
traneous roots and organic materials were removed and stored
at −80 °C. Plant sampling was conducted on the selected dune
ridges along the chronosequence by measuring the plant spe-
cies composition, tree density, and percentage canopy cover
across the sampling area covering a strip of 5 × 20m (100m2).
The tree species composition was measured by counting the
number of tree species within the sampling area and under-
storey species cover was measured at five random spots within
the sampling area using a 1 m2 quadrat. The tree species can-
opy cover was estimated by fitting the dbh (diameter breast
height) measurement into a conifer crown radius model [21].

Soil Characteristics

Soil organic matter content was estimated by measuring the
mass difference before and after ignition (560 °C). The min-
eralizable C was estimated by measuring the cumulative CO2-
C produced from 100-g soil during a 1-month soil incubation
(20 °C). Soil pH was measured on 1:2 soil and 0.01 M CaCl2
mixture. Soil extractable cations were analyzed according to
the Mehlich-3 extraction protocol [22].

DNA Extraction and Pyrosequencing

Total DNA was extracted from 0.5 g of soil from each soil
sample using ZR Soil-Microbe DNA™ kit (Zymo Research).
After extraction and purification, the DNAwas inventoried and
stored at −80°. Small subunit bacterial rRNA gene fragments
were amplified from an amount of DNA equivalent to that
found in a 0.5 g of soil (varied with each sample) to appropriate
size using 515R-M (5′-CCGCNGCKGCTGGCAC-3′) [23]
and the sevenfold-degenerate primer 27F-YM+ 3 [24]. The
primers were synthesized in such a way that A and B sequenc-
ing adaptors (454 Life Science’s FLX) were immediately up-
stream of the 515R-M and 27F primer sequences, respectively.
In addition, an 8-nt sample-specific barcode tag was attached
between the A-adaptor and primer 515R-M to allow
multiplexing and to eventually separate each sample sequence
bioinformatically after sequencing. Each 25 μl PCRs consisted
of 12.5 pmol of each forward and reverse primer, 1.25 μL of
template DNA, and 22.5 μL of Platinum PCR SuperMix
(Invitrogen). Samples were initially denatured at 95 °C for
3 min, then amplified by using 20 or 30 cycles of 94 °C for
30 s, annealing at 50 °C for 30 s, and extension at 72 °C for
1 min. A final extension of 4 min at 68 °C was added at the end
of the program to ensure complete amplification of the target
region on a Veriti® 96-well Thermal Cycler (Applied
Biosystems). The PCR products were run on a 1% agarose
gel and image quantified on a Typhoon Trio+Variable mode
imager (GE Healthcare) using Image Quant 5.2 (Molecular
Dynamics). The PCR products from 5 replicates of each soil
age were then pooled into equimolar concentrations and gel
eluted using Zymoclean™ Gel DNA Recovery Kit (Zymo
Research). The amplicons were then quantified on the
Experion System (Bio-Rad), and a composite sample for py-
rosequencing was prepared by pooling equal amounts of PCR
amplicons from each soil age. The final mixed amplicon pool
was further purified using the Agencourt AMPure XP system
(Beckman Coulter Genomics) and submitted to the
Environmental Genomics Core Facility at the University of
South Carolina for pyrosequencing on a 454 Life sciences
Genome Sequencer FLX (Roche) machine using standard
protocol [25]. Pyrosequencing generated 151,794 quality
short-read bacterial 16S rRNA sequences from 75 (14 dunes ×
5 replications) samples across both the sites. The gene frag-
ments averaged to approximately 530 bp (base pairs) in
length. Sequences generated in this study have been deposited

Table 1 Description of sampling sites

Region Site Geographic coordinates Climate Soil type and classification

Mid-West USA Wilderness State Park (MI) 45.724 N
84.940 W

Temperate Sandy, frigid Mollic Endoaquents

South-East USA Altamaha River Valley (GA) 31.691 N
81.787 W

Sub-tropical Sandy, Typic Quartzipsamments
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in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) database under accession
number SRP091769.

