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Abstract We hypothesize that bacterial endophytes may en-
hance the competitiveness and invasiveness of Phragmites
australis. To evaluate this hypothesis, endophytic bacteria
were isolated from P. australis. The majority of the shoot
meristem isolates represent species from phyla Firmicutes,
Proteobacteria, and Actinobacteria. We chose one species
from each phylum to characterize further and to conduct
growth promotion experiments in Phragmites. Bacteria tested
include Bacillus amyloliquefaciens A9a, Achromobacter
spanius B1, and Microbacterium oxydans B2. Isolates were
characterized for known growth promotional traits, including
indole acetic acid (IAA) production, secretion of hydrolytic
enzymes, phosphate solubilization, and antibiosis activity.
Potentially defensive antimicrobial lipopeptides were assayed
for through application of co-culturing experiments and mass
spectrometer analysis. B. amyloliquefaciens A9a and M.
oxydans B2 produced IAA. B. amyloliquefaciens A9a secret-
ed antifungal lipopeptides. Capability to promote growth of P.
australis under low nitrogen conditions was evaluated in

greenhouse experiments. All three isolates were found to in-
crease the growth of P. australis under low soil nitrogen con-
ditions and showed increased absorption of isotopic nitrogen
into plants. This suggests that the Phragmites microbes we
evaluated most likely promote growth of Phragmites by en-
hanced scavenging of nitrogenous compounds from the rhizo-
sphere and transfer to host roots. Collectively, our results sup-
port the hypothesis that endophytic bacteria play a role in
enhancing growth of P. australis in natural populations.
Gaining a better understanding of the precise contributions
and mechanisms of endophytes in enabling P. australis to
develop high densities rapidly could lead to new symbiosis-
based strategies for management and control of the host.

Keywords Bacillus amyloliquefaciens . Achromobacter
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Introduction

Common reed (Phragmites australis (Cav.) Trin. Ex Steud.) is
a perennial grass native to Eurasian wetlands and currently
found on every continent [31]. Although the subspecies of
Phragmites (P. australis spp. americanus) is native to North
American wetlands [70], the invasive subspecies (P. australis
spp. australis) has aggressively outcompeted it and many oth-
er native species. This macrophyte is highly productive, even
in low nutrient environments and outcompetes other plants to
create large monodominant populations that can decrease di-
versity of plants and animals [76, 79]. Its success in invasion
has been related to its ecological range [47, 48], high genetic
diversity [23], and high efficiency of dispersion, able to colo-
nize different sites via seed dispersal and clonal growth
through frequent tillering [55]. Phragmites is also effective
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in taking up nitrogen from the soil, and the aboveground standing
stocks of nitrogen may be 2–3 times higher in Phragmites stands
[54]. This is consistent with our understanding that invasive
plant-driven changes in soil N cycles (e.g., changes in soil mi-
crobial or mutualism communities) may play an important role
during successful plant invasion [78].

Mutualisms between plants and their microbiomes are com-
mon and may facilitate the plant invasion processes [13].
Specifically, the competitive ability of invasive plants can be
increased through mutualistic associations that increase growth,
increase tolerance to salinity, reduce herbivory, or increase toler-
ance to drought stress [4, 6, 33, 66, 77]. For example, nitrogen-
fixing endophytic bacteria are involved in the invasiveness of
Sorghum halepense in soil with low concentration of nitrogen
[69]. Plant microbes can live epiphytically (on the surface of the
plant) or endophytically (within the plant), and bacteria and fungi
that colonize the internal tissue of the plant showing no external
sign of infection or negative effect on their host are called endo-
phytes [72]. These microorganisms are beneficial to plants
through auxin production [62], N2 fixation, or increased miner-
alization of soil nutrients [46, 85] that results in plant growth
promotion. They also can help plants increase tolerance to stress-
es, including soils contaminated by heavy metals [44]. Natural
products synthesized by endophytic bacteria can induce resis-
tance to plant pathogens [8] or biocontrol phytopathogens by
lipopeptide resulting in plant growth [64]. Some endophytic bac-
teria help plants to acquire minerals from inaccessible sources
solubilizing phosphorus as orthophosphate in cactus growing on
rocky areas [49].

Understanding the relationship between P. australis and its
microbial symbionts could lead to the development of method-
ologies for disrupting or manipulating the specific symbiotic
relationships in order to reduce the invasive character of the
host [39]. Endophytic fungi [5, 24] and bacteria [45, 50] have
been isolated from leaves, roots, and rhizomes of P. australis
but not yet from meristematic tissues. Characterization of the
identity and functional role of microorganisms in invasive spe-
cies are the first steps for the development of new management
techniques [39], so this study characterized endophytic bacteria
in P. australis subsp. australis meristematic tissues and tested
their plant growth-promoting attributes under low nitrogen con-
ditions. Our hypothesis was that endophytic bacteria in
Phragmites australis subsp. australis contribute to promotion
of plant growth under low nitrogen conditions.

