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Abstract Speculation surrounds the importance of ecologi-
cally cryptic Symbiodinium spp. (dinoflagellates) that occur
at low abundances in reef-building corals and in the surround-
ing environment. Evidence acquired from extensive sampling,
long-term monitoring, and experimental manipulation can al-
low us to deduce the ecology and functional significance of
these populations and whether they might contribute to the
response of coral-dinoflagellate mutualisms to climate
change. Quantitative PCRwas used here to diagnose the prev-
alence, seasonal variation, and abundances of Symbiodinium
spp. within and between colonies of the coral, Alveopora
japonica. Consistent with broader geographic sampling, only
one species comprised 99.9 %, or greater, the population of
symbionts in every sample. However, other Symbiodinium
including the non-mutualistic species, Symbiodinium
voratum, were often detected, but at estimated cell densities
thousands-fold less than the dominant symbiont. The temporal
variat ion in prevalence and abundances of these

Bbackground^ Symbiodinium could not be definitively related
to any particular environmental factor including seasonality
and water chemistry. The prevalence (proportion detected
among host samples), but not abundance, of S. voratum may
weakly correspond to increases in environmental inorganic
silica (SiO2) and possibly nitrogen (NO3). When multiple
background Symbiodinium occurred within an individual pol-
yp, the average cell densities were positively correlated, sug-
gesting non-specific processes of cell sorting and retention by
the animal.While these findings substantiate the existence of a
broader, yet uncharacterized, diversity of Symbiodinium, we
conclude that only those species which can occur in high
abundance and are temporally stable are ultimately important
to coral-dinoflagellate mutualisms. Many transient
Symbiodinium spp., which occur only at trace abundances in
the coral’s microbiome, belong to different functional guilds
and likely have little, if any, importance to a coral’s physiolo-
gy. The successful integration between host and symbiont into
a stable functional unit should therefore be considered when
defining host-symbiont specificity.
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Introduction

Animals constantly interact withmicrobes in relationships that
span a continuum from parasitism to mutualism. Growing
awareness of microbial diversity has led to a greater under-
standing of their ecology and new insights into their impor-
tance to the metabolism and development of various hosts
especially among marine animals [1]. For example, numerous
kinds of microbes (prokaryotic and eukaryotic) are known to
occur in close association with reef-building corals and related
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cnidarians [2–4]. Most significant among these are their sym-
biotic dinoflagellates (genus Symbiodinium). In a time of rapid
climate change, the persistence of the ecosystems that these
animals engineer may depend in large part on the physiolog-
ical diversity of their photosynthetic mutualisms.

One form of resiliency may involve change in resident
symbiont populations to species that are stress tolerant [5–9],
but see [10–12]. Important questions remain as to whether
community-level changes can occur rapidly enough to keep
pace with current and projected rates of warming.
Ecologically cryptic, or Bbackground,^ Symbiodinium spp.
are occasionally detected in coral colonies at low background
densities via quantitative PCR (qPCR) [8, 13–15] and by next
generation DNA sequencing [16, 17] [but see 18]. These ob-
servations have fueled speculation about the future ecological
importance of these entities by raising the plausibility for
large-scale rapid switch to thermally tolerant host-symbiont
combinations through replacement or Bshuffling^ [13].

The capacity for symbiont change in response to en-
vironmental shifts is potentially dampened by the high
degree of specificity normally exhibited by both part-
ners. Indeed, most hosts appear limited to a small num-
ber of Symbiodinium spp. in forming functionally inte-
grated mutualisms. Nonetheless, for many symbiotic
cnidarians, partner specificity is influenced in part by
irradiance and temperature [e.g., 19]. Thus, many spe-
cies of host show some flexibility and associate with
more than one species of Symbiodinium over their entire
ecological and geographical distributions [e.g., 19–25].

While the analyses of background Symbiodinium may de-
tect host-compatible species, not all are well suited or mutu-
alistic with a given animal. Distinct species from within and
between evolutionarily divergent Bclades^ display large dif-
ferences in ecology. The process of isolating and culturing
Symbiodinium from hosts or from the environment (water col-
umn and sediment) typically recovers genetic entities (i.e.,
species) that are not mutualistic species [26–30]. Many of
these atypical Symbiodinium appear to exist at low densities
and are often undetected by conventional genetic techniques.
Moreover, after isolation into culture, they subsequently fail to
form stable mutualisms when exposed to aposymbiotic hosts
[28, 31]; raising doubts about whether they are ever relevant to
a functionally integrated and stable mutualism.