Processing of 16S rRNA Gene Data

A two-step pipeline was established to analyze the 16S rRNA
gene sequence data. Quantitative Insights into Microbial
Ecology (QIIME) was used to quality trim the raw sequences
for primers, chimeras and to sort them based on the barcodes
[26, 27]. The denoised data was then passed through
MOTHUR v1.22.0 [28], a software for describing and com-
paring microbial communities. To facilitate the downstream
analysis of the large sequence datasets, identical sequences or
artificially duplicated sequences, which can constitute a sig-
nificant fraction of the dataset, were removed [29, 30]. The
non-redundant sequence dataset was then aligned using
SILVA reference dataset (http://www.arb-silva.de/) [31].
Sequence reads were assigned (clustered) to Operational
Taxonomic Units (OTUs) based on pairwise distances
between all aligned sequences in MOTHUR. A distance
matrix was generated using average-neighborhood algo-
rithm at an evolutionary distance D = 0.03, which re-
stricted the distance matrix to keep only sequence reads
that had 97 % sequence similarity.

The alpha-diversity estimates such as rarefaction, richness,
evenness, Shannon, Simpson’s reciprocal index, and Chao1
estimates were done on OTUs at D = 0.03 evolutionary dis-
tances. This level of DNA sequence similarity is typically
used to assign sequences to the same taxa [28]. Finally, the
phylogeny was assigned to representative sequences from
OTUs using SILVA reference taxonomy [28].

The 16S rRNA gene sequence possessed a 530-bp average
length and formed 15,131 OTUs in total at 97% sequence
similarity (D = 0.03). Each soil age was represented by be-
tween 4779 and 11,248 sequences forming 537 to 2352
OTUs per soil age. The most abundant OTU was represented
by 19,258 sequences, accounting for ∼13% of the entire se-
quence data set. The top 10 and 100 OTUs represented 48 and
∼93 % of the entire sequence data set, respectively. Thus, top
100 dominant OTUs, those with at least 0.05 % average abun-
dance across all samples, were used for the ordination tech-
niques. This was done to minimize the stress (a measure of
poorness of fit between the ordination and measured ecolog-
ical distances) while using distance-based ordination methods
when the entire dataset with all OTUs were used.

Statistical and Multivariate Analyses

In order to visualize the differences in microbial community
assemblages related to environmental factors across the ped-
ogenic gradient, 16S rRNA gene-derived OTUs were ana-
lyzed using Bray-Curtis analysis and mantel tests. PC-ORD

(MJM Software, Gleneden Beach, OR, USA) software and
the Sorensen’s metric were used to obtain the n-dimensional
ordination, with Monte Carlo tests (1000 randomized runs) to
determine the occurrence of significance differences between
groups [32]. Mantel tests were used to determine correlations
between bacterial community composition, site vegetation,
and soil variables. Partial mantel test were performed to ex-
amine correlation between the degree of similarity in bacterial
community composition with environmental and spatial vari-
ables, correlating the community with one variable while
holding the third group constant. [15]. Correlations between
soil and site variables were performed by using log-linear
correlations and Pearson coefficients for multiple compari-
sons. The effect of site pedogenic age on the distribution of
OTU was conducted by using Bray-Curtis-derived ordination
scores and testing the statistical significance using a two-way
general linear model (GLM; SAS version 9.2; SAS Institute
Inc., Cary, NC, USA). Multiple mean comparisons were done
using Fisher’s least significant difference (LSD) in SAS ver-
sion 9.2 (SAS Institute Inc., Cary, NC, USA. Hierarchical
cluster analysis of the most abundant OTUs was done using
the PC-ORD software [33]. Factors that significantly influ-
enced community composition were used to construct a soil
variables matrix for Variance partitioning analysis in
CANOCO (ver 4.5) [34]. The significance of the correlations
with each factor was evaluated through the Monte Carlo per-
mutation test by applying 998 permutations.