Materials and Methods

Isolation, Metabolic Characterization, and Plant
Growth-Promoting Attributes of Endophytic Bacteria

Young stems (∼15 cm length) of five individuals of P.
australis subsp. australis were collected from a population

on the roadside in a moist wooded area at the junction of
Dudley Road and Ryders Lane on the Cook campus of
Rutgers University in New Brunswick, NJ. Tissues were su-
perficially disinfected with a 2 % sodium hypochlorite solu-
tion for 7 min and then rinsed three times with sterile water.
Tissue fragments (2×2 mm) were placed onto plates contain-
ing 10 % trypticase soy agar (TSA) and 1 % yeast extract +
1 % sucrose (YES) media. Ten replica plates (10 fragments/
plate) were made for each culture medium. The plates were
kept at room temperature and growth was assessed periodical-
ly. Bacteria strains were stored at −80 °C in the Department of
Plant Biology and Pathology, Rutgers University.

Genomic DNA from bacteria was isolated using QIAamp
DNAMini Kit (QIAGEN®). The identification of endophytic
bacteria was done sequencing the 16S rDNA region
(Electronic Supplementary Material Table 1). Enterobacterial
repetitive intergenic consensus (ERIC)-PCR fingerprinting
profiles [36] were obtained. Then, 16S rDNAwas sequenced
for 12 strains (A9a, A12a, A28, A30, B1, B2, B3, B5, B9,
B19a, B42b, and B25) coming from three ERIC-PCR groups.
All sequences were deposited in GenBank under accession
numbers: KP860304–KP860314. Sequences were identified
by comparison to GenBank accessions using BLASTn (http://
www.ncbi.nlm.nih.gov).

Seventy-one carbon source utilization tests and 23
chemical-sensitivity tests of bacteria were performed using
GNIII microplates (96 wells) from Biolog Corporation
(USA) to metabolic characterization of bacteria. The data
were transformed into a binary matrix (0 = no active metabo-
lism, 1 = active metabolism). Using the binary matrix, the
similarity between the metabolic profile of strains was calcu-
lated using the Jaccard coefficient with NTSySpc 2.11T
(Applied Biostatistics, Setauket-USA).

Functional traits involved in promoting plant growth were
determined by standard procedures: production of
indoleacetic acid (IAA) was assayed with Salkowski’s reagent
[41]; phosphate solubilization ability of the strains was tested
by spotting bacteria on GL-rich medium [74]; production of
cellulase, protease, amylase, and esterase was determined ac-
cording to Carrim et al. [14]; nitrogenase activity was deter-
mined by the acetylene reduction assay (ARA) [29] and
growth of strain in N-free glucose medium [58].

Testing for Antibiosis Against Filamentous Fungi
and Lipopeptide Production

Some species of bacteria are known to inhibit growth of path-
ogenic fungi (Fusarium oxysporum, Alternaria alternata,
Botrytis cinerea, Colletotrichum gloeosporioides) and non-
pathogenic (Aspergillus flavus), so we tested for antagonistic
associations using our microbes. Antibiosis between endo-
phytic bacteria and fungi was evaluated in 10 % TSA. Discs
containing mycelium of fungi were inoculated in the center of
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a plate, and bacteria were transferred to two equidistant points
in the plate. Controls were inoculated only with the fungi.
Three replicates were made for each fungus, and the plates
were incubated at lab-ambient temperature. Zones of inhibi-
tion between bacteria and fungal colonies were measured at 2-
day intervals. Antagonism was expressed as a percentage of
mycelial growth compared to control treatment.

Genomic DNA from bacteria was used to amplify
surfactin, inturin A, bacillomycin, and fengycin genes. The
oligonucleotides and program sets used in the PCR amplifica-
tions are listed in Table 1. Amplified fragments were purified
and sequenced. Sequences were analyzed using BLASTx and
BLASTn algorithms available from the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.gov).
Crude extract containing lipopeptides was obtained
according to Zhao et al. [87]. The lipopeptide precipitate
was resuspended in 10 mL of methanol to yield the crude
extract of lipopeptide (CEL). CEL was analyzed by thin
layer chromatography (TLC) [27]. The CEL in methanol
was characterized by matrix-assisted laser desorption/
ionization time-of-flight (MALDI-TOF) mass spectrometry
[37]. Positive ion detection and the reflector mode were used.
Data were acquired at reflector positive mode from 800 to 4.
000 and the data were compared with the references (see
Electronic Supplementary Material Table 3).