We sought to assess the ecological importance of back-
ground Symbiodinium in the temperate symbiotic coral,
Alveopora japonica Eguchi, common in coastal benthic com-
munities in China, Korea, Taiwan, and Japan [Fig. 1a, b;
32–35]. Corals living at high latitudes experience large sea-
sonal fluctuations in temperature and light, which may affect
stability in their symbioses with Symbiodinium. Extensive
sampling over a range of habitats and spatial scales indicates
that A. japonica exhibits high specificity for a non-described
Clade F Symbiodinium [36–38]. However, S. voratum (=

Clade E) was recently isolated into culture from the tissues
of A. japonica from Jeju Island, Korea [28], and Lien and co-
authors occasionally found traces of Symbiodinium from
Clade C in their samples from Japan [39], indicating that other
Symbiodinium spp. can occur with this animal.

Thus, we explored the extent towhichmultiple Symbiodinium
spp. co-occur in the tissues, or microbiome, of A. japonica
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and whether their prevalence and abundance vary within and
between colonies in populations collected each month over a
15-month duration. Individual A. japonica polyps were analyzed
using quantitative (q) PCR targeting ribosomal DNA (rDNA) to
diagnose the presence and absolute abundances of distantly re-
lated Symbiodinium spp. Additional DNA sequencing was
employed to identify whether detection of a clade involved one
or multiple species. These findings were combined with previ-
ously published work to evaluate the importance of ecologically
cryptic, or background, diversity. We then reason that host and
symbiont specificity should be defined by the stability and func-
tional integration of a partnership.

Materials and Methods

Environmental Measurements, Colony Collection,
Transport, and Acclimation

Every month from July 2012 to September 2013, we collected
30 colonies of A. japonica (4–7 cm in diameter, Fig. 1a) from
Sindo (33°16′37.65″ N, 126°10′5.51″ E), Jeju Island, The
Republic of Korea at depths of 10–13 m using SCUBA
(Fig. 1d). Random colonies were obtained from the same
A. japonica population in a concentric arc around a fixed
center point within an area of 40–50 m2. Water samples were
collected at the surface (~300 mL) for chemical analysis and
the detection of Symbiodinium in the water column. Bottom
water from around colonies of A. japonica was also collected
inMarch 2013. Nutrient and chlorophyll a concentration anal-
yses were conducted on these samples as described by [40].

Colonies were transported to the laboratory at Seoul
National University and then individually acclimated in
1-L glass beakers with filtered seawater (FSW) at a
temperature range of 18–25 °C under a photon flux
density of 50 μmol quanta m−2 s−1 (14 L/10D), simu-
lating the corresponding temperature, salinity, and irra-
diance at the sampling site. These colonies were main-
tained for one to several days before further processing
(see below).

Environmental water temperatures and salinities were mea-
sured at the site of sampling using a YSI Professional Plus

instrument (YSI Inc., Yellow Springs, OH, USA). Sea surface
temperature and chlorophyll a (as a proxy for phytoplankton
abundance) data were acquired from the Giovanni online data
system ( http://gdata1.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?
instance_id=mairs_monthly_hres), maintained by the NASA
Goddard Earth Sciences (GES) Data and Information Services
Center (DISC). MODIS/Aqua monthly Chl a and SST values
averaged over a 4-km grid were acquired from reflectance
measurements taken in the vicinity of the collection site at
Sindo, Jeju Island (an area between 33.109–33.309 N and
125.982–126.144 E). These values were averaged for each
month of the study period and graphed.

Polyp Excision, Maceration, and DNA Extraction

Three polyps (1–1.5 cm in length) were removed from each
colony (n=90 polyps per month) and rinsed thoroughly with
FSW tominimize contamination by exogenous Symbiodinium
cells. Each polyp was gently blotted using Kimwipes
(Kimberly-Clark Co., USA), placed in a 1.5-mL tube, and
wet weight determined. To each tube, 1 mL of FSW was then
added and the polyp homogenized using a micropestle, and
the contents vortexed. To confirm the total cell density of
Symbiodinium in A. japonica, 100 μL were transferred from
one sample of each colony to 10-mL vial containing 4.9 mL
FSW, fixed with 5 % Lugol’s solution. Cells were counted on
1-mL Sedgwick-Rafter chambers (SRCs) and light micro-
scope. The remaining 900-μL aliquot was centrifuged at 13,
000 rpm for 1 min at room temperature. The supernatant was
discarded and the pellet was resuspended with 200 μL of
phosphate-buffered saline (PBS) (Bioneer Corp., Korea).
The mixture was immediately subjected to total DNA extrac-
tion using the AccuPrep Genomic DNA extraction kit
(Bioneer Corp., Korea). The final DNA pellet was rehydrated
in 100 μL water.

