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Abstract Wolbachia is the most widespread intracellular α-
proteobacteria maternally inherited endosymbiont of insects
and nematodes. These bacteria are associated with a number
of different reproductive phenotypes of their hosts. Relatively
few studies have dealt with distribution of infections across
populations and with the influence of these bacteria on host
genetic diversification and speciation. The aims of this study
are to determine the distribution and rate of infection and to
characterize the Wolbachia strains associated with Philaenus
spumarius spittlebug (Hemiptera) by using multilocus se-
quencing typing (MLST) analysis and host phylogeography.
The results showed that infection rate was significantly differ-
ent between members of both main mitochondrial phyloge-
netic lineages of P. spumarius. We detected much higher in-
fection rates of Wolbachia in P. spumarius populations from
the north-east clade than the south-west clade. Moreover, the
frequency of these infections varied within and outside the
contact zone known from the Carpathians. Given the repro-
ductive alterations which are often associated with this endo-
symbiont, Wolbachia probably maintain genetic differentia-
tion of its hosts in its contact zone in the Carpathians. This is
one of the first studies demonstrating the presence of
Wolbachia across a large part of the range of insect species,

including the contact zone. The spread of Wolbachia in
P. spumarius populations can potentially cause speciation by
compromising the potential reproductive barrier between in-
fected and uninfected populations. We discuss possible impli-
cations of Wolbachia infection inducing cytoplasmic incom-
patibility in the population dynamics of this spittlebug but
confirm that more studies are also required.
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Introduction

Wolbachia is the most widespread intracellular α-
proteobacteria. This maternally inherited endosymbiont is
known to infect 15-76 % of insect species [37, 87]. It is found
also in many non-insect invertebrates: spiders, mites, crusta-
ceans, and nematodes [29, 37, 64, 65, 89], whereas it is ap-
parently absent in, e.g., mollusks [70].Wolbachia exists in 13
monophyletic clades: A to N, referred as supergroups [19];
however, supergroups A and B are known to be the most
frequent in insects [64, 87]. Wolbachia lives inside the cyto-
plasm in reproductive tissues and is associated with a number
of different reproductive phenotypes in its hosts, such as cy-
toplasmic incompatibility (CI) [9, 34, 36, 72], feminization,
parthenogenesis inducing (PI), male killing, and modifying
fecundity [5, 33, 77]. These modifications of the host breed
impart a selective advantage, thus allowing Wolbachia to
spread efficiently and rapidly into host populations [19, 29].
Furthermore, the ability to manipulate the reproductive prop-
erties may have an effect on the host’s biology, ecology, and
evolution [4].
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Many studies argue that Wolbachia promote rapid specia-
tion by causing reproductive incompatibility between mates,
usually from different populations belonging to distinct mito-
chondrial lineages [10, 62, 77, 82, 94]. The molecular basis of
cytoplasmic incompatibility is unknown, but it has been con-
firmed that the genetic determinants are maternally inherited
[62] and correlate with the presence of rickettsia endosymbi-
onts in the arthropods’ gonad tissue (ovaries and testes) [88].
This phenomenon is expressed when an infected male mates
with a female that is not infected, when male and female are
both infected with two different Wolbachia strains, or when
the male is infected with two strains and the female is infected
with a single strain of Wolbachia [24]. Examples of CI were
found in a diverse range of insects, including flour beetles,
Tribolium confusum [61, 84], alfalfa weevils, Hypera postica
[31, 46], parasitic wasps, Nasonia [67], planthoppers,
Laodelphax striatellus [58, 59], flour moths,Ephestia cautella
[13], mosquitoes, Aedes scutellaris [81], and fruit flies, Dro-
sophila simulans [8, 49]. It is also known thatWolbachiamay
be transmitted horizontally between different hosts (species or
members of distant phylogenetic lineages) [88, 90], which can
also play a role in speciation.