Results

Plant Community Succession
Across the Chronosequences

At MI site, changes in percentage cover of 13 plant species
(including herbs, shrubs, and hardwood trees) that changed
considerably across the chronosequences were investigated.
The change in plant species abundance was higher in the
youngest sites than the older sites (Table 2). Dune-building
plant species were replaced by evergreen shrubs which were
later replaced by mixed pine forests. This shift in early-
succession species to late-succession species happened
around 450 years of soil development (Table 2). The early-
succession species started disappearing and the mixed pine
forest started establishing as soil ecosystem developed.

GA dunes were dominated by turkey oaks, sand live
oak, and longleaf pine covering the canopy while
sparkleberry, lichen, and mosses covered the dune ground. A
vegetative succession along the chronosequences did not
show a primary succession pattern as observed across the
MI chronosequences. However, the oldest site (500 K) had a
different vegetation composition than the other ages dominat-
ed by oaks and holly (Table 3).
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Change in Bacterial Community Structure and Ecosystem
Properties

The distribution of the 100 most abundant OTU, indicative of
bacterial community change, and showed patterns related to eco-
system development and site characteristics likely reflecting con-
ditions in MI and GA (Fig. 1). Axis 1 ordinates explained 78%
and Axis 2 at 6% of the variation in bacterial community com-
position (Fig. 1). The spread of the data was dominated by axis 1
which indicated that variation associated with age and pedogen-
esis within each site (MI and GA) explains a greater proportion
of the variance than differences between locations. Several soil
characteristics showed significant log-linear correlation with the
soil development (Table 4). Except for the oldest site (500 K), Ca
and Mg accumulation showed a decreasing trend across the de-
veloping soil chronosequences which was characteristic of age
related weathering. This effect was also reflected in soil pH,
which declined from near-neutral (7.6) to acidic (3.5) as the soils
aged and weathered. Carbon and nitrogen levels showed an in-
creasing trend with the oldest site showing the highest accumu-
lation levels, an occurrence typical of developing soil ecosystem
(Table 4). A hierarchical cluster analysis of the microbial com-
munity composition broadly grouped the bacterial community
(OTU) into two major clusters comprising of the younger dunes
and older dunes. The older dunes were further grouped based on
the location (Fig. 2). This pattern was similar to the vegetation
distribution across the older sites (at both MI and GA sites) that
were dominated by mixed-pine forests (Tables 2 and 3).

In order to understand the relative importance of the envi-
ronmental variables, a canonical correspondence analysis
(CCA) was performed on those variables that were shown to
influence the bacterial community composition. This tech-
nique has been shown to be useful to identify the best predic-
tor of soil microbial communities [35]. Soil Ca, Mg, pH, total
carbon (%) and total nitrogen (%) were chosen for the ordina-
tion based on the factors that had a significant Pearson corre-
lation with the bacterial community distribution (see Table S1
for details). CCA significantly explained 70% of the OTU–
environment relationship across the first two canonical axes.
Axis 1 (62 %) explained more of the age-related pattern while
axis 2 (8 %) structured the community based on the location
(Fig. 3). The joint plot shows that CCA grouped the ages
similar to the other ordination techniques used in the study.
Variables Ca, Mg, and pH showed a significant correlation
along canonical axis 1 (Monte Carlo test of significance, p =
0.001) while % C and N showed significant correlation along
canonical axis 2 (Monte Carlo test of significance, p = 0.001).
Variables Ca, Mg, and pH showed positive correlations along
axis 1 (r = 0.81, r = 0.85, and r = 0.98, respectively), implying
that they significantly decreased as the soil aged. Whereas %
C and N were negatively correlated along axis 2 (r = − 0.71
and r = − 0.56, respectively), increasing significantly as the
soil aged.T
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Phylogenetic Affiliation of the 16S rRNA Genes