PCR Amplification, Sequencing, and Phylogenetic
Analyses

The specific identity of the dominant and background
Symbiodinium were investigated with DNA sequencing of a
subset of samples collected during April 2012, July 2013, and
August 2013. Amplifications of ITS1-5.8S-ITS2 rDNA and
the LSU region D1–D3 were performed using the primer set
and conditions developed by [41, 42]. Ribosomal DNA was
Sanger sequenced and aligned manually with sequences from
other Symbiodinium spp. obtained from GenBank. Maximum
Parsimony was assessed using the software PAUP* [43].
Bayesian analyses were conducted using MrBayes v.3.1 [44]
using a default GTR+G+ I model. For each alignment, four
independent Markov Chain Monte Carlo (MCMC) analyses
were performed. MP bootstrap values were determined using
1000 replicates.

�Fig. 1 The habitat and geographical distributions of Alveopora japonica.
a A. japonica forms small hemispherical colonies that measure 2–10 cm
in diameter with fleshy polyps that are extended during the day. b This
species can occur in large numbers in protected turbid environments at
depths of 5–25 m [34]. c The geographical range of A. japonica occurs in
temperate latitudes in the northwestern Pacific (light shading). d Site of
sampling is indicated by the red square on the map of Jeju Island.
Locations in previously published papers where A. japonica has been
collected for analyses of Symbiodinium identity are indicated by
diamonds [36], circles [37], and triangles [38]. Light gray arrows show
the predominant sea surface currents originating from lower latitudes
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Design of Dual-Labeled BHQplus Probes and Primer Sets
for qPCR

Ribosomal DNA sequences (ITS1, 5.8S, ITS2, and LSU) were
used to construct clade-specific primers and probes (Table S1)
to detect a particular group of Symbiodinium (Clade) of inter-
est from a mixed population of Symbiodinium comprising
more than one clade group (Table S2). These were subse-
quently compared to published sequences using BLAST ho-
mology searches on GenBank. The primers and probes were
dual-labeled with the fluorescent dyes FAM and BHQplus
(Biosearch Technologies Inc., Novato, CA, USA) at the 5′
and 3′ ends.

The specificity of each of the four Symbiodinium clade-
specific primers and probe sets (for clades B, C, E, and F)
were also tested using concentrated rDNA extracted from
100,000 cells of each of the 19 Symbiodinium strains
representing approximately 10 species (Table S2). The DNA
extraction method used on these cultured isolates was the
same as the one used for field collected host material (see
above).

qPCR Assay Conditions and Standard Curve

Quantitative PCR reactions were performed using 1-μL tem-
plate DNA combined with 0.2 μM forward and reverse
primers, 0.15 μM probe (final concentration), 5 μL HiFast
Probe Hi-Rox (Genepole, Gwangmyung, Korea), and PCR-
grade water (total final volume=10 μL). The thermal cycling
conditions consisted of 3 min at 95 °C, followed by 40 cycles
of 10 s at 95 °C, 20 s at 60 °C, and 20 s at 72 °C. The
fluorescence of each reaction tube was quantified in each cy-
cle, and the threshold for a positive reaction was determined
using the default settings on the software accompanying the
instrument qPCR (Rotor Gene 6000, Qiagen GmBH,
Germany), which designated non-specific fluorescence in
samples with total changes in fluorescence less than 3 % (rel-
ative to the largest change in a sample plate).

Standard curves for TaqMan-based qPCR assays were ob-
tained by using the DNA extracted from known numbers of
the cells of the cultured strains CCMP 2459 (Symbiodinium
psygmophilum representing Clade B; 500,000 cells), CCMP
2466 (S. goreauii representing Clade C; 500,000 cells), SVIC
3 (S. voratum for Clade E; 500,000 cells), and CCMP 2468
(S. kawagutii representing Clade F; 1,000,000 cells). Genomic
DNA from these cells was extracted in the same method de-
scribed above. Ten-fold serial dilutions of theses DNA ex-
tracts spanning five orders of magnitude were used to con-
struct standard curves (R2 ~0.99) for each primer-probe com-
bination. The amplification efficiencies of the specific primers
and probe sets of Symbiodinium clade B, C, E, and F were 93,
94, 75, and 94 %, respectively.