Wolbachia infections are relatively common in insects al-
though little information is available about the effects of
Wolbachia infections in population scale. Populations of in-
sects might not be infected at all: e.g., weevil Centricnemus
leucogrammus [40] and Cryptocephalus leaf beetles [51]. On
the other hand, some species seemed to be infected across an
entire range by the same supergroup and even the same strain:
e.g., weevil Polydrusus inustus [41], Chinese rice leafroller
Cnaphalocrocis medinalis [15], Indian butterflies Talicada
nyseus [2], and leaf beetle Oreina cacaliae [51]. An alterna-
tive example concerns species with populations co-infected by
different supergroups and/or strains: e.g., grasshopper
Chorthippus parallelus [92], bean beetles Callosobruchus
chinensis [43], leaf beetle Crioceris quatuordecimpunctata,
and Crioceris quinquepunctata [44, 56]. Also, there are
known species that some populations infected and others did
not: e.g., flower bug Orius strigicollis [86], little fire ant
Wasmannia auropunctata [66], and leaf beetle Diabrotica
virgifera [24]. In some species, only a portion of individuals
are infectedwithin populations: e.g., grasshopperC. parallelus
[92]. The latter two examples could concern situations in
which all infected populations harbor the same bacteria (single
or multiple infection) or each of these populations is infected
by another supergroup and/or strain of Wolbachia. A reason
for these infection variants could possibly be found in the
natural horizontal transmission ofWolbachia by consumption
of infected or contaminated food, e.g., plant phloem [18] and/
or from parasitoids, e.g., parasitoidal wasps [27, 32]. Howev-
er, knowledge about infection patterns in populations is rela-
tively poor due to difficulties in studying large numbers of
populations and specimens across species ranges and possible

diverse compositions ofWolbachia strains in infected popula-
tions. Moreover, it is hard to determine if some populations
are really uninfected because in some of them, a very low
number of individuals could harbor bacteria [89]. Similar
problems concern identification of all strains present in some
multiple-infected populations, as some strains could infect
low numbers of individuals or some strains could dominate
others even within a single individual. However, these issues
have not been satisfactorily studied thus far.

In recent years, very few studies report cumulative data
about Wolbachia infections in populations within contact
zones. The paradigmatic work for our studies was performed
by Zabal-Aguirre et al. [92], who described two subspecies of
the meadow grasshopper C. parallelus that arose in allopatry
and next form a secondary contact zone in the Pyrenees.
Zabal-Aguirre et al. [92] reported that Wolbachia infection is
widespread in C. parallelus populations, where most of the
samples featured 76-100% infected individuals.Moreover, all
the analyzed populations of C. parallelus were infected with
Wolbachia, although there were differences in infection type.
Their studies indicated a significant infection influence on the
origin, maintenance, and dynamics of this contact zone. Bella
et al. [7] executed consistent studies with C. parallelus. These
studies show that Wolbachia may be involved in speciation
phenomenon in this grasshopper that is produced by a repro-
ductive barrier. Additional research of three species of the
Allonemobius socius complex of crickets from North America
in zones of secondary contact including CI caused by the
Wolbachia was described by Marshall [52, 53]. Giordano
et al. [24] presented the role of Wolbachia bacteria in repro-
ductive incompatibilities and hybrid zones of Diabrotica bee-
tles andGryllus crickets. The examples mentioned above sug-
gest that the role ofWolbachia in inducing CI and the resulting
speciation in insects could be underestimated. However, most
of this research was executed on orthopteran, which is due to
intensive studies on this group of insects rather than special
association of Wolbachia with these insects. On the other
hand, almost nothing is known about the influence of
Wolbachia on reproductive barriers, contact zone origin,
and speciation process in other groups of insects. Recently,
the contact zone has been described for the spittlebug
Philaenus spumarius (L.) (Hemiptera: Aphrophoridae)
[48, 55], which has been one of the most intensively
studied bugs in recent years [20, 21, 25, 48, 54, 55, 68,
71], making it a model species in evolutionary studies of
insects.

Currently, genus Philaenus is believed to consist of nine or
ten species [20, 54, 80]. Most of them are distributed in the
Mediterranean area. Only P. spumarius is widespread and oc-
curs naturally throughout the entire temperate and warm Hol-
arctic region [20, 21]. It therefore seems to be an excellent
subject of research for the spread ofWolbachia infection. Re-
cent studies on the phylogeny and population genetics of
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spittlebugs of the genus Philaenus show that P. spumarius is
divided into two highly distinct mitochondrial clades: north-
eastern (north-central Europe and Asia) and southwestern
(Western Europe and the Mediterranean region, also
introduced/invaded populations to the North America), which
meet along European mountain ranges [48, 54, 55]. Similarly,
analysis of a nuclear marker (elongation factor 1 alpha gene
(EF1-α)) suggests that there are three main clades: northeast-
ern (Eurasian), southeastern (east Mediterranean-Caucasian),
and southwestern (Italo-Iberian), which probably overlap
along European mountain ranges [48, 55]. Moreover, detailed
examination of genetics for populations in the contact zone of
main phylogenetic lineages in the Carpathians demonstrated
that some of these populations consist of individuals belong-
ing to different clades and, even more, that some individuals
showed signs of hybrid genotypes, including examples of
heteroplasmy [48]. These findings strongly suggest that
P. spumarius is a complex of evolutionary units with uncertain
taxonomic status. Therefore, it is an excellent subject for fur-
ther population genetic and speciation studies. Because our
preliminary analyses confirmed that some of P. spumarius
populations are infected byWolbachia,we decided to perform
detailed studies on these bacteria occurrence across the range
of P. spumarius, including populations in contact zones.

