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Abstract Here, we compare the fungal community composi-
tion and diversity in Amazonian Dark Earth (ADE) and the
respective non-anthropogenic origin adjacent (ADJ) soils
from four different sites in Brazilian Central Amazon using
pyrosequencing of 18S ribosomal RNA (rRNA) gene. Fungal
community composition in ADE soils were more similar to
each other than their ADJ soils, except for only one site.
Phosphorus and aluminum saturation were the main soil
chemical factors contributing to ADE and ADJ fungal com-
munity dissimilarities. Differences in fungal richness were not
observed between ADE and ADIJ soil pairs regarding to the
most sites. In general, the most dominant subphyla present in
the soils were Pezizomycotina, Agaricomycotina, and
Mortierellomycotina. The most abundant operational taxo-
nomic units (OTUs) in ADE showed similarities with the en-
tomopathogenic fungus Cordyceps confragosa and the
saprobes Fomitopsis pinicola, Acremonium vitellinum, and
Mortierellaceae sp., whereas OTUs similar to Aspergillus
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niger, Lithothelium septemseptatum, Heliocephala gracillis,
and Pestalosphaeria sp. were more abundant in ADJ soils.
Differences in fungal community composition were associat-
ed to soil chemical factors in ADE (P, Ca, Zn, Mg, organic
matter, sum of bases, and base saturation) and ADJ (Al, po-
tential acidity, Al saturation, B, and Fe) soils. These results
contribute to a deeper view of the fungi communities in ADE
and open new perspectives for entomopathogenic fungi
studies.

Keywords 18S rRNA - Anthrosols - Biochar - Microbial
ecology - Pre-Columbian soil - Pyrosequencing

Introduction

Amazonian Dark Earth (ADE), also referred to as “Terra
Preta”, was described by Sombroek [1] as a “well-drained
soil characterized by the presence of a thick black or dark gray
topsoil which contains pieces of artifacts”. The anthropogen-
ic, pre-Columbian soils occur in 20-ha average spots in the
Amazonian region [2]. ADE is recognized by the elevated
amounts of stable carbon (70 times more black carbon) and
fertility due to the high concentration of P, Ca, Mg, and Zn,
nutrient holding capacity, and higher pH when compared to
adjacent non-anthropogenic origin soils [3, 4]. Despite evi-
dences of human occupation in the Amazon region dating
10,000 years BP (before present), Neves and co-workers [5]
suggested that ADE formation occurred 2500 to 2000 years
ago as a result of population increasing during that period. It is
still unclear if the ADE was intentionally created or if it was a
result of disposals by native settlements. However, the con-
sensus is that the main sources of ADE nutrients originated
from human and animal excrements, plant and animal
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residues, mammalian and fish bones, housing material and
pottery debris, ash, and charred organic materials [2, 5, 6].

Another remarkable characteristic of ADE is the elevated
microbial diversity and associated bacterial species richness
[7]. Using culture dependent and independent approaches,
studies reveal bacterial and archaeal communities in ADE that
are distinct from the adjacent soil or from isolated black car-
bon [8-10].

Significant advances in soil microbial ecology studies were
obtained in the last few years after the adoption of high-
throughput 16S ribosomal RNA (rRNA) gene sequencing
technologies [11]. This approach was used to investigate the
bacterial community associated with biochar samples of ADE
[12] and the effect of ADE and plant species on the selection
of thizosphere bacterial communities [4]. However, the fungal
communities associated with ADE have not yet been investi-
gated with culture-independent methods despite the ecological
importance of fungi in terrestrial ecosystems. The degradation
of organic matter, mainly by saprophytic fungi, controls the
balance between soil and atmospheric carbon and releases
nutrients for plant uptake [13—15]. The fungal community in
ADE has been poorly characterized and evaluated only by
low-resolution culture-dependent methods [16]. The applica-
tion of high-throughput sequencing technologies will expand
the knowledge of ADE fungal diversity. Comparison to low
fertility adjacent soils will help to elucidate the carbon trans-
formations by fungi in these soils and to evaluate potential
land use and climate change effects for future studies.
Therefore, the aim of this study was to estimate the fungal
richness and diversity associated to ADE and to adjacent soils
from four sites in the Central Amazon through pyrosequenc-
ing of 18S rRNA gene fragments.