Plant Growth Promotion under Low Nitrogen Conditions

P. australis seeds obtained from populations on Sandy Hook
Island, New Jersey, were stratified at 4 °C for 6 months then
planted for germination in trays containing vermiculite. The
trays were placed in the greenhouse at 17:16 °C day/night
cycle, 75 % relative humidity, and a photoperiod of 15 h
(300 μE) for 12 days. Trays were irrigated daily with tap
water. The bacteria strains were grown in Luria-Bertani (LB)
broth at room temperature under stirring 150 rpm. Seedlings
were immersed in the bacterial suspension (OD600=0.8) for

2 h. Control seedlings were immersed in sterile LB. The seed-
lings were then transplanted to 3-in. pots containing
vermiculite/soil mix (3:1) 2× autoclaved (1 atm and 121 °C)
for 1 h. Soil mix was purchased from Fafard® GrowingMix 2.
Every 15 days, the plants were sprayed with bacterial suspen-
sion (OD600=0.8) or sterile LB media (control). The experi-
mental design was completely randomized and built with 17
repetitions for each treatments: control (without bacteria inoc-
ulation) and three bacteria species inoculated separately. A
nutrient solution (Hoagland’s nutrient nitrogen-free solution)
was added every 15 days until the percolation of the solution.
The pots were placed in the greenhouse at 17:16 °C day/night
cycle, 75 % relative humidity, and a photoperiod of 15 h
(300 μE). The plants were harvested and rinsed in tap water
45 days after inoculation. Shoot length was measured for each
plant before they were stored in a dryer at 70 ° C until a
constant dry weight. The dry weights of aboveground and
belowground plant parts were determined using an analytical
balance. Growth promotion efficacy (GPE %) was estimated
to elucidate the relative effect of tested strains on plant accord-
ing to Almoneafy et al. [3] using the following formula: GPE
(%)= [(GT−GC)/GC]×100.Where, GPE refers to growth pro-
motion efficacy, GT refers to growth parameter in bacteria-
treated group, and GC refers to growth parameter in control
group.

In order to quantify bacteria-associated nitrogen fixation in
plants, we conducted isotopic N15 gas assimilation experi-
ments with multiple air controls. Three plants from each treat-
ment in the greenhouse experiment were collected and placed
in a gas chamber filled with 33 mL of 15 N-labeled gas (N2,
NH4, NO3 and NO2; Sigma-Aldrich Lot MBBB0968V). One
plant from each treatment was placed in ambient air to confirm
the absence of 15 N assimilation. After a 10-day incubation
period under 12 h alternating light/dark cycle, we removed the
plants from the chamber and washed them. We oven dried all
samples for 24 h at 80 °C to prepare for mass spectroscopic
14:15 N ratio analysis. After drying, we sent 0.9–1.0 g of dried

Table 1 Evaluation of functional traits of endophytic bacteria from Phragmites australis

Strain IAA
(μg mL−1)

PO4−2

Sol.
Enzyme Norris

agar
Acethylene
reduction
(μmol)b

Antagonistic activity against (%)

FO AL BO CO AF

B. amyloliquefaciens
A9a

3.78 ± 0.15 −a cellulase, lipase, protease, and
amylase

+a 737.0 ± 14.7 33.3 ± 2.0c 55.9 ± 2.5 53.8 ± 1.1 54.1 ± 0.4 25 ± 1.3

A. spanius B1 0 − lipase + 640.0 ± 35.5 − − − − −
M. oxydans B2 11.75 ± 0.28 − protease + 691.0 ± 3.6 − − − − −

FO Fusarium oxysporum, AL Alternaria alternata, BO Botrytis cinerea, CO Colletotrichum gloeosporioides, AFAspergillus flavus
a (+) growth in medium; (−) no growth
bData represents the means ± standard deviation from three replicates. We injected 500 μL of sample into chromatograph. The means are different by
Duncan test p< 0.05
c Percentage of fungal growth inhibition compared to the growth obtained in control plates. Data represent the mean ± standard deviation from three
replicates
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material to the Stable Isotope/Soil Biology Laboratory at the
Odum School of Ecology at the University of Georgia for
analysis.

Statistical Analysis

Statistical evaluation of growth parameters and assimilation
15 N gas was performed by ANOVA and the differences be-
tween treatment were estimated by Duncan’s test (SPSS ver-
sion 20, IBM, USA).

Results

Isolation, Metabolic Characterization, and Plant
Growth-Promoting Attributes of Endophytic Bacteria

The rate of isolation of bacteria from the sample fragments
was higher (T test, p<0.001) in 1 % YES medium (94.0 %)
compared to 10 % TSA (34.8 %). We isolated 45 strains and
their genetic diversity was verified by ERIC-PCR. The mo-
lecular identification via blast 16S rDNA revealed that ERIC-
PCR groups represented three different species. The largest
group of strains was identified as Bacillus amyloliquefaciens
(99 % identity with sequences deposited in GenBank; phylum
= Firmicutes). Other groups of strains were obtainedwith high
identity to sequences of Achromobacter spanius (phylum =
Betaproteobacteria), andMicrobacterium oxydans (phylum =
Actinobacteria), respectively. B. amyloliquefacienswas isolat-
ed frequently (75.5 %), followed by A. spanius (15.5 %) and
M. oxydans (8.8 %).