Threshold cycle C(t) values for unknown samples were
compared against calibration curves based on DNA from
known cell quantities of Clades B, C, E, and F, respectively.
By comparing the C(t) values of field samples with the C(t)
values of clade-specific standard curves, and using the direct
cell counts taken before DNA extraction (see above), cell den-
sities detected by each Symbiodinium Clade primer-probe set
could be calculated while avoiding the affect of large differ-
ences in rDNA copy number between certain Clades [45].

Correlations Between Presence/Abundance Data

To investigate the relationship between the number of polyps
with a particular background Symbiodinium at a given time
point and its cell abundance detected at that time, we fit a
linear model to assess whether presence-abundance were re-
lated. This was done by first calculating the percent of polyps
that contained a background entity for a given sample time
(n=90 for each month). We then plotted the number of cells
detected in all samples that contained the Symbiodinium in
question against the number of polyps where its presence
was detected for each sampling time point. A linear model
was then fit to this data in the statistical software R [46].

The effect of external environmental factors on the cell
abundance of background species, including ammonia, ni-
trate, phosphate, and silica concentrations as well as chloro-
phyll a and surface temperatures, was assessed using a linear
model. Using the statistical software R, we fit a multiple re-
gression linear model to the environmental variables to the
abundance data with a 1 month lag time (with the assumption
that cell densities are affected by the previous month’s levels).
In cases with a high variance in cell number, a square root
transformation was applied to these data. Finally, the correla-
tion coefficients between the each background Symbiodinium
were calculated using Pearson’s correlations [47, 48].

Results

The average wet weight of each polyp was 0.006 g (±0.003 g).
Based on direct cell counts, the standing Symbiodinium pop-
ulation ranged 1.9×109 to 7.9×109 cells/g ww, and the mean
number of Symbiodinium cells per polyp approximated eight
million (±3,359,398 SD). Primers and probe sets designed for
each Symbiodinium Clade (B, C, E, and F) amplified only
those strains representing the target clade of Symbiodinium
when tested on 19 Symbiodinium strains (Table S2). For ex-
ample, the primer/probe set designed for Clade B gave a pos-
itive amplification for only CCMP830, CCMP1633,
CCMP2459, and CCMP 2462 (all the representative strains
of Clade B).Moreover, through these analyses, maximumC(t)
cut-off values were established for each set of primers and
probe above which further increases in fluorescence were
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not scored. A maximumC(t) threshold was set at 36 cycles for
the positive detection of Clade B and C, whereas C(t) cut-offs
of 38 and 31 were set for detecting Clades E and F,
respectively.

Sequence analyses of ITS1-5.8S-ITS2 and large sub-unit
(LSU) rDNA resolved the speci f ic ident i t ies of
Symbiodinium being detected with the primers and probes
designed for the qPCR of Clades B, E, and F. The phyloge-
netic analyses of LSU sequences from several samples (n=4)
indicated that the Clade F entity found in A. japonica is a
Symbiodinium that is distinct among the known breadth of
Clade F diversity described previously from foraminifera
around the world (Fig. 2). It is referred to from this point
forward as BFAjap^ and represents a non-described species.
The ITS2 sequence for the Clade B Symbiodinium matched
with that of S. psygmophilum (= type B2) a cold-water adapted
Clade B species known from the north Atlantic and
Mediterranean Sea, but the ITS1 differed by a single nucleo-
tide substitution (data not shown). We therefore refer to this
entity as B2*. Efforts to sequence rDNA markers for Clade C
were not successful, and therefore, it could not be determined
whether this represented a single species entity or several.

Finally, our analyses of ITS2 rDNA for the Clade E qPCR
amplifications verified that it corresponded to S. voratum, a
free-living species common to the northwestern Pacific [28].

The Symbiodinium FAjap was the dominant symbiont in all
1260 polyps from 420 colonies of Alveopora japonica exam-
ined during the course of this study (Fig. 3). This species on
average accounted for ~99.9 % of the total resident
Symbiodinium population based on qPCR standard curves
generated using DNA extracted from a set number of cells
obtained from representative cultures (Table S2). Cell counts
where positively correlated with qPCR-based estimations
(Fig. S1a, b). Members of Clades B and E were frequently
detected at background densities several orders of magnitude
lower (Fig. 3). Symbiodinium B2* was detected at every sam-
pling interval, but not always in each polyp nor colony exam-
ined (Figs. 3 and 4a), and reached densities approximating
0.013 % of the total population. S. voratum (detected using
the BClade E^ primers and probe) was most prevalent during
Fall and Winter months reaching densities of about 0.023 %
but was rarely detected and often absent from colonies during
Spring collections (Figs. 3 and 4a). qPCR detection of BClade
C^ occurred in samples from only 2 months, July and
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September of 2012 (Fig. 3). This entity was the least prevalent
of the background Symbiodinium (only detected in a small
proportion of colonies and polyps) and occurred at densities
no greater than 0.0003 % (Fig. 4a).