Materials and Methods
Site Description and Soil Sampling

The study area was comprised of four locations in the
Brazilian Central Amazonia region near Manaus, the capital
of Amazonas state (AM). ADE and the respective adjacent
(ADJ) non-anthropogenic origin soils were collected at (1)
Acutuba (ACU, 03° 05" 53.92" S, 60° 21’ 19.90” W), located
at the margin of Negro River close to the municipality of
Iranduba (AM), under cultivation of eggplant (ADE) and pas-
ture (ADJ) at the time of sampling; (2) Balbina (BAL, 01° 30’
24.4" S, 60° 05" 34" W), located at the Presidente Figueiredo
municipality and characterized by the presence of an undis-
turbed secondary forest. This site has not been deforested or
used for agriculture purposes for at least 20 years [17]; (3)
Hatahara (HAT, 03° 16’ 28.45" S, 60° 12" 17.14" W) located
in a bluff on the margin of Solimdes river cultivated with
banana plants (ADE) and pasture (ADJ). This is one of the

most studied archaeological ADE sites in Central Amazon
[18]; (4) Barro Branco (BBO, 03° 18' 24.76" S, 60° 32’
5.10" W), located upstream Hatahara in the margin of
Solimdes River close to Manacapuru (AM) under a citrus
orchard (ADE) and cassava plantation (ADJ).

The soil sampling scheme in each site was set by a geo-
referenced central point (A) and four extra points 1.5 m distant
in the cardinal direction (B, C, D, E). Each soil sample was
composed by five subsamples (Al, A2, A3, A4, AS, B1, B2,
B3, B4, B3, etc.) collected 0.3 m around the main point at 0—
10 cm depth using sterile plastic cylinders (5-cm diameter).
Sampling scheme illustration can be viewed in Online
Resource 1. To minimize the current land use effect, grass
layer and litter were removed, and then, the soil samples were
collected in the space between rows when cultivated. Soil
samples were kept on dry ice before storage at —20 °C. Soil
physicochemical attributes were determined following Raij
et al. [19] in the Soil Fertility Laboratory of the Department
of Soil Sciences, University of Sdo Paulo (ESALQ-USP).
Fieldwork was conducted under legal authorization (SISBIO
4845833).

DNA Extraction, Amplification, and Sequencing of 18S
rRNA Gene Fragment

Total DNA was extracted from 250 mg of bulk soil in triplicate
from only three of the five soil samples (A, B, D) using the
Power Soil DNA isolation kit (MO BIO Laboratories Inc.,
Carlsbad, CA, USA) following the manufacturer’s instructions.
Extracted DNA was quantified using a NanoDrop ND-1000
spectrophotometer (Thermo Scientific, Wilmington, DE,
USA). The 18S rRNA gene fragments were amplified by po-
lymerase chain reaction (PCR) using 0.5 uM of the fungal-
specific reverse primer FR1 [20] and the modified version (to
include Glomeromycota arbuscular mycorrhizal fungi) of for-
ward primer FF390w (5'-CGWTAACGAACGAGACCT-3")
[21]. Four PCR reactions (25 pL) per extracted sample DNA
were carried out using 2.5x reaction buffer containing 18 mM
of MgCl,, 0.2 mM of each dNTP, 0.5 uM of each primer, 25 ng
of template DNA, 1 U Taq polymerase FastStart High Fidelity
(Roche Applied Sciences, Indianapolis, IN, USA), and sterile
water to 25 pL final volume. The thermocycling conditions
were initial denaturing at 94 °C for 4 min, 29 cycles of 94 °C
for 30 s, 55 °C for 1 min (annealing temperature was lowered
2 °C every 2 cycles until 47 °C), and extension at 68 °C for
2 min. The technical PCR replicate (12 PCR reactions/soil
replicate) amplicons were pooled and cleaned with the
Qiagen PCR purification kit (Qiagen, Valencia, CA, USA) to
avoid amplification bias. A total of 24 soil samples (4 sitesx2
soil types % 3 replicates) were amplified using barcoded primers
(MID tags) for multiplex pyrosequencing in a Roche 454 GS
FLX automated sequencer (454 Life Sciences, Brandford, CT,
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USA) using titanium chemistry. The complete list of barcoded
primers is listed in Online Resource 2.