Metabolic profiles of B. amyloliquefaciens (strains A9a,
B2, and B5), A. spanius B1 and M. oxydans B2 were done
using GEN III Microplates. There were no differences in the
metabolic profi les among the three strains of B.
amyloliquefaciens (A9a, B3, and B5); however, profiles
among the three species were very different . B.
amyloliquefaciens A9a and M. oxydans B2 had higher meta-
bolic similarity (Jaccard coefficient 0.6951), using 49 and 55
different carbon sources, respectively, from Biolog Inc.
(Hayward, CA, USA). A. spanius B1 used only 27 carbon
sources and its profile showed a similarity coefficient under
0.5 with A9a (Jaccard coefficient 0.4000) and B2 (Jaccard
coefficient 0.4578). The three species demonstrated variation
in susceptibility to chemical compounds. Although B.
amyloliquefaciens A9a grew in all evaluated salt concentra-
tions (1, 4, and 8 % NaCl), this strain was sensitive to
troleandomycin, minocycline, lincomycin, niaproof 4, vanco-
mycin, tetrazolium violet, and blue tetrazolium. A. spanius B1
and M. oxydans B2 showed no metabolic activity on 8 %
NaCl. Strain B1 was the most resistant to chemical com-
pounds, being sensitive to only 1 % sodium lactate,
minocycline, potassium tellurite, and sodium bromate.

Important functional traits for promoting plant growth were
detected in B. amyloliquefaciens A9a, A. spanius B1, and M.
oxydans B2 (Table 1). The three strains were able to grow in
nitrogen-free media and to reduce acetylene. M. oxydans B2
stood out for IAA synthesis (11.75 ± 0.28 μg/mL); almost
three t imes the concentrat ion synthesized by B.
amyloliquefaciens A9a (3.78±0.15 μg/mL). IAAwas not de-
tected in the culture supernatant from A. spanius B1. B.
amyloliquefaciens A9a secreted amylase, protease, cellulase,
and esterase, while A. spaniusA1 andM. oxydans B2 showed
activity only for lipase and protease, respectively. None of the
three species solubilized phosphate.

Antagonism against Fungi and Characterization
of Bacterial Lipopeptides

B. amyloliquefaciens A9a inhibited the growth of pathogens
in vitro (Table 1). Inhibition ranged from 25 %± 1.3 to
55.9 %±2.5 for A. flavus and A. alternata, respectively. The
mycelium treated with lipopeptides suffered morphological
changes showing development of swollen, pigmented
chlamydospore-like structures. TLC separation showed at
least four spots in the B. amyloliquefaciens A9a extract, sug-
gesting that four distinct lipopeptides were present. A. spanius
B1 and M. oxydans B2 did not show antibiosis against fungi.

Key genes in lipopeptide synthesis were amplified and de-
tected from B. amyloliquefaciens (A9a, B3, and B5) and M.
oxydans B2 DNA using specific primers (Electronic
Supplementary Material Table 1). ipa14, fenD, and ituC were
detected in both bacterial species, and srfAA, bmy ,and ituD
were amplified only from B. amyloliquefaciens strains. The
fragment sizes and sequences of lipopeptide genes were very
similar between B amyloliquefaciens (A9a, B3, and B5) and
M. oxydans B2 (Electronic Supplementary Material Table 2).
We did not detect any lipopeptide genes in A. spanius B1 with
any primer sets (Electronic Supplementary Material Table 1).

The nucleotide sequences of the amplified fragments had
high homology (98–100 %) to the lipopeptide genes from B.
amyloliquefaciens strains (Electronic Supplementary Material
Table 2): surfactin (srfAA); iturin A (ipa14, ituC, ituD, and
bmy); and fengicin (fenD). The sequence of translated amino
acids showed high homology (98–100 % identity BlastX) and
had conserved domains with lipopeptide synthesis enzymes in
B. amyloliquefaciens. We used two other B. amyloliquefaciens
strains—B3 and B5—to amplify and sequence the genes in-
volved in the synthesis of lipopeptides. Amplification and
sequencing of these fragments demonstrated that they were
similar to those obtained for the strain A9a. These data and
ERIC-PCR fingerprinting corroborate the identity of B3 and
B5 as B. amyloliquefaciens.

The antifungal activity of the CEL from B. amyloliquefaciens
A9a was confirmed in vitro using 0, 4, and 40 μg/mL in media
(Fig. 1). Reduction in fungal growth was concentration-
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dependent. A. alternata and C. gloeosporioides were more sen-
sitive to the extracts in culture media. Mycelial growth of both
species was completely inhibited at the highest concentration
used (40 μg/mL). The growth of other plant pathogens ranged
between 88.98 and 96.82 % with 40 μg/mL of extract. The
activities of the extracts of A. spanius B1 and M. oxydans B2
were not evaluated because the cultures did not show antibiosis
and we could not detect the presence of lipopeptides via TLC
[27].