The principal aims of this study were to determine infection
diffusing of Wolbachia and identify supergroups of this mi-
croorganism in P. spumarius populations in the entire range
and in the contact zone of the main phylogenetic lineages. As
a result, we will try to verify the following hypotheses: (i)
Wolbachia infects only one of P. spumarius mitochondrial
phylogenetic lineages and consequently (ii) Wolbachia infec-
tion is associated with the beginning of allopatric speciation of
the host and with limited hybridization between genetically
distinct populations of the P. spumarius. As this work is the
first step in understanding interactions between Wolbachia
and P. spumarius, it does not include examination of cytoplas-
mic incompatibility or other mechanisms influencing repro-
duction of the host.

Materials and Methods

Sampling Area

Individuals from 49 populations of P. spumarius were collect-
ed from 2003 to 2011 (Fig. 1). Thirty-one populations (102
individuals) covering nearly the entire range of P. spumarius
(locality symbols S) and eighteen populations (72 individuals)
from six transects across the Carpathian arc (locality symbol
CM) were sampled (Table 1). Additionally, six specimens of
Philaenus tesselatus (from Portugal) and single representa-
tives of Philaenus italosignus (from Sicily), Philaenus
signatus (from Greece), Philaenus arslani (from Lebanon),

Philaenus loukasi (from Greece), Philaenus tarifa, and
Philaenus maghresignus (from Southern Spain) were tested
for Wolbachia presence (we missed the newly described spe-
cies Philaenus elbursianus and Philaenus iranicus due to the
unavailability of these Iranian taxa [80]). Samples of these
species, as well as the majority of individuals of P. spumarius,
were previously used in phylogenetic and phylogeographic
studies [54, 55], whereas Carpathian samples were used for
examination of the contact zone [48]. The spittlebugs were
caught in a sweep-net, instantaneously preserved in 99 % eth-
anol, and stored at −20 °C. All tested specimens were dam-
aged during extraction of DNA procedure. The remaining
voucher specimens are preserved at the Institute of Systemat-
ics and Evolution of Animals, Polish Academy of Sciences.

Wolbachia Detection

DNA was extracted from the whole body of the individuals.
Amplification, purification, and sequencing of multilocus se-
quence typing (MLST) genes were performed using the stan-
dard protocols with different sets of primers (available at:
http://www.pubmlst.org/wolbachia/) [6]. A total of 174
specimens of P. spumarius and 12 specimens of other
Philaenus species were screened for the presence of

Fig. 1 Localization of P. spumarius sampling sites and distribution of
Wolbachia infections (including Carpathian Mountains (CM)). Circles
represent populations harboring haplotypes belonging to SW
mitochondrial clade; triangles represent populations with NE
mitochondrial haplotypes; and squares represent populations including
haplotypes from both clades. Empty marks indicate lack of evidence for
Wolbachia infection; grey marks represent populations in which infection
was detected (strains belonging to B supergroup). Populations infected
with local strain of A supergroup are marked additionally with a plus
mark
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Wolbachia strains. Detection was based on theWolbachia ftsZ
gene and results in the amplification of an approximately 528-
base pair-long DNA fragment with the Wolbachia primers
ftsZ_F and ftsZ_R [6]. Next, all the ftsZ-positive specimens
were subjected to amplification for the other MLST genes
(gatB, coxA, hcpA, and fbpA). To rule out the possibility of
poor quality or degraded DNA templates used for amplifica-
tion, the cytochrome B gene of mitochondrial DNA (CB-
J10747 and CB-N11526 primers by Stewart i Beckenbach
[74]) was additionally amplified. Polymerase chain reaction
(PCR) products were checked on agarose gel. Sequences of
the same gene (not generated de novo but obtained from pre-
vious studies, Maryańska-Nadachowska et al. [48, 54, 55]
were used in further analyses.