Bioinformatics and Statistical Analysis

The 18S rRNA gene sequences were analyzed using QIIME
1.8.0 [22] following the suggested 18S data analysis tutorial
(http://qiime.org/1.8.0/tutorials/processing_18S data.html).
Multiplex sequence libraries were split into the original
samples based on the specific barcodes. The 454 reads were
denoised using Denoiser [23] and chimeric sequences
checked with UCHIME [24]. Operational taxonomic units
(OTUs) were clustered considering evolutionary distance of
0.03 (97 % similarity cutoff) by using UCLUST algorithm
[25] and taxonomically affiliated through BLAST search
using QIIME BLAST Taxon Assigner default parameters (ap-
plication blastn/megablast, max E value 0.001, min percent-
age identity 90.0) against SILVA Eukaryotic database (97
SILVA 111 rep set euk) [26, 27]. OTUs not assigned to
Fungi kingdom, singletons (OTUs containing a unique se-
quence in the whole analysis) as well as classified as “no hit”
by BLAST search were removed from the dataset.
Inconsistences of SILVA taxonomic classification were man-
ually corrected before relative abundance calculation based on
the OTU BLAST search best hit access number and NCBI
taxonomy rank (http://www.ncbi.nlm.nih.gov/taxonomy).
The OTU table was rarefied to the lowest number of
sequences in any sample (1728) before calculation of alpha
diversity indices. Species richness (Chaol and Abundance
Coverage-based Estimator (ACE)), diversity (Shannon,
Simpson’s reciprocal) estimators, Good’s coverage, and rare-
faction curves were calculated in QIIME. Chao entropy index
[28] was calculated on the CHAOEntropy-Online calculator
(https://yuanhan.shinyapps.io/ChaoEntropy/). A bipartite
OTU network was generated in QIIME and viewed and
edited in Cytoscape 3.2.1 [29]. The fungal OTUs present in
all soil samples (total core) (core_table 100.biom file), as well
as the common OTUs belonging to ADE or ADJ soils (group
core) were also determined in QIIME (compute core_
microbiome.py). OTUs showing average abundance higher
than 1 % of the total number of sequences by group (ADE
or ADJ) were considered abundant. Differential OTU
frequencies between ADE and ADJ soil groups was
determined by non-parametric ¢ test followed by Monte
Carlo test (100 replicates) after removing the OTUs that were
not represented in at least 25 % of the samples using QIIME
(group_significance.py). Univariate analyses (¢ test, ANOVA,
Tukey’s test) were performed using IBM SPSS Statistics V.22
(IBM Corp., Armonk, NY, USA) software, whereas multivar-
iate analyses (canonical correspondence analysis and similar-
ity percentage analysis) were performed using paleontological
statistics (PAST) software package V.3.05 [30]. Count data
(sequence abundances) and environmental variable values
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were transformed (function Log(x+1)) before multivariate
analysis. The raw 454 pyrosequencing data of the 18S
rRNA are available at the European Nucleotide Archive
(ENA) (https://www.ebi.ac.uk/ena/) under the study
accession number PRJEB10851.

Results
Soil Physicochemical Properties

All the evaluated soil physicochemical and fertility attributes
were statistically different (»<0.05) when ADE and ADJ soils
were compared in groups, with the exception of the K, S, and
Fe attributes. On average, ADE soils were higher in pH, or-
ganic matter (OM), macronutrients (P, Ca, Mg), and some
micronutrients (Mn, Cu and Zn), while ADJ soils had higher
levels of Al and H + Al (Table 1). Within the ADE soil group,
the Hatahara sample showed the highest amounts of P, Cu, Fe,
Zn, and Mn, whereas in the ADJ soil group, the Agutuba soil
sample showed the highest amount of K and lowest Al con-
centration and Al saturation, comparable with ADE samples
(Table 1).

Diversity of Fungal Community
18S ¥rRNA Sequencing

Pyrosequencing of 18S rRNA gene from the 24 soil samples
generated 132,764 high-quality sequences after denoising and
chimera checking, with an average size of 351 nucleotides. A
total of 105,019 sequences were used for further analysis after
taxonomic classification as fungal. The numbers of sequences
per library ranged from 1728 to 6712. A detailed description
of sequencing depth and number of OTUs along the bioinfor-
matics analyses can be viewed at Online Resource 3. The
number of picked OTUs ranged between 127 and 172 after
the removal of singletons and library normalization with the
lowest number of sequences (1728) (Table 2). Despite the
decrease in the number of sequences after quality filtering
and library normalization (Online Resource 3), the sample
coverage was approximately 97 % as indicated by Good’s
estimator (Table 2). In addition, rarefaction curves also point-
ed for adequate sequencing efforts for fungal population cov-
erage in the samples (Online Resource 4).