MALDI-TOF mass spectrometry of CEL from B.
amyloliquefaciensA9a indicated presence of clusters of peaks
(Electronic Supplementary Material Table 3). One cluster of
peaks in the range of 1016.60 to 1111.47 m/z ratio
corresponded to iturin and bacillomycin isoforms and homo-
logues. Another cluster of peaks was observed in the range of
1435.73 to 1529.74 m/z ratio corresponding to fengycin iso-
forms and homologues. The third cluster of peaks
corresponded to surfactin (1016.60 to 1043.53m/z). One peak
(939.5m/z) represents kurstakins, the lowest molecular weight
group of lipopeptides. The peak at 1421.7 m/z may be identi-
fied as bacitracin. The possible assignments for 33 m/z peaks
are presented in Supporting information Table 3. Most of the
detected peaks are iturin and fengycin variations and these
corresponded to approximately 64 % of detected peaks. B.

amyloliquefaciens C6c showed the co-production of different
homologous compounds for each lipopeptide family
(Electronic Supplementary Material Table 3). Nineteen peaks
were not identified by the mass m/z because they did not
correspond to any published m/z masses.

Although lipopeptides were not detected from CEL of A.
spanius B1 and M. oxydans B2 by TLC analysis, MALDI-
TOF showed a few peaks of lipopeptides. The peaks 939.5
(kurstakin) and 1488.7 (fengycin) m/z were detected in ex-
tracts from A. spanius B1 and M. oxydans B2. M. oxydans
B2 showed a third peak 1502.8m/z (fengycin).

Unidentified peaks were similar between the three species
(827.4, 926.4, 1052.6m/z), between B. amyloliquefaciensA9a
and A. spanius B1 (852.4 and 997.4 m/z), and between A.
spanius B1 and M. oxydans B2 (911.4, 1359.7, and
1688.8m/z). These results suggest that in some cases, these
may be producing the same or similar compounds; however,
this needs to be confirmed by further chemical analyses.

Growth Promotion of P. australis by Endophytic Bacteria

Our greenhouse experiment showed a significant effect on
plant growth when seedlings were inoculated with endophytic
bacteria (Table 2). Aboveground stem height of inoculated
plants was 96.4–124.2 % higher than that of the control treat-
ment (Duncan <0.01). All bacterial treatments increased plant
root biomass of treated plants over the control treated with
only media (Duncan <0.01). Similar results were obtained
for the total biomass. Plants inoculated with A. spanius B1
and M. oxydans B2 resulted in an increase of 109.7 and
198.4 %, respectively, in accumulation of aboveground dry
matter. The greatest increase of total biomass was observed
in plants inoculated with M. oxydans B2 (221.4 %), followed
by A. spanius B1(150.0 %) and B. amyloliquefaciens A9a
(120.7 %).

In a 15 N2 gas assimilation experiment (Table 3), mass
spectroscopic analysis showed that P. australis incorporated
15 N into tissues. Highest incorporation into leaves and stems
was observed in plants inoculated withA. spaniusB1. Highest
incorporation into roots was observed in plants inoculated

Fig. 1 Fungicidal activity of the crude extract of lipopeptide from B.
amyloliquefaciens A9a. FO Fusarium oxysporum, AL Alternaria
alternata, BO Botrytis cinerea, CO Colletotrichum gloeosporioides, AF
Aspergillus flavus. Bars standard deviation. The differences between the
average concentrations are statistically different (T test 99 % confidence
level)

Table 2 Results of experiments to evaluate endophytic bacteria for growth promotion of Phragmites australis plants

Inoculants Aboveground
dry matter (mg)

GPE*
(%)

Aboveground
length (cm)

GPE
(%)

Underground
dry matter (mg)

GPE
(%)

Total
dry matter (mg)

GPE
(%)

Control 0.0062± 0.0015aª – 3.31± 0.66a 0.0078± 0.0030a 0.0140± 0.0042a

Bacillus amyloliquefaciens
A9a

0.0114± 0.0041b 83.8 6.50 ± 2.36b 96.4 0.0195± 0.0103b 150.0 0.0309± 0.0109b 120.7

Achromobacter spanius B1 0.0130± 0.0055b 109.7 6.53 ± 2.22b 97.2 0.0219± 0.0106b 180.8 0.0350± 0.0144b,c 150.0

Microbacterium oxydans B2 0.0185± 0.0048c 198.4 7.42 ± 1.93b 124.2 0.0265± 0.0087b 239.7 0.0450± 0,0129c 221.4

a Data are presented as the mean ± standard deviation (SD) of 17 replicates of plants. Values in the same column followed by the same lowercase letter did
not differ significantly at 99 % (Duncan)

*Growth promotion efficacy (GPE %)
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withM. oxydans B2 and A. spanius B1. Bacterial inoculation
with B. amyloliquefaciens and M. oxydans did not change N
incorporation into stems over what was seen in non-inoculated
controls. However, bacterial inoculat ion with B.
amyloliquefaciens and M. oxydans increased N incorporation
into leaves over what was seen in non-inoculated controls.
Plants that had not been exposed to 15 N2 gas showed mini-
mal 15 N content.