The densities of background Symbiodinium B2* and
S. voratum were correlated when each co-occurred at cell
densities above 50,000 and 500,000/gww, respectively
(Fig. S2). However, the presence or absence of these two
Symbiodinium spp. did not appear to be significantly affected
by the presence of any other species (p>0.1, linear regression
ANOVA). The cell densities of S. voratum corresponded with
the proportion of polyps in which it was detected in a given
month (Fig. S3).

During the study period, the water temperature measured at
Sindo, Jeju Island, ranged between 10.1 and 27.5 °C (Fig. 4b)
and the salinity oscillated between 30.3 and 34.7‰ (data not
graphed). Chlorophyll a contents in surface waters at the study
sight ranged between 0.22 and 2.34 mg/m3 and were consis-
tent with values measured from satellite images, which ranged
between 0.3 and 1.0 mg/m3 (Fig. 4b). High primary produc-
tivity at the collection site occurred in the late Summer and
Spring (Fig. 4b). Nutrient concentrations for ammonium
(NH4), nitrate (NO3), phosphate (PO4), and silicon dioxide
(SiO2) were graphed and compared against Chlorophyll a
concentration and the prevalence of Symbiodinium B2* and
S. voratum (Fig. S4 and Table S3). There was a significant
positive relationship between average SiO2 and cell counts of
S. voratum and a significant negative relationship between
average NO3 and cell counts of S. voratum (Table S3a; and
only when the nutrient concentrations from the previous
month were compared). The abundance of Symbiodinium
B2* and S. voratum were highly variable, and when we
reapplied, the linear regression model on square root trans-
formed abundance values of S. voratum, significance of both
these relationships was not supported (Table S3b).

Discussion

An ever growing body of research has observed various
Symbiodinium spp. that exist at low abundances in various
habitats including sediment, the water column, and in host
microbiomes. Many of these reports surmise that trace cell
densities of atypical species are potentially important to
coral-dinoflagellate mutualisms, but provide no supporting
evidence for the ecological function of these entities.
Furthermore, interpretation of qPCR findings is limited be-
cause, when used alone, this method currently recognizes only
clade-level distinctions and thus coarsely resolves phylogenet-
ically divergent groups, which contain many ecologically dis-
tinct species [30]. The investigations conducted here went
beyond these preliminary studies by investigating the dynam-
ics of high and low abundance populations of Symbiodinium

at monthly intervals for more than a year. Based on our find-
ings and a review of the literature, we contextualize the eco-
logical relevance of low-abundance background
Symbiodinium spp. and caution against over interpreting their
significance, especially in cases with no additional evidence.

Low-Abundance Transitory Populations of Symbiodinium
spp.

Several distinct Symbiodinium occurred among colonies of
A. japonica at low abundances (>0.05 %), a finding that is
entirely consistent with studies conducted on tropical coral
species [13–15]. Shifts in the abundances and prevalence of
these entities occurred throughout the 15-month sampling pe-
riod (Fig. 3). However, while our qPCR primers targeted rap-
idly evolving rDNA, the technique resolved only distantly
related groups (i.e., clades, Table S1). Thus, the power of
interpreting ecological function (niche) based on these qPCR
data alone was limited until we were able to resolve species
identity with additional genetic markers and methods.
Moreover, just as our detection of Clade F corresponds explic-
itly to FAjap (Fig. 2), we found that our detection of Clade E,
and probably Clade B, corresponded to the presence of partic-
ular species with ecological attributes distinct from FAjap.

Unlike other background species, the prevalence of
S. voratum (but not abundance) appears to sharply increase
one month after a large pulse of inorganic nitrogen (NH4,
NO3) and silica (SiO2) into the environment (Fig. S1). Its
occurrence in colonies of A. japonica was transitory and ulti-
mately dropped in prevalence and became absent, only to
reemerge a few months later (Figs. 3 and 4a). Symbiodinium
voratum appears to be primarily free-living; it is common
in coastal waters of the temperate northwest Pacific Ocean
where our research was conducted and yet does not occur in
corals at high abundances, in contrast to mutualistic
Symbiodinium. Furthermore, it will not form symbioses dur-
ing controlled experiments with aposymbiotic hosts [28]. This
species is cultivable from water samples, the surfaces of
macroalgae, as well as from Alveopora japonica. It may actu-
ally undergo occasional planktonic blooms and gain addition-
al nutrients by feeding on bacteria and a wide range of
microalgal prey species [reviewed in 28]. When these ecolog-
ical attributes are considered together, its occurrence in
A. japonica could simply reflect its relative abundance in the
environment at the time of sampling. Its increasing cell abun-
dances are related with the frequency of occurrence among
polyps, which further supports this interpretation (Fig. S3).