No significant differences in the estimated species richness
was observed by ACE and Chaol estimators when comparing
the ADE and ADIJ soil samples in the same sites, with excep-
tion of a higher number of species in the Hatahara ADE sam-
ple in relation to its ADJ soil (ACE estimator). Regarding the
fungal species diversity, Shannon and Chao entropy estima-
tors also pointed to no differences between the ADE and ADJ
soils. Simpson’s reciprocal indicated lower species diversity
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Table 2 Estimated richness and diversity indices for the fungal communities in the Amazonian Dark Earth (ADE) and adjacent (ADJ) soils from
Acutuba (ACU), Balbina (BAL), Barro Branco (BBO), and Hatahara (HAT) sites

Species richness estimators

Diversity estimators

Soil N OTUs* ACE Chao-1 1/D¢ H" Chao entropy®  Good’s’
type/site
ADE
ACU 136 (183, 89)°  200.14 (239.10, 161.17)  197.06 (245.57, 148.54) 10.30 (16.66,3.94)  4.58 (5.86,3.31) 3.24 (4.13,2.35) 0.97 (0.97, 0.96)
BAL 132 (145, 119) 200.28 (251.44, 149.12) 193.01 (262.55, 123.48) 6.66 (9.27,4.05)  4.19 (4.83,3.56) 2.97 (3.42,2.52) 0.97 (0.98, 0.96)
BBO 139(177,102) 210.90 (253.77, 168.03) 206.80 (285.52, 128.08) 7.74 (11.95, 3.53) 4.46 (5.33,3.59) 3.16(3.77,2.54) 0.97 (0.98, 0.96)
HAT 172 (182, 162) 245.40 (254.92,235.87) 248.17 (294.53, 201.81) 20.21 (30.11, 10.32) 5.60 (5.74, 5.46) 3.96 (4.06, 3.86) 0.96 (0.97, 0.96)
ADJ
ACU 164 (173, 155) 236.48 (284.49, 188.46) 238.93 (348.00, 129.86) 13.91 (15.00, 12.82) 5.18(5.29,5.06) 3.66 (3.74,3.59) 0.96 (0.98, 0.95)
BAL 166 (186, 146) 243.53 (269.82,217.23) 246.05 (326.08, 166.02) 15.54 (19.64, 11.44) 5.22 (5.72,4.73) 3.70 (4.03,3.37) 0.96 (0.97, 0.95)
BBO 127 (145, 109) 191.69 (250.32, 133.07) 180.82 (221.30, 140.33) 14.95 (16.42, 13.48) 4.94 (5.10,4.79) 3.49 (3.60,3.37) 0.97 (0.98, 0.96)
HAT  138(166, 110) 188.47 (231.82, 145.11) 184.10 (202.18, 166.02) 15.98 (26.94, 5.01)  5.12(5.93,4.30) 3.61 (4.17,3.04) 0.97 (0.98, 0.97)

*Number of determined operational taxonomic units

° The showed values represent the average of three replicates followed by confidence intervals

¢ Simpson’s reciprocal (1/D) index
9 Shannon index
¢ Chao entropy index (Chao et al. 2013)

fGood’s estimated sample coverage

in the ADE from BAL and BBO in comparison with the re-
spective ADJ samples (Table 2).

Statistical Multivariate Analysis

Even though similarities were observed in the species richness
and diversity of the ADE and ADJ soil fungal communities, the
OTU network and canonical correspondence analysis (CCA)
showed two well-defined clusters segregating the fungal com-
munities of ADE and ADJ soils from BAL, BBO, and HAT
(Fig. 1a, b). The same pattern could not be observed for the
fungal communities of ADE and ADJ soils from ACU that
were more similar to each other and distant from the other site
assemblages (Fig. 1b). CCA also indicated that the ADE fungal
assemblages were correlated with higher pH, macronutrients,
sum of bases (SB), percentage of soil base saturation (V%), and
Cu, Zn, and Mn concentrations, whereas ADJ community was
correlated with Al, H + Al, aluminum saturation (m%), and B
levels (Fig. 1b). P and m% contributed with more than 13 %
each in the ADE versus ADJ fungal community dissimilarity as
calculated by similarity percentage analysis (SIMPER) (Online
Resource 5). Conversely, the OM and pH contributed 2.5 and
0.9 % to the dissimilarities, respectively.