Discussion

Isolation, Metabolic Characterization, and Plant
Growth-Promoting Attributes of Endophytic Bacteria

Roots and leaves host different endophytic species distin-
guished by the structure and composition of the organ-
specific communities [12, 40, 52]. Root endophytic bacteria
are reasonably well studied with respect to location and inter-
actions with the host; comparatively little is known about en-
dophytes associated with shoot meristems [63]. The shoot
meristems are an important tissue responsible for the growth
and development of new leaves and stems.We reason also that
endophytes that colonize shoots are more likely to be trans-
mitted with seeds than endophytes that remain in roots. Thus,
aerial organ endophytes may be critical microbes in terms of
survival value and competitive enhancement.

Endophytes examined in this study were obtained from
Phragmites from a single collection site. Our results showed
that cultivable endophytic bacteria community composition in
shoot meristematic tissues consisted of: B. amyloliquefaciens
(Firmicutes 75.5 %), A. spanius (Proteobacteria 15.5 %), and
M. oxydans (Actinobacteria 8.8 %). The metabolic profiles of
both Gram-positive strains, B. amyloliquefaciens and
Microbacterium oxydans, were more similar to each other
(0.6951 Coef Jaccard) than to the Gram-negative bacterium
A. spanius. B. amyloliquefaciens A9a could be considered a
halophilic bacterium since it was capable of growth at high
concentrations of NaCl.

The three species of bacteria we isolated from shoots of P.
australis have not previously been identified in communities
of Phragmites endophytes. There are a few papers regarding
endophytic bacteria of P. australis, but these papers have used
roots and rhizomes for isolation of bacteria [43, 71]. Various
biotic and abiotic factors influence the composition of the
microbiota associated with plants [9, 26]. We propose that
the kind of tissue used and the environmental conditions have
effects on the community composition of endophytes in P.
australis [43, see 71].

B. amyloliquefaciens was the most frequently isolated en-
dophyte among the bacteria isolated. This bacterium is a
Gram-positive, motile, spore-forming, rod-shaped bacterium
that is present in the soil or in plant hosts as an endophyte. It
has been classified into two subspecies B. amyloliquefaciens
subsp. plantarum (for plant-associated strains) and B.
amyloliquefaciens subsp. amyloliquefaciens (for soil strains)
[10]. Our Phragmites isolate is B. amyloliquefaciens ssp.
plantarum. B. amyloliquefaciens is a bacterium that is known
to stimulate plant growth and produce secondary metabolites
that suppress plant pathogens [16, 84]. A. spanius is a Gram-
negative, oxidase- and catalase-positive, rod-shaped bacteri-
um that has been previously found to colonize the rhizoplanes
and internal tissues of annual ryegrass [15, 28]. The genus
Microbacterium contains species that are Gram-positive rods
and have been found to be endophytic in tomato roots [53] and
in maize grains [88].

Antagonism against Pathogens and Characterization
of Lipopeptides of Endophytes

B. amyloliquefaciens and other closely related Bacillus sp.
have been used to successfully control many plant pathogenic
fungi [83, 86]. B. amyloliquefaciens A9a may be a defensive
endophyte of Phragmites. Based on our results, B.
amyloliquefaciens A9a exhibited high antibiosis activity
against several phytopathogenic fungi. This bacterium is
known to produce antifungal lipopeptides that may be secret-
ed into the growth medium [41]. It is generally accepted that

Table 3 15 N isotopic analysis results for 15 N-enriched and non-enriched plants after 10-day growth

Treatment Leaves Stem Roots

δ15 N vs (‰) Atoms % 15 N δ15 N vs (‰) Atoms % 15 N δ15 N vs (‰) Atoms % 15 N

Control 12.86 ± 0.77* aA 0.3712 ± 0.0003 aA 15.32 ± 1.48 aA 0.3720 ± 0.0005 aA 6.38 ± 2.37 aB 0.3688 ± 0.0008 aB
B. amyloliquefaciens A9a 22.28 ± 1.10 bA (73**) 0.3746 ± 0.0004 bA 16.98 ± 3.18 aB 0.3723 ± 0.0011 aB 10.03 ± 1.18 (57) bC 0.3701 ± 0.0004 bC
A. spanius B1 25.77 ± 4.50 bA (100) 0.3759 ± 0.0016 bA 29.24 ± 4.56 aA 0.3771 ± 0.0017 aA 17.03 ± 1.01 (167) cB 0.3727 ± 0.0004 cB
M. oxydans B2 21.30 ± 3.06 bA (65) 0.3742 ± 0.0011 bA 16.33 ± 13.14 aA 0.3724 ± 0.0047 aA 19.21 ± 1.66 (201) cA 0.3734 ± 0.0006 cA
Plants without 15 N 4.68 ± 0.38 0.3700 ± 0.0001 1.84 ± 0.37 0.3700 ± 0.0001 2.66 ± 0.26 0.3700 ± 0.0001

*Values are means ± standard deviation (SD); different letters in the same row (uppercase) and column (lowercase) indicate significant difference at
P< 0.05 (Duncan test)