Corals constantly sort and concentrate particles [52]. Thus,
the presence/absence of S. voratum in these animals may sim-
ply relate to the interplay of external biotic or abiotic factors
that govern the relative abundance of this species in the exter-
nal environment. There was no strong relationship between
the abundance of Symbiodinium B2* or S. voratum and the
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nutrient concentrations wemeasured. Amultiple linear regres-
sion analyses identified the potential importance of silica in
explaining the prevalence and abundance of S. voratum (Table
S3ab). Because dinoflagellates are not known to require silica
[53], this relationship may indirectly correspond to intermedi-
ate factors such as the availability of prey. Alternatively, the
pattern may be due to the high variance in abundance data;
indeed, the pattern was not significant after a square root
transform was performed (Table S3b). We failed to detect
the presence S. voratum in water samples obtained near colo-
nies of A. japonica during the March 2013 sampling (M. J.
Lee unpubl. data) indicating its rarity or absence in the envi-
ronment at that time. This was consistent with the measure-
ments of S. voratum in animal tissues during that same month
which found a very low prevalence (~1 % of polyps exam-
ined) and low cell density (Fig. 3). This suggests that rarity or
absence in the environment might relate to rarity or absence in
the host microbiome. Future studies of this kind should con-
sider routine sampling the environment to relate the abun-
dances of internal background vs. external Symbiodinium
populations.

Most unexpected was our detection of a Symbiodinium in
Clade B, which occurred commonly as a background entity
over the course of our study (Fig. 4a). Very few Clade B
Symbiodinium spp. are known in symbioses with animals
from the Indo-Pacific. Several exceptions are reliably found
in specific hosts collected off the coasts of Australia, at trop-
ical and temperate latitudes [12, 54, 55]. Another species,
S. minutum (Clade B), occurs wherever the anemone
Exaiptasia (=Aiptasia) pallida has been introduced [56]. The
particular Clade B entity we detected appears to be closely
related to that of Symbiodinium psygmophilum (= type B2),
a cold-water adapted species common to animals in the tem-
perate North Atlantic Ocean and Mediterranean Sea [57].
Thus, this appears to be a western Pacific version of this high
latitude lineage, designated here as B2*. However, despite
reports from several regional surveys of Symbiodinium diver-
sity, Clade B species are not known to occur in corals from this
region, at least in abundances that would support the nutrition-
al requirements of an obligate host [58]. Consequently, these
findings exemplify how sensitive detection measures can dis-
cover rare Symbiodinium whose ecological niche is unknown
[30], but appear to be incapable of achieving high stable abun-
dances in host tissues [29].

Most other symbiotic cnidarians that co-occur with A.
japonica in coastal waters around Jeju Island associate with
Clade C Symbiodinium spp. [37, 38]. It is well documented that
several types of Clade C exist in the region, but each exhibits
high host specificity [38, 39]. On the few occasions when
Clade C was detected in A. japonica, we were unable to deter-
mine the specific identity of this Symbiodinium. These back-
ground populations may have comprised a single entity or mul-
tiple phylogenetically distinct lineages (requiring species

descriptions) in Clade C. Because there is no evidence for an
entirely free-living, or non-mutualistic, species in Clade C, the
low prevalence and extremely low abundances of Clade C in
A. japonicamay reflect temporary fluctuations in environmen-
tal concentrations of various Clade C spp. from the normal
discharge of excess symbiont cells by nearby colonies of other
coral taxa [59–62]. In this situation, the sensitivity of next gen-
eration sequencing could resolve questions about the identity of
these Symbiodinium and their probable source [17].

Stress experiments that were designed to induce an increase in
background Symbiodinium to densities similar to FAjap ultimately
failed when colonies of A. japonica died as temperatures were
slowly increased by only a few degrees above the mean summer
high (~27 °C) for Jeju Island (M. J. Lee unpubl. data). Therefore,
this particular coral, likemany others, may not be open to hosting
a second species of Symbiodinium, even under conditions of
ecological opportunity created by stress [8].

In Hospite Stability in the Identity of High-Abundance
Symbiodinium sp.