Fungal Taxonomy
The phylum Ascomycota, specifically the subphylum

Pezizomycotina, was the most abundant in all the soil samples
with exception of BAL ADE that was dominated by
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Agaricomycotina fungi (Basidiomycota) (Table 3).
Pezizomycotina fungi were statistically significantly (p<
0.05) more abundant in ADIJ soils, and shifts were detected
especially in Balbina and Hatahara sites. Ascomycota
Taphiromycotina (p<0.005) and Mitosporic Acomycota (p<
0.05), Chytridiomycota Insertae sedis (p<0.005), Fungi
Insertae sedis Mucoromycotina (p<0.05), and
Glomeromycota phylum (arbuscular mycorrhizal fungi) were
also more abundant in ADJ soils at statistical significant level.

The ADE soils showed significant higher abundance of
Basidiomycota Agaricomycotina (p<0.05) and
Pucciniomycotina (p<0.05), Fungi Insertae sedis
Zoopagomycotina (p<0.05), and Mortierellomycotina (p=<
0.05). Shifts in Mortierellomycotina abundance were observed
mainly in ACU and HAT sites.

A significant number of sequences, especially in ADE (p<
0.05), were taxonomically classified only at Fungi domain and
environmental sample category based on BLAST access tax-
onomy rank. We cannot affirm whether these results could
represent new fungal species or are resultant of SILVA and
NCBI database annotation imprecision.

Fungal Core Community

The fungal core community present in all soil samples and
locations computed in QIIME was composed of seven
OTUs, most of them classified as Ascomycota phylum
(Table 4). At species level, they showed similarity to
Ascomycota Cordyceps confragosa (OTU 822),
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Fig. 1 Bipartite network ( a)
connecting the fungal OTU nodes

to the Amazonian Dark Earth

(ADE) and adjacent (ADJ) soil

nodes by Acutuba (ACU), -
Balbina (BAL), Barro Branco .
(BBO), and Hatahara (HAT)

representing edges (a) and

canonical correspondence R
analysis (CCA) with 95 % ’
confidence ellipses (b) ————

OTU
Amazonian Dark Earth

Adjacent Soil

Acutuba
Balbina
Barro Branco

Hatahara

Axis 2 (12.7%)

ACU ADE
ACUADJ
® BALADE
X BALADJ
® BBOADE
X BBOADJ
HAT ADE
HAT ADJ

Lithothelium septemseptatum (OTU 1344), Aspergillus niger
(OTU 2196), Ophiocordyceps clavata (OTU 2207), and
Fomitopsis pinicola (Basidiomycota, OTU 153), and OTUs
874 and 1924 were classified as uncultured fungus (Table 4).

We also determined the fungal cores in the ADE and ADJ
that were present in all samples of the same group but not
necessary completely absent in the other one. Due to the par-
ticular grouping patterns of the ACU soil samples in the OTU
network and CCA analyses (Fig. 1a, b), we decided to compute
the fungal core in two ways: including and excluding ACU
samples. By considering only the most homogeneous ADE
and ADJ sites (BAL, BBO, and HAT), we increased the num-
ber of OTUs in the core. The ADE core considering all sites
was composed of six OTUs; of those, three had similarity to
Mortierellaceae sp. (OTUs 991, 1943, and 2141), one to
Plectosphaerella sp. (OTU 2425), and the other two had sim-
ilarity to uncultured Chytridiomycota (OTU 1462) and uncul-
tured Boletaceae (OTU 1134) (Table 4). After ACU ADE se-
quence exclusion, the ADE core was increased to 15 OTUs and

Axis 1 (16.5%)

a higher diversity was observed (Table 4). The ADJ core con-
sidering all sites was composed of eight OTUs: two similar to
Mucoromycotina sp. (OTUs 2315 and 2057) and the others
similar to Exophiala dermatitidis (OTU 118), Acremonium
vitellinum (OTU 468), Pestalosphaeria sp. (OTU 938),
Cryptococcus aureus (OTU 1002), uncultured Basidiomycota
(OTU 1523), and Spathularia flavida (OTU 2120). After ACU
ADJ sequence removal, the number of OTUs belonging to
ADJ fungal core was raised to 12 OTUs (Table 4).