At a broad level of phylum-class classification, the most abun-
dant bacterial phyla across the chronosequenes were
Actinobacteria, Proteobacteria (including α, β, and γ), and
Acidobacteria covering 93 % of all the sequences with 42, 38,
and 13% individual contribution, respectively (Fig. 4). The re-
maining phyla present within the libraries, such as Bacteroidetes,

Cyanobacteria, Firmicutes, and Planctomycetes, all comprised
less than 7% of the sequences. None of the bacterial phyla
showed a log-linear trend across the age gradient, except
Bacteroidetes, that showed a decreasing log-linear relationship
with a higher abundance in younger compared to older soils
(Fig. 5). Although not statistically significant, Acidobacteria
showed an increasing abundance in older soils (low pH) com-
pared to young soils (high pH).

Axis 1 (78%)
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Fig. 1 Bray–Curtis ordination
plot showing relationship
between soil ecosystem
development and bacterial
community composition and
structure at both the sites
(Michigan and Georgia). Notes:
100 most abundant OTUs were
used for the ordination. OTUs
were formed using average
neighborhood algorithm in
MOTHUR at evolutionary
distance of 0.03 (97% sequence
similarity). Error bars represent
standard error (n = 5)

Table 3 Total percent ground
and canopy cover of different
plant species across the Georgia
chronosequences

Common name Scientific name 21 K 38 K 45 K 77 K 500 K

Hickory Carya sp. 0 0 0 0 24

Water Oak Quercus nigra 0 0 0 0 43

Laurel Oak Quercus hemisphaerica 0 0 0 76 10

American Holly Ilex opaca 0 0 0 5 43

Sand Live Oak Quercus virginiana var. geminata 81 81 48 0 0

Slash Pine Pinus elliotii 43 0 0 0 0

Longleaf Pine Pinus palustris 0 0 5 14 0

Post Oak Quercus stellata 0 19 0 5 0

Turkey Oak Quercus laevis 19 10 24 0 0

Red Bay Persea borbonia 0 0 0 14 14

Sparkleberry Vaccinium arboreum 14 5 5 57 19

Grass Sp Panicum virgatum 10 5 5 0 0

Catbrier Smilax sp. 5 0 5 5 5

Saw Palmetto Serenoa repens 1 5 0 0 0

Spreading Pricklypear Opuntia humifusa 1 0 0 0 0

Reindeer Lichen Cladina sp. 1 0 0 10 0

Spanish Moss Tillandsia usneoides 0 0 5 0 14
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Bacterial Diversity

To calculate diversity indices (using D = 0.03), the number of
sequences per sample were normalized to 4779 by randomly
subsampling a subset of sequences using QIIME scripts. This
was done to avoid the possible influence of sample size on
diversity estimates and normalized subset were used for fur-
ther diversity measurements [36]. Based on the Shannon and

Simpson’s reciprocal index, the bacterial diversity tended to
decrease considerably across the chronosequence (Table 5).
The diversity declined from 205 to 47 (Simpson’s 1/D) during
105 to 500,000 years of soil development. The chao1 richness
predictor values showed that only 29–57% of the OTU’s pre-
dicted by this estimator were actually observed, indicating that
the diversity was not completely sampled at evolutionary dis-
tance of 0.03. Estimates of bacterial diversity were much

Fig. 2 Hierarchical Cluster Analysis of the 100 most abundant bacterial OTU. Notes: Cluster analysis done usingWard’s method and relative Euclidean
distance. The distance axis represents the similarity index

Table 4 Mehlich-3 extractable soil cations and selected soil properties from the mineral soil across the chronosequences

Location Age (years) Ca K Mg pH Total C (%) Total N (%) Mineralizable C (μg/g)
μg/g