PCRwas performed in 30μl reaction volumes with 3.0μl of
10× PCR buffer, 3.0 μl of 25 mM MgCl2, 0.6 μl of a dNTP
mixture, each in a 10mM concentration, 0.6 μl of each 15 mM
forward and reverse primers, 3.0 μl of 100 ng of genomic
DNA, 0.2 μl of Taq DNA polymerase (Qiagen, Germany)
and sterile and deionized water (up to 30.0 μl). PCR conditions
for standard primers were as follows: 4 min at 95 °C followed
by 35 cycles of 30 s at 95 °C, 1 min at 54 °C, and 2 min at
72 °C, with 10 min at 72 °C after the last cycle. To obtain a full
set ofMLSTsequences for individuals infected with local strain
(found in specimens located in the inner side of the southern
Carpathians, see BResults^), some genes need to be amplified
by specific primers, with the annealing temperature adjusted
respectively from protocols available at: http://www.pubmlst.
org/wolbachia/ . PCR products were subjected to
electrophoresis on 1.5 % agarose gels and stained with Midori
Green DNA Stain from ABO. For the MLST gene sequencing
of infected P. spumarius, specimens were obtained with the
same primers used during amplification (available at http://
www.pubmlst.org/wolbachia/).

MLSTAnalyses of Wolbachia Strains

The sequences were compared with the online NCBI databank
using the Basic Local Alignment Search Toot (BLAST) [1]
option to check if primers specifically amplified the targeted
α-proteobacteria. Next, sequences were edited using the BioEdit
Sequence Alignment Editor 5.0.9. [26] and aligned using
ClustalX 1.8 [79]. Haplotype (allele) reconstruction of MLST
genes from genotype data was conducted using the algorithms
provided in PHASE as implemented in DnaSP 5.0 [47].

Table 1 Symbols and localization of sampled populations of
P. spumarius used in the study

Locality symbol Locality

CM-5 Vélke pole

CM-7 Malatina

CM-17 Kamienica River Valley

CM-32 Jaśliska
CM-35 Olka

CM-38 Regec

CM-42 NE from Baia Mare

CM-45 Tihuta Pass

CM-47 Petru Voda Pass

CM-53 Predeal

CM-54 Sinaia

CM-55 Sinca Veche

CM-59 Voineasa

CM-61 Crasna

CM-65 Băiţa
CM-67 Buceş
CM-68 Marişel
CM-69 Şuncuiuş
Spain-S1 Sierra dela Penya Rossa

Spain-S2 Sierra de Guadarama

Spain-S3 Sierra del Madero

Portugal-S4 São Pedro de Manuel

France-S5 Saillagouse

Italy-S6 Gemona del Friuli

Italy-S7 Passo de Muraglione

Italy-S8 Lagonegro

Italy-S9 Santa Agata di Eboli

Italy-S10 Reserva Naturale Aurunci

Italy-S11 Nebrodi Mts, Sicily

Greece-S12 Delphi

Lebanon-S13 Lebanon Mts

Finland-S14 Turku

U.S.A.-S15 Illinois

Portugal-S17 Serra de São Mamede

Russia-S18 Kunashir Island

Russia-S19 Sakhalin

Ukraine-S20 Chatyr-Dag Plateau

Georgia-S21 Guria

Greece-S23 Alexandropoulos

Turkey-S24 Ayvaçik

Turkey-S25 Boz Dagi

Bulgaria-S26 south Pirin Mts

Bulgaria-S27 central Rhodope

Hungary-S28 Üllö

Russia-S29 Kamennaya Balka

Russia-S30 Semibalki

Ukraine-S31 Chartova Gora

Table 1 (continued)

Locality symbol Locality

Norway-S32 Geiranger

Norway-S33 Dombas

CM Carpathian Mts
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The information about host and Wolbachia haplotypes has
been submitted to the NCBI GenBank database (http://www.
ncbi.nlm.nih.gov/BankIt/). The nucleotide sequences have
been deposited in the GenBank database at accession
numbers for hcpA, KM377676–KM377688; coxA,
KM377689–KM377736; fbpA, KM377737–KM377764;
ftsZ, KM377765–KM377773; and gatB, KM377774–
KM377832.