Abundance-Based Analyses

The dominant OTUs present in at least 75 % of the ADE and
ADJ 18S rRNA soil libraries (>1 % of sequences of each
group) were identified and tested for statistical significant dif-
ferences in abundance (non-parametric ¢ test followed by
Monte Carlo test). Of the 30 OTUs that fit this criterion, 12
were more abundant in ADE soils, 10 in ADJ soils, and 8
showed no significant abundance differences between soil
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Table4 Amazonian Dark Earth (ADE) and adjacent (ADJ) soils general fungal OTU core and specific soil type cores (ADE or ADJ) followed by the

best BLAST hit and the NCBI taxonomical classification

NCBI taxonomic classification®

OTU number Soil group Access number Phylum Subphylum Specie

OTU 153 ADE/AD] AY705967 Basidiomycota Agaricomycotina (no rank) Fomitopsis pinicola

OTU 822 ADE/AD] AB111495 Ascomycota Pezizomycotina Cordyceps confragosa

OTU 874 ADE/ADJ IN054669 nd nd Uncultured fungus

OTU 1344 ADE/AD] AY584662 Ascomycota Pezizomycotina Lithothelium septemseptatum
OTU 2196 ADE/AD] GQ903337 Ascomycota Pezizomycotina Aspergillus niger

OTU 2207 ADE/AD] IN941726 Ascomycota Pezizomycotina Ophiocordyceps clavata
OTU 1924 ADE/AD] IN054669 nd nd Uncultured fungus

OTU 991 ADE EU688964 Fungi incertae sedis Mortierellomycotina Mortierellaceae sp.

OTU 1943 ADE EU688964 Fungi incertae sedis Mortierellomycotina Mortierellaceae sp.

OTU 2141 ADE EU688964 Fungi incertae sedis Mortierellomycotina Mortierellaceae sp.

OTU 2425 ADE HQ871881 Ascomycota Pezizomycotina Plectosphaerella sp.

OTU 1462 ADE GQ995336 Chytridiomycota nd uncultured Chytridiomycota
OTU 1134 ADE EF024156 Basidiomycota Agaricomycotina (no rank) uncultured Boletaceae

OTU 310° ADE GU369995 nd nd Uncultured marine eukaryote
OTU 339° ADE DQ198797 Basidiomycota Pucciniomycotina Atractiella solani

OTU 362° ADE GU568155 nd nd Uncultured soil fungus

OTU 548° ADE JN941713 Ascomycota Pezizomycotina Ophiocordyceps nutans
OTU 1526° ADE AF026592 Basidiomycota Agaricomycotina (no rank) Bjerkandera adusta

OTU 1878° ADE ABIS01004081 Ascomycota Pezizomycotina Coccidioides posadasii
OTU 2075° ADE EU417636 Glomeromycota Incertae sedis Uncultured Glomus

OTU 2282° ADE AB196322 Fungi incertae sedis Kickxellomycotina Ramicandelaber longisporus
OTU 2475° ADE AB901634 nd nd Uncultured eukaryote
OTU118 ADJ DQ823107 Ascomycota Pezizomycotina Exophiala dermatitidis

OTU 468 ADJ HQ232212 Ascomycota Pezizomycotina Acremonium vitellinum
OTU 938 ADJ AF104356 Ascomycota Pezizomycotina Pestalosphaeria sp.

OTU 1002 ADJ DQ437076 Basidiomycota Agaricomycotina (no rank) Cryptococcus aureus

OTU 1523 ADJ EF441962 Basidiomycota nd Uncultured Basidiomycota
OTU 2120 ADJ 730239 Ascomycota Pezizomycotina Spathularia flavida

OTU 2315 ADJ JF414214 Fungi incertae sedis Mucoromycotina Mucoromycotina sp.

OTU 2057 ADJ JF414228 Fungi incertae sedis Mucoromycotina Mucoromycotina sp.