**Increase % in relation to control: [(GT−GC)/GC] × 100. Where, GT refers 15 N in plant inoculated group and GC refers to 15 N in control group
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these compounds help the host defend against pathogens, in-
ducing systemic responses in plants [34] or acting directly on
the pathogen as an Bantibiotic^ [60]. The lipopeptides pro-
duced by numerous Bacillus spp. are classified into three fam-
ilies depending on their amino acid sequences: surfactins;
iturins (iturins, mycosubtilin and bacillomycins); and
fengycins [59]. These molecules are synthesized by non-
ribosomal peptide synthetase (NRPS) encoded by operons in
bacteria [65]. The genes involved in lipopeptide synthesis
have been previously detected in B. amyloliquefaciens [35]
and their sequences are well conserved among different strains
of this species [17].

The antagonistic activity of A9a correlated with antifungal
activity of CEL (Table 1). The antifungal activity of the extract
was concentration-dependent, completely inhibiting growth
of A. alternata and C. gloeosporioides at 40 μg/mL. Our
MALDI-TOF analysis of CEL exhibited peaks that may be
attributed to the sodium and potassium adducts of lipopeptides
[19]. By comparing the mass with the mass numbers reported
for the lipopeptide complexes from other Bacillus strains
(Electronic Supplementary Material Table 3), we found four
lipopeptide families from A9a CEL: iturin, surfactin,
fengycin, and kurstakins. Kurstakin was discovered in B.
thuringiensis and considered to be a biomarker of this species.
However, it was later detected in other species of Bacillus [7].
We did not find reports of synthesis of kurstakin by B.
amyloliquefaciens, but we do know that purified kurstakins
can display antifungal activities [30]. We detected one
MALDI-TOF peak corresponding to bacitracin, an antibiotic
synthesized by both B. subtilis and Bacillus licheniformis
[22]. Bacillomycin, a member of the iturin family, has been
reported together with fengycin to have strong antifungal ac-
tivity, being responsible for the main antagonistic activity of
the commercially available biological control strain B.
amyloliquefaciens FZB42 against F. oxysporum [75].
Surfactins have weak antifungal activity but are known for
their biosurfactant, hemolytic, antiviral, and antibacterial ac-
tivities [11]. Fengycins are less hemolytic than either
surfactins or iturins and possess strong antifungal capacity,
specifically against filamentous fungi [19, 51].

Interestingly, fenD, ipa14, and ituC were also amplified
from the M. oxydans B2 DNA indicating that this species
may also be able to synthesize fengycin and iturin. We detect-
ed by MALDI-TOF only fengycin from theM. oxydans CEL.
The failure to detect lipopeptide genes in A. spanius B1 could
be due to the absence of the genes in this bacterium or simply
failure of the primers to match lipopeptide genes of this spe-
cies. Our results showed that detection of lipopeptide genes by
PCR may not represent the actual capacity of synthesis and/or
secretion of these compounds. In this study, we detected via
PCR two sequences of genes (ituC and ipa14) in M. oxydans
B2, but we were unable to detect either lipopeptide by TLC or
by MALDI-TOF analysis.

MALDI-TOF analysis indicated kurstakin and one peak of
fengycin in A. spanius B1 and M. oxydans B2 extracts, and a
second peak inM. oxydans B2 corresponding to fengycin. We
did not find reports of synthesis of kurstakin by these species.
The amount of secreted lipopeptide was not sufficient to in-
hibit fungal growth in vitro in our antibiosis experiment.
These results lead us to believe thatM. oxydans B2 may have
non-functional genes or the growth conditions were not favor-
able for lipopeptide operon expression. The oligos used for
Gram-positive bacteria (B. amyloliquefaciens A9a and M.
oxydans B2) did not work in Gram-negative bacteria (A.
spanius B1).

The Role of Increased Nitrogen Assimilation in Growth
Promotion of P. australis by Endophytic Bacteria

Endophytic infections often lead to enhanced plant productiv-
ity, either by producing plant growth hormones, enhancing
nutrient acquisition, synthesizing metabolites that restrict ver-
tebrate or invertebrate herbivory, or reducing disease suscep-
tibility [68]. Our three microbes show some of these same
capabilities. Endophytic fungi [5, 24] and bacteria [45, 50]
are associated with leaves, roots, and rhizomes of P. australis.
The functional roles of this community in adaptability and
growth promotion has not been fully determined, although,
fungal endophytes belonging to genus Stagonospora (isolated
from Phragmites seeds) were shown to enhance reed biomass
[21].

Invasive species often have a competitive advantage over
the native community from the moment when the invaders
enter the environment. One of the main factors for successful
plant invasion is that invading plants often affect nitrogen
cycles via direct and/or indirect ways, such as changes in soil
microbial communities, litter decomposition rates, and/or soil
physicochemical properties [78].