The dominance of Symbiodinium FAjap inA. japonica through-
out the duration of our study [>99.9 % of the resident symbi-
ont population] is consistent with previous findings of stability
in the identity of the dominant Symbiodinium in colonies mon-
itored over time [63–69]. The vertical transmission of symbi-
onts from generation to generation appears to initiate greater
selection pressure, which is likely to facilitate ecological spe-
cialization and hence speciation [70]. Thus, like most corals
that brood larvae, A. japonica harbors a host-specific
Symbiodinium [Fig. 2; 71].

Seasonal oscillations in irradiance and temperature can affect
symbiont cell densities [Fig. S1b; 72] but appear to have little
effect on the species composition of a symbiont population with-
in a coral [64, 69]. Collectively, these and many other observa-
tions (not cited) indicate that temporal stability and partner spec-
ificity are the norm for most coral-dinoflagellate symbioses.
Even so, many reef-building corals exhibit some flexibility with
more than one Symbiodinium sp. over environmental gradients
related to changes in water depth, reef habitat, and geographical
location. However, despite the large diversity of Symbiodinium
spp. present in many of these environments, each coral species
ultimately depends on a very restricted subset of Symbiodinium
spp. for their survival and growth [19, 22]. Thus, the existence of
background Symbiodinium spp. within individual colonies is po-
tentially important to the mutualism only if they are able to attain
dominance under particular environmental conditions [6, 20, 73].

Partner stability is important for many reasons in the main-
tenance of a mutualism [74, 75]. Processes that govern most
mutualisms have probably evolved mechanisms to limit intra
and inter-specific competition, thus minimizing the negative
effects of cheating and competition [75]. Using conventional
genetic approaches, Symbiodinium FAjap is essentially the only
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Symbiodinium sp. found in A. japonica throughout the coral’s
distribution (Fig. 1c, d). Its high abundance, relative to back-
ground Symbiodinium (measured by several orders of magni-
tude, Fig. 3), means that it provides photosynthate, which con-
tributes to host metabolism. The in hospite abundance, temporal
stability, and ecological prevalence of this particular
Symbiodinium are attributes critical to the physiological perfor-
mance of a sustained mutualism and should be considered when
defining host-symbiont specificity [76]. Similar arguments of
stability and functionality are made when evaluating the relative
significance of bacterial consortia associated with humans [77].

Functional and Ecological Significance of Background
Symbiodinium

Microbes of many different kinds associate in various ways with
reef corals [2–4]. Moreover, corals are heterotrophic and con-
stantly consume a variety of small particles including eukaryotic
microalgae [52, 78] as well as organic and inorganic material
[79]. The combined microbial diversity of commensals and prey
particles is thus high. The use of qPCR primers specific for
certain groups of microalgae sporadically detect the presence of
diatoms, haptophytes, cryptophytes, non-Symbiodinium dinofla-
gellates, etc., and is dependent on their abundances [80]. The
qPCR detection of free-living microalgae would not be
interpreted as entities viable to an animal’s symbiosis (nor would
their presence be used to argue against the existence of host-
symbiont specificity). The recognition that Symbiodinium belong
to different functional groups [30], some of which are not mutu-
alistic as is S. voratum, combined with the reality that corals are
continually cycling particles into (and out of) their gastrovascular

systems and possess a mucosal layer that contains a rich diversity
of microbes [2], questions the validity of extrapolating a signif-
icance to background Symbiodinium without additional confir-
matory evidence.

Trace densities of a Symbiodinium sp. capable of achieving
high densities in a host are potentially important. Changes in the
dominance among host-compatible Symbiodinium are influenced
by acute abiotic (e.g., high light/low light conditions) and biotic
(i.e., competition) factors [6, 81, 82]. Thus, the vast majority
symbiont Bshuffling^ [sensu 83], if or when it occurs (usually
during experimental manipulations), involves those species of
Symbiodinium that otherwise dominate host individuals found
living in different habitats (e.g., shallow vs. deep; inshore vs.
offshore). Thus, instances of change in the dominant symbiont
occur in experimentally manipulated hosts and typically involve
a few host-compatible species.