Michigan 105 1314 16 110 7.6 0.49 0.01 76

155 762 20 156 7.1 0.42 0.02 121

210 622 19 104 5.7 0.49 0.02 169

450 141 22 20 3.6 0.39 0.02 134

845 109 24 12 3.7 0.10 0.01 129

1475 116 24 11 3.6 0.20 0.01 108

2385 137 25 13 3.6 0.13 0.02 127

3210 110 22 10 3.7 0.19 0.01 85

4010 108 24 8 3.5 0.26 0.02 153

Georgia 21,000 41 30 7 4.2 1.06 0.04 109

38,000 51 22 7 4.0 0.51 0.01 123

45,000 51 22 9 4.0 0.70 0.03 149

77,000 51 25 12 3.5 1.11 0.04 167

500,000 352 51 61 4.5 2.55 0.13 401

r value 0.59 0.70 0.53 0.54 0.69 0.66 0.60

Soil properties with significant log-linear correlation to soil age (p < 0.05)
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greater in MI (numbers of OTU, ACE, and Chao1) and
remained 2–3× greater in MI than GA after (Table 5).

Bacterial Biogeography

A Mantel test showed that there was no significant correlation
between the bacterial community dissimilarity and the geo-
graphic distance (Table 6). The standardized Mantel statistic
(rM) was not significant at 95% confidence level using 999

permutations (rM = 0.13, P = 0.35) and was unsupportive of a
pattern of community change related to distance. Because the
distance factor is strongly weighted by many values below
50 km and those above 1700 km, a Mantel correlogram was
developed to plot autocorrelation as a function of geographic
distance [37, 38] classes defined by: class 1 (0–1 km), class 2
(1–50 km), and class 3 (50–1700 km). For each class, a n × n
matrix was constructed containing zeroes for site pairs whose
geographic distances fall within the class and ones for pairs that
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do not fall into that range class. Then for each distance class
matrix, a simple mantel test was performed between the bacte-
rial community distribution and the distance class matrices
(Fig. 6). For the first two distance classes, there were no signif-
icant spatial autocorrelations observed for the distribution pat-
tern of bacterial community structure (p value, class 1 = 0.96
and class 2 = 0.25) (Fig. 6). However, for the third distance
class (50–1700 km), there was weak negative correlation which
was significant (rM = −0.19, p < 0.001). A simple Mantel test
also showed that there was significant correlation between bac-
terial community distribution and soil physico-chemical char-
acteristics (rM = 0.59, p < 0.001) (Table 6). However, control-
ling for variables is an important challenge in microbial bioge-
ography studies when one tries to make meaningful compari-
sons between the geographic distance and genetic differences,
as they may make the comparisons more complex [39]. So we
performed a partial mantel statistic on our distance matrices.
After controlling for geographical distances, a partial Mantel
test showed that there is still a very high significant correlation
between bacterial community distribution and soil physico-
chemical characteristics (rM = 0.84, p = 0.001) (Table 6).
However, when the soil physico-chemical characteristics were
included as a control matrix, there was no significant correlation
between bacterial community distribution and geographical dis-
tance (rM = 0.02, p = 0.41) (Table 6).

Relative Contribution of Temporal and Environmental
Filters on Bacterial Community Structure

Variance partitioning analysis (VPA)was performed to quantify
the relative contributions of geographic distance and soil pa-
rameters to the taxonomic structure of the bacterial communi-
ties. A subset of environmental parameters (Ca, Mg, pH, total
carbon (%), and total nitrogen (%)) that had the highest Pearson
correlation with the bacterial communities were selected by the
CCA procedure. The combination of selected soil characteris-
tics and geographic distance showed a significant (p = 0.002)
correlation with the bacterial community structure. These fac-
tors explained 50.1% of the observed variation, leaving 49.9%
of the variation unexplained. The soil factors explained 38.2%
(p = 0.003), and geographic distance alone explained 11.9%
(p = 0.029) variations, and no interaction effect was detected
(Fig. 7). Although the sediment properties together explained
more of the variation, geographic distance by itself explained
11.9% of the variation observed, more than any of the other 5 of
the individual soil variables (Fig. 7).