OTU 1853° ADIJ HQ333479 Ascomycota Mitosporic (no rank) Heliocephala gracilis

OTU 1086° ADIJ AB032629 Basidiomycota Agaricomycotina (no rank) Cryptococcus flavus

OTU 2235° ADJ JF836023 Ascomycota Taphrinomycotina Archaeorhizomyces borealis
OTU 2242° ADJ GQ995264 Chytridiomycota nd Uncultured Chytridiomycota

nd not determined (nd)
 Taxonomic classification based on best BLAST hit access after search against SILVA database (97 SILVA 111 taxa map euks) (Quast et al. 2013)

®Present only in Balbina, Barro Branco, and Hatahara sites

origins (Fig. 2). OTU 822, similar to C. confragosa, showed

the highest number of 18S rRNA sequences (17.8 %) and was

more abundant in the ADE soils (Fig. 2a) than in ADJ soils.
The second most abundant was OTU 2196 (6.4 %), similar to
A. niger, and significantly more abundant in ADJ soils
(Fig. 2b) than ADE soils. Chytridiomycota-like OTUs also
showed high abundance levels but without differences based
on the soil origin (Fig. 2c).

Discussion

Up to date, the fungal community in ADE has been charac-
terized only by culture-dependent methods [16] and poorly
described when compared to Bacteria and Archaca commu-
nities [7-10, 12, 31, 32]. To our knowledge, this is the first
study assessing the soil fungal composition and diversity of

ADE sites in the Brazilian Central Amazonia compared to
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Fig. 2 Differential frequencies of most abundant OTUs (>1 % of the
group sequences) determined by non-parametric # test using Monte Carlo
simulation (100 replicates). Plots representing the OTUs statistically

their respective adjacent non-anthropogenic origin soils by
using high-throughput 18S rRNA gene sequencing. No dif-
ference in the fungus species richness was observed between
ADE and ADJ soils, with the exception of the HAT site, in
which higher species richness in ADE was found with the
ACE index. This finding diverges from the bacterial com-
munity richness that was described being 25 % greater in
ADE soils than in ADJ [7]. Culture-dependent [8] and
culture-independent analysis [12] also showed a higher bac-
terial diversity in ADE in comparison with ADJ soils.
However, for fungi, we have detected no differences in fun-
gal diversity in ACU and HAT soils. Only the reciprocal of
Simpson’s index estimated a lower diversity in BAL and
BBO ADE, indicating possible fungal species dominance.

@ Springer

significant most abundant in Amazonian Dark Earth (ADE) (a), in adja-
cent (ADJ) soils (b), and showing no significant differences between the

soil types (¢)

Despite the lower fungal species richness and diversity ob-
served in our study, elevated ratios of amino sugar and
muramic acid in soil microbial biomass indicated a general
predominance of fungi over bacteria in the ADE samples
[6].

Previous studies revealed that ADE samples from different
origins harbor similar bacterial and archaeal communities as well
as bacterial functional genes (e.g., bph, encoding for a biphenyl
dioxygenase) that are distinct from adjacent soils of non-
anthropogenic origin [9, 33]. In this study, we observed the same
pattern for fungal communities. The ADE fungal communities in
three of the four evaluated sites (BAL, BBO, and HAT) were
more similar to each other than their respective ADJ soils at
OTU level analysis, thus suggesting an effect of past land use
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on the fungal community selection. Nevertheless, the same
grouping pattern was not observed for the ACU site where the
fungal communities could not be segregated by soil type and
were more dissimilar from the other ADE and ADJ sites.
Currently, the ACU ADE have intensively been used for agri-
culture under annual crop rotation system (e.g., eggplant, cow-
pea, cabbage, zucchini, cucumber, passion fruit, papaya) [34]
and also showed the lowest amount of organic matter among
the surveyed ADE soils. Shifts in fungal communities in
Amazonian soils due to land use changes, e.g., conversion of
native forest to pasture and agriculture, have already been de-
scribed [35], but the extension of the alterations in ADE land use
on the microbial communities are still scarce [4]. We observed an
increase in the common ADE OTUs (ADE fungal core) after
ACU sample removal, but we cannot affirm that this effect was a
result of the ACU ADE transformations in response to more
intensive land use or due to natural differences in ADE ages or
formation processes. The low concentration of Al and aluminum
saturation in ADJ soil from ACU points to prior lime application
before sampling, which could explain the out-grouping of ADJ
samples. Lehmann [36] suggests that the specific microbial com-
position in ADE is a result of its unique conditions rather than the
cause. Indeed, the higher amounts of nutrients, mainly P, Ca, Zn,
and Mg, and higher SB and V% were associated with ADE
fungal communities, whereas Al and aluminum saturations were
more associated to the fungal communities in ADJ soils. High
levels of Al and Mn indirectly caused by soil pH acidity have
been described as a limiting factor for crop production in
Amazonian soils [37]. Significant correlations of Al contents in
ADE and ADJ soils with bacterial rizhospheric and bph gene
community structures were also observed [4, 33]; however, fur-
ther studies are still necessary to confirm this assumptions for
fungal communities in these environments.