There is one notable exception where an atypical species of
Symbiodinium increased from background levels to dominate
numerous host taxa from several reef habitats. The invasive spe-
cies, Symbiodinium trenchii, increased in prevalence and abun-
dance during and after the 2005 mass bleaching event in the
eastern Caribbean [8]. It occurred at low densities in many reef
coral taxa several months before the peak of thermal stress [84]
but was later found at high densities in many unbleached colo-
nies of several important reef-building species, which gave them
the appearance of being unaffected by the severe stress. Thus, as
temperatures increased, S. trenchii appeared to have proliferated
opportunistically from background cells in the symbiont popula-
tion to dominate many colonies and prevented some corals from
turning white. The ecological nature of this Symbiodinium is
potentially significant to the symbiosis ecology of corals when
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Fig. 5 Stable and transitory populations of Symbiodinium in coral-
dinoflagellate mutualisms. (1) Symbiotic Cnidaria circulate large vol-
umes of water (and mucus) through their gastrovascular system for res-
piration, waste removal, and heterotrophic feeding, a process that intro-
duces numerous small organic particulates as well as bacterial and eu-
karyotic microbes, which probably includes the cells of Symbiodinium
spp. from the environment. Over the course of a normal day, a colony

may expel millions of Symbiodinium cells (both viable and necrotic) in
the maintenance of the mutualism. At any given time, there may be
several distinct Symbiodinium sp. found in the microbiome of the animal.
These include dominant, temporally stable, and intracellular symbionts
that are important to the growth of the animal (2), low Bbackground^ and
potentially non-mutualistic species (3), and free-living non-symbiotic
species (4)
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exposed to increasingly stressful environmental conditions [85].
However, the physiological and ecological importance of back-
ground S. trenchii (Clade D) is more the exception because no
other atypical Symbiodinium sp. appear to exhibit patterns of cell
proliferation and spreading, which can compensate for losses in a
coral’s normal symbiont population [29, 86].

We now recognize that there are Symbiodinium spp. in close
association with animals whose ecological niche differs from
habitually mutualistic species [28, 29]. They occur in many
different habitats and environments including the sediment, wa-
ter column, and on the surfaces of macroalgae and other organ-
isms [87–92]. These Symbiodinium spp. (e.g., S. voratum,
S. necroappetens, S. pilosum) occur in tropical, sub-tropical,
and temperate environments where they exhibit diverse ecolog-
ical roles and may contribute in various ways to marine food
webs [93]. Therefore, while it is one piece of evidence to detect
unusual Symbiodinium at low abundances in hospite, or in the
environment, inferring significance to their functionality for
dinoflagellate-animal symbioses is another matter entirely and
requires significantly more follow-up examination.

A case in point involves Symbiodinium Clade A, which con-
tains formally recognized species that illustrate this range of eco-
logical diversity [94]. In addition to the mutualistic species
S. microadriaticum and S. tridacnidorum [95], this group con-
tains S. pilosum, a species cultured from cnidarians, but has yet to
be identified in field collected host tissues. Given its inability to
infect aposymbiotic experimental animals, it probably exists as a
free-living non-mutualistic species similar to S. voratum (Clade
E) and S. kawagutii (Clade F). Another species in Clade A,
S. necroappetens, attains densities that are detected as the dom-
inant Symbiodinium in coral tissues that are diseased or severely
bleached [29]. It has been cultured from healthy symbiotic cni-
darians at separate Caribbean locations, suggesting that cells of
this species normally exist at low abundances on an animal’s
surface or in the gastrovascular system. Evidence for the detec-
tion of Symbiodinium Clade A (in a sample) through the appli-
cation of qPCR,which currently resolves to the clade level, could
be interpreted several ways depending on which species is actu-
ally present. For those species with no known benefit to the
animal, similar to our observations of S. voratum (= Clade E)
in Alveopora japonica (Fig. 3), their presence is likely transient
and contingent on multiple factors.

A summary diagram of our interpretations, based the find-
ings presented here and observations from the published liter-
ature, is illustrated in Fig. 5. It shows the presence of several
species of Symbiodinium; one of which is dominant while
others are present that are opportunistic or incompatible with
the host but living in the animal’s microbiome along with
other microbes (prokaryotes not shown). It is intended to pro-
mote contemplation about the different potential interactions
between symbiotic cnidarians and various Symbiodinium spp.

In conclusion, the existence of non-mutualistic
Symbiodinium, which may cycle into and out of a coral’s

gastrovascular system, and/or are a part of the rich diversity
of microbes associated with an animal’s mucous, cautions
against inferring that background Symbiodinium are function-
ally significant to the host without additional confirmatory
evidence. Thus, concepts of host-symbiont specificity should
not be predicated on the detection of low abundant
Symbiodinium species. With the increasing use of qPCR
screening or next generation DNA sequencing, our knowl-
edge on the diversity and distribution of ecologically rare or
cryptic Symbiodinium spp. will continue to grow. However,
speculation about whether Symbiodinium found at low abun-
dances in an animal, or in the environment, are important to
photosynthetic corals and their response to climate change
requires more in-depth evidence and consideration.
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