Discussion

The broad goal of this experiment was to characterize patterns
of bacterial community composition and diversity during soil
pedogenesis in two different climate zones. Parent materials inT
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the two locations where similar, but the stages (and age) of
ecosystem development differed, with the site in MI
representing an aggrading system and that in GA representing
a mature mid-succession and possibly retrogressive system.
Aggrading ecosystem by definition is gradual accumulation
of biomass in the form of living biomass, dead wood, soil
fertility, and physical and biological complexity. Essentially,
the ecosystem is building biomass over time during the devel-
opmental period through primary succession [40, 41]. A ret-
rogressive ecosystem on the other hand is characterized by
reductions in ecosystem productivity and plant biomass which
is accompanied by shifts in aboveground and belowground
communities dominated by stress-tolerant species. These eco-
systems are often associated with plant communities reaching a
stable and self-replacing climax [41, 42]. One of the important
aspects of our study is that it represents first large-scale molec-
ular survey of soil bacterial 16S rRNA gene β diversity across
naturally occurring sand chronosequences. Although β diversi-
ty estimates (between sample variations) are considered impor-
tant for the overall understanding of soil microbial community
dynamics [8, 43], they are traditionally less studied than α
diversity (diversity estimates within a single sample).
Pedogenesis is the driver of soil change and is affected by
parent material, climate, organisms such as plants and microbes
[44], and the length of time that these processes have occurred.
As shown previously, bacterial community change is sensitive
to environmental gradients [45, 46], especially soil pH [47].
There are, however, a number of other insights with community
change reflecting differences between the two locations.

The absolute diversity of taxa is shown to be underestimates;
however, comparison of similar sized libraries provides confi-
dence when making comparisons between soils. The soils in
MI were estimated to contain up to 2500 different OTU, while
those in GAwere much lower and ranged between 500 and 600
OTU. Even when pH and soil properties were considered, the

number of OTU remained ∼2× greater (∼1000) in the soils of
MI. Greater evenness and 3× greater richness (ACE, Chao1)
support the conclusion that there is greater diversity in the bac-
terial communities in the soils of MI.

Bacterial species loss and turnover could also affect the
diversity of bacterial taxa in a soil. Weathering rates and tem-
perature related to climate are considerably greater in southern
GA than northern-lower MI. Turnover and decomposition of
organic matter is greater in GA and therefore likely supports a
lower standing microbial biomass. This was supported by the
CCA analysis (Fig. 3) which showed that carbon and nitrogen
were important drivers of community differences between the
two locations [48] . In GA dunes, high summer temperature,
low organic matter at the surface to modulate temperature
swings, and the feast and famine of rainfall might create some
of the most extreme environmental swings for bacteria
existing in the top 10 cm of soil. Many studies have shown
that alternate wetting and drying of soil in sub-tropical condi-
tions may have a direct influence on microbial community
structure and diversity [49, 50]. InMI, low temperatures might
be the biologically most difficult variable to adapt; however,
large swings are modulated to some extent by the regional
climatic effects of Lake Michigan. We also attribute pH to
be another important filter that shaped microbial community
diversity. The chronosequences showed changes in soil prop-
erties, depicting the classic patterns of soil podzolization dur-
ing ecosystem development [51] . During 450 years of soil
development, carbonate mineral started weathering and large
quantities of Ca and Mg started leaching from the system as
the pH of the upper mineral soil decreased from 7.6 to 3.6. As
the dunes got older, decomposing coniferous litter material
would have helped in hastening the mineral weathering pro-
cess by production of organic and carbonic acids [51, 52]. At
phylum level classification, the changes in relative abun-
dances of specif ic taxonomic groups across the
chronosequences pH gradient are similar to the pH responses
observed in other studies. For instance, the relative abundance
of Acidobacteria has been shown to increase towards lower
pH [3, 53, 54]. Consistent with those results, our results shows
that the relative abundance of Acidobacteria changed from
lower abundance in near-neutral condition to higher abun-
dance in acidic condition (Fig. 5). Dunes that were near neu-
tral showed higher bacterial community diversity when com-
pared to the older dunes that were more acidic and supported
less bacterial diversity. Therefore, it appears that the
established pH–diversity relationship [47, 54] observed here
and elsewhere could be driven by the dominance of a few
taxonomic groups in low pH soils.