TheWolbachia strains were assigned a sequence type (ST)
and defined as the combination of five integers corresponding
to the allele numbers at the five MLST loci (allelic profile)
with the help of START2 software [38]. A strain is defined as
a Wolbachia isolate from a single host population. Strains
identical to the five alleles were assigned the same ST.

Sequences of MLST genes were compared against
Wolbachia sequences deposited in GenBank (which used
BLAST) to find other hosts harboring the most similar (max-
imum identity) Wolbachia strains sequences. A dataset of the
five concatenated Wolbachia MLST gene (i.e., gatB, coxA,
hcpA, fbpA, and ftsZ), belonging to 87 different Wolbachia
STs were retrieved from the MLST Website and used in com-
parative analysis with the STs isolated from P. spumarius.

Statistical Analyses

The differences of frequencies of positive and negative spit-
tlebug for Wolbachia from the whole species range, contact
zone in the Carpathians, and all populations outside this zone
were analyzed by using the Chi-square test. Relationships
between Wolbachia strains were featured by building phylo-
genetic trees and networks for MLST genes. Trees and net-
works were made of original sequences for each MLST gene
separately and for a combined dataset of all MLST sequences.
Phylogenetic trees were constructed using MEGA5.0 soft-
ware [78] with neighbor-joining algorithm. Bootstrap analysis
was done with 1000 replications; bootstrap values were cal-
culated using a 50 % majority rule. Construction of networks
was done in SplitsTree4 [35]. This software use of median-
joining algorithm distance estimates to compute unrooted
phylogenetic networks from molecular sequence data. Con-
trary to traditional phylogenetic trees, it allows for visualiza-
tion of multiple connections among examined sequences
which could represent, e.g., recombination events. Moreover,
mitochondrial DNA (mtDNA) networks from previous phy-
logeographic studies on P. spumarius [55, 48] were used for
visualization connections withWolbachia infections against a
background of P. spumarius main phylogenetic lineages. The
mtDNA network was build with the use of TCS 1.21 software
[17], and symbols of haplotypes (circles) were colored accord-
ing to Wolbachia infection prevalence (lack of infection, sin-
gle or all individuals infected). The same relationship was
visualized on the mitochondrial phylogeographic map of spe-
cies range. The pairwise homoplasy test (PHI) [14] has been

shown to identify the presence/absence of recombination
within a wide range of sequence samples with a low false-
positive rate [14]. PHI test was used to analyze genetic recom-
bination within and amongMLST genes. Results were obtain-
ed in part by using SplitsTree4 [35].

Results

Wolbachia Detection in Philaenus Species

The screening ofWolbachia infections among eight Philaenus
species was initially executed using amplification of ftsZ gene.
Wolbachia infections were found in P. spumarius and
P. italosignus specimens. However, in the other Philaenus
species - P. signatus, P. arslani, P. loukasi, P. tarifa,
P. maghresignus, and P. tesselatus - we did not ascertain in-
fections of these bacteria. However, it is important to highlight
that only for P. spumarius did we screen many samples of
specimens across species range; for the rest of species, we
tested only single specimens for Wolbachia infections.

Infection Rate of Wolbachia in Different P. spumarius
Populations

In 23 different P. spumarius populations, we obtained an ap-
proximately 528-base pair-long DNA fragment out of the ftsZ
gene for 72 of 174 individuals. This indicates that 41.4 % of
the individuals from all examined populations were positive
for infection (Table 2).

Additionally obtained results clearly show differences in
infections among populations and main mitochondrial clades.
When considering all sampled populations, 70.3 % of individ-
uals from the NE clade were found to be infected, whereas
only 20.0 % of the individuals from the SW possessed these
bacteria, respectively (Table 2). But these infection frequen-
cies varied within and outside contact zone.

In the identified contact zone in the Carpathians, 93.9 %
individuals belonging to the NE clades were infected but two
times fewer (46.2 %) individuals from the SW clade were
Wolbachia positive (Table 2). In total, 68.1% of all Carpathian
specimens were positive for Wolbachia infections.

In the rest of species range (excluding Carpathians), there
were in total 51.2 % of infected specimens from the NE clade;
only 3.3 % of individuals from the SW clade possessed these
bacteria (Table 2).