The microbial functions in ADE are still unclear [36], and
most hypothesis relies on black carbon (BC) oxidation, mainly
by fungi [6] or BC biological production [38]. Due to its poly-
cyclic aromatic structure, BC cannot be considered an available
source of C for microbial growth [3, 39]; however, it may be
mineralized by microbial co-metabolism [9]. In our survey, we
observed a significantly higher abundance in ADE of OTUs
showing similarity to the brown rot fungi F. pinicola [40] as
well as the saprophytic fungi 4. vitellinum [41] and
Mortierellaceae sp. LNO7-7-4. A remarkable characteristic of
the Basidiomycota brown rot fungi is the selective degradation
of wood polysaccharides, which avoids lignin molecules [42].
In the same way, Mortierella spp. and Acremonium spp. were
found in thermophilic compost and vermicompost [43-45].
Mortierellales fungi were more associated to manure silage
and hay compost than hardwood composts [45].
Mortierellacea was also described as dominant in soil samples
from primary florets and agricultural areas in Amazonia [35].
Based on these results, we hypothesize that the most abundant
fungal species in ADE are involved in the decomposition of

fresh organic matter instead of direct oxidation of recalcitrant
BC. However, the potential for lower BC oxidation rates by the
Agaricomycotina fungi cannot be discarded and should be in-
vestigated in the future. We were unable to affirm in this study
if the decomposition of fresh organic matter priming affected
recalcitrant BC decomposition. Controversial results are ob-
served in the literature showing positive effect of glucose on
BC oxidation in BC/sandy mixture [46] and no priming effect
on BC mineralization by the incorporation of '*C-labeled plant
residues to ADE in long-term experiments [39]. In the other
direction, Glaser and Knorr [38] determined significant
amounts of biological BC production under humid tropical
conditions and attributed it to the black pigment aspergilin pro-
duced by Aspergillus niger. Despite the presence of A. niger in
the general fungal core, the OTU 2196 similar to this species
was significantly abundant in the ADJ soils. 4. niger is a ver-
satile ubiquitous fungus, commonly found in soil and litter
[47], and able to produce and secrete enzymes and siderophore
molecules [48] and solubilize inorganic P [49].

In this study, we also observed a high abundance of 18S
rRNA sequences similar to the fungal species C. confragosa, a
pathogen of arthropods and other fungal species [50].
Entomopathogenic fungi, like Cordyceps and
Ophiocordyceps, are commonly found in undisturbed tropical
humid forests soil and litter and can control insect outbreaks
[51]. C. confragosa, also known as Lecanicillium lecanii
(Zimm.) during its anamorphic stage, is a parasite of the green
coffee scale (Coccus viridis, Hemiptera) [52] and coffee leaf
rust fungus (Hemileia vastatrix) [53]. In agricultural environ-
ments, soil can act as the fungus propagule reservoir during
the dry seasons and absence of the target insects [54]. We
observed a dominance of C. confragosa-like OTUs in the
BBO ADE soil that was cultivated with a citrus orchard and
speculate that this fungus could be acting in the insect biolog-
ical control. Further studies are necessary to explore these
predictions. Our findings indicated that beyond the impor-
tance in C transformations, ADE soils could be a source of
new entomopathogenic fungi.

Conclusions

Our study revealed that fungi communities in ADE were more
similar to each other than to the adjacent soils, even when
considering the different origins and ages of formation. The
concentrations of soil P and Al were the main chemical prop-
erties associated to the fungal assemblages in ADE and ADJ
soils, respectively. However, other potential factors driving
ADE fungi communities beyond the soil chemical attributes
might be further investigated. Recently, it was demonstrated
that plant species can influence rhizospheric bacterial commu-
nities in ADE [4]. The most abundant OTUs in the ADE soils
showed similarity to saprophytic fungi species related to fresh
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organic matter degradation. Studies of the functional diversity
of fungi in ADE and the relation with soil organic matter
degradation are necessary [31, 36] and should be considered
as next step in ADE research.
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