The results of our isotopic nitrogen gas assimilation exper-
iment (Table 3) show that all three bacteria substantially in-
creased the amount of isotopic nitrogen that accumulated in
Phragmites plants over absorption into plants where bacteria
were not applied. The bacteria we tested all possess the enzy-
matic capability to absorb nitrates, nitrites, nitrogen oxide and
ammonia molecules that may be impurities in the isotopic
nitrogen gas used in our experiments [18]. Thus with our data,
it is not possible to determine if increased accumulation of
isotopic nitrogen in the plants is due to nitrogen fixation or
enhanced absorption of 15 N-labeled ammonia, nitrate or ni-
trous oxide present in the molecular nitrogen. What is clear
from our data is that all three microbes increase accumulation
of isotopic nitrogen into plants.

Results of the acetylene reduction tests (Table 1) indicate
that all three bacteria are capable of nitrogen fixation, and it is
possible that at least some of the 15 N accumulation in plant
tissues could be the result of nitrogen fixation by the applied
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microbes. However, we do not have any direct evidence that
the observed growth promotion of Phragmites is the result of
nitrogen fixation by the microbes we applied to plants.
Instead, we hypothesize that increased efficiency of nutrient
absorption from rhizosphere nutrient pools contributes to the
growth promotional effects we observed in our experiments
(Table 2) [see 67]. A similar mechanism for microbially en-
hanced nitrogen accumulation in plants was proposed by
Hurek et al. [32] where it was found that kallar grass bearing
rhizobacteria that were incapable of nitrogen fixation never-
theless enhanced nitrogen accumulation into plants.
Endophytes that colonize surfaces of roots may increase ni-
trogen available to the plant through enhanced scavenging of
organic nitrogen and perhaps other forms of nitrogen in the
rhizosphere [80]. In Phragmites, root microbes may collabo-
rate with plants to increase nitrogen supply by secreting pro-
teases around roots to degrade microbial enzymes forming
peptide fragments that may be absorbed by roots [1, 2]. It
has also been shown that microbes that associate with roots
may colonize surfaces of roots and also become internalized
within root cells where they degrade as roots develop [61, 80,
81]. Continuous internal re-colonization of growing root mer-
istems by surface microbes could result in a continuous trans-
fer of nutrients from microbial community pools outside roots
to microbes within root cells and ultimately to the host root.
Microbially enhanced transfer of nutrients to host roots from
rhizosphere nutrient pools could explain the plant growth pro-
motion observed in our experiments. Results of growth pro-
motional experiments (Table 2) and nitrogen absorption ex-
periments (Table 3) are consistent with this hypothesis. The
growth promotion efficiency (GPE) of the three strains of
bacteria in order of magnitude was B2 > B1 > A9a.
Examination of isotopic absorption data shows that absorption
in order of magnitude in leaves was B1 > A9a > B2; absorp-
tion in stems was B1 > A9a > B2; absorption in roots was B2
> B1 > A9a. Only in roots do we see a correlation between
increased absorption of isotopic nitrogen and the observed
GPE. This is consistent with a scenario where enhanced ab-
sorption of rhizosphere nutrients plays a role in the growth
promotion we observed in our experiments. The growth pro-
motional microbes that we evaluated may in essence be func-
tioning through facilitation of the transfer of nutrients from the
rhizosphere to roots. Additional experiments would be needed
to further evaluate this proposed nitrogen-scavenging
mechanism.

There is some evidence that the way invasive Phragmites
manages nitrogen may in fact be key to its competitive nature.
Invasive P. australis outperforms native species in environ-
ments with both high and low soil nitrogen levels [25, 42].
Interestingly, its most aggressive growth can occur in low
oxygen environments; for example, in swamp soils, where P.
australis has been shown to utilize organic nitrogen from rhi-
zospheres of roots to a greater extent than its competitors [56,

57]. Enhanced absorption of organic nitrogen could be the
result of the collaborative symbiosis with root microbes [80].
Nitrogen sources could also include increasing nitrogen avail-
ability to Phragmites through associative nitrogen fixation
[20, 73]. Additional studies are needed to evaluate whether
associative nitrogen fixation is an important source of nitrogen
for the plant.

In terms of nitrogen management, microbes may play other
roles. For example, under low oxygen conditions, as is often
seen in water-soaked soils where Phragmites grows, ammonia
may accumulate to toxic levels in plant tissues [38, 82]. The
ability of plants to cope with and manage high levels of am-
monia and other nitrogenous compounds may be important in
efficient metabolism and growth ofP. australis. In this respect,
it may be significant that bacteria often possess transporters
for absorption of ammonium and other nitrogenous com-
pounds. It is conceivable that some Phragmites endophytes
could function in part in detoxification of ammonia or ammo-
nium from tissues of Phragmites. By absorption of potentially
toxic levels of ammonia from the immediate environment of
the plant and converting it to forms that are better assimilated
by the host such as nitrates or amino acids, endophytes may
effectively increase nitrogen use efficiency in the host and
avoid oxidative stress related to ammonia toxicity.
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