While studying the effect of dispersal limitation on micro-
bial community structure, the community similarities were not
positively correlated with geographic distance (rM = 0.13, p =
0.35) when the distance matrix included all the distances.
Thus the Mantel test shows there was no significant isolation

Table 6 Mantel test correlations between the bacterial community
distribution and selected environmental characteristics

Variable Mantel test a Partial mantel test

r M P value r M P value

Soil physico-chemical
characteristics

0.59 <0.0001 0.84b 0.001

Geographic Distance 0.13 0.35 0.02c 0.41

a Mantel test of relationship between bacterial community similarity ma-
trix ,environmental characteristics and geographic distance. r M

Standardized Mantel statistic
b Partial Mantel test of relationship between bacterial community similar-
ity matrix and environmental characteristics after controlling for geo-
graphical distance
c Partial mantel test of relationship between bacterial community similar-
ity matrix and geographical distance after controlling for environmental
characteristics
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by distance at a confidence level of 95 %. However, when the
distance variance was partitioned into classes, there was a
marginal correlation at a spatial scale of 50–1700 km. Our
results showed that, at this scale, the community dissimilarity
had a moderate negative correlation with the geographic dis-
tance (Fig. 6). But, partial correlations of community distances
and environmental conditions, keeping the geographic dis-
tance controlled, results in a stronger correlation (rM = 0.84,
p = 0.001). This was higher than the correlation observed due
to soil physico-chemical factors when the effect of the geo-
graphic distance was not controlled (rM = 0.59, p < 0.001),
indicating an increase in genetic dissimilarities once the geo-
graphic isolation effect was removed. Thus the result show

some evidence of dispersal limitation in shaping the commu-
nity patterns but they are difficult to distinguish from the ef-
fects of environmental heterogeneity [37, 55].

Thus, the results suggest that local environmental condi-
tions could have a stronger effect than the geographic dis-
tance, and could be a major contributor in shaping the bacte-
rial community structure at smaller scales [5, 56]. Previous
studies at smaller geographic scales have shown similar effect
on the microbial communities in which the environmental
conditions was considered a major driving factor in shaping
the variability in the community structure [14, 57]. At inter-
mediate geographic scale, studies have shown individual dis-
tance effect [58] and environmental effect [7] on microbial
communities. Other similar studies conducted at this interme-
diate scale have shown that both distance and environmental
factors could be major determinants in shaping microbial
communities [59]. Similar to what we observed, studies have
shown that the correlation between community dissimilarity
and the geographic distance disappeared as the soils got sep-
arated farther [60, 61]. Thus our results suggest that at a geo-
graphic scale of 50–1700 km, the geographic distance and
environmental conditions would have had different extents
in shaping the bacterial community structure.

In conclusion, this study attempts to survey bacterial spatial
patterns across two pristine US dune chronosequences which
are approximately 1700 km apart. Despite the large effect of
environmental factors on community distances, we also found
some evidence for residual spatial autocorrelation at closer
spatial scales. We show that local geochemical features could
be a dominant factor in driving bacterial community structure,
while geographic distance as a single factor could contribute
to some community variation at a specific scale (50 –
1700 km). Thus, the results show that the bacterial abundance
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is spatially structured and could be more dependent on local
filters such as soil characteristics than the global filters such as
climatic factors or the presence of natural barriers. Hence
supporting Bass-Becking’s idea that Beverything is every-
where, but, the environment selects^ which implies that sim-
ilar habitat and physical conditions would support similar mi-
crobial communities. Soil pedogenesis is both a result and
driver of ecosystem development and change, and thus under-
standing how microbial communities change during this nat-
ural process will help develop and describe fundamental eco-
logical theory.
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