The infection rate was significantly different between
members of both main mitochondrial phylogenetic lineages
when considering the whole range of species (χ2=45.5,
p<0.0001), contact zone in the Carpathians (χ2=58.4,
p<0.0001), and all populations outside this zone (χ2=50.3,
p<0.0001).
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Table 2 Assignment of P. spumarius sampled populations to mitochondrial clades (SW and NE) and Wolbachia infection frequencies in these
populations of the host

Locality 

symbol
mtDNA clade

Number of 

screened 

specimens

Number of  

infected

specimens

Infection

frequency (%)

CM-5 SW 4 4

In
 th

e 
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nt
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t z
on

e 
(C

ar
pa

th
ia

ns
) 

N
E

: 9
3.

9
%

   
SW

: 4
6.

2 
%

   
 T

ot
al

:  
68

.1
%

In
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ll 
st

ud
ie

d 
po

pu
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tio
ns
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s s

pe
ci

es
 r

an
ge

N
E

: 7
0.

3
%

   
SW

: 2
0.

0 
%

   
To

ta
l: 

41
.4

%

CM-7 SW/NE 3/1 3/1

CM-17 SW/NE 1/3 1/2

CM-32 SW/NE 3/1 3/1

CM-35 SW 4 4

CM-38 SW 4 0

CM-42 NE 4 3

CM-45 NE 4 4

CM-47 NE 4 4

CM-53 NE 4 4

CM-54 NE 4 4

CM-55 SW 4 0

CM-59 NE 4 4 [1]

CM-61 SW 4 0

CM-65 SW 4 1 [1]

CM-67 SW 4 2 [2]

CM-68 NE 4 4

CM-69 SW 4 0

Spain-S1 SW 2 0

In
 th

e 
re

st
 o

f s
pe

ci
es

 r
an

ge
N

E
: 5

1.
2

%
   

SW
: 3

.3
 %

   
T

ot
al

: 2
2.

5
%

Spain-S2 SW 3 0

Spain-S3 SW 3 0

Portugal-S4 SW 5 1

France-S5 NE 3 2

Italy-S6 SW/NE 2/2 0/2

Italy-S7 SW 3 0

Italy-S8 SW 3 0

Italy-S9 SW 3 0

Italy-S10 SW 3 0

Italy-S11 SW 3 0

Greece-S12 SW 3 0

Lebanon-S13 SW 3 0

Finland-S14 NE 4 4

U.S.A.-S15 SW 3 1

Portugal-S17 SW 3 0

Russia-S18 NE 4 4

Russia-S19 NE 4 3

Ukraine-S20 SW 3 0

Georgia-S21 SW/NE 1/3 0/3

Greece-S23 SW 3 0

Turkey-S24 SW 3 0

Turkey-S25 SW 3 0

Bulgaria-S26 SW 3 0

Bulgaria-S27 SW 3 0

Hungary-S28 SW 3 0

Russia-S29 SW 3 0

Russia-S30 SW 3 0

Ukraine-S31 NE 4 3

Norway-S32 NE 4 0

Norway-S33 NE 4 0
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Distribution of Wolbachia in P. spumarius

The sequence analyses of all MLST genes indicates that
supergroup B occurred in most of the infected populations in
the range of P. spumarius, although there were differences in
infection type and variations of strains.

In the group of all infected specimens, nearly 75 % har-
bored more than one strain of supergroup B, in the
Carpathians, and over 76 % were double infected. Most indi-
viduals were from the eastern Carpathians (from the outer and
central arch of the mountains) (Fig. 1).

In the rest of the range, 36 % were single infected by a
strain that was not defined in the MLST database. They
occurred mostly in populations where single individuals were
infected (Portugal-S4, France-S5, U.S.A.-S15, and Georgia-
S21) (Fig. 1).

Throughout the Carpathian’s contact zone, most specimens
were infected by the same Wolbachia supergroup like other
infected populations from Europe and Asia; moreover, there
were only four populations without Wolbachia infections, all
from the southwestern clade (Fig. 1). In three closely located
populations (CM-59, CM-65, and CM-67) from southern
Carpathians (Fig. 1), unique strains of these bacteria were
identified as belonging to supergroup A. Of all of the obtain-
ed, only approximately 5 % of all infections were from a
distinct supergroup, and all were from the inner side of the
southern Carpathians (Fig. 1). This different supergroup has
been detected in all infected individuals fromCM-65 and CM-
67 belonging to the southwestern mitochondrial clade and one
specimen from the population CM-59 belonging to the north-
eastern clade. In the CM-59 population, only one of four spec-
imens harbored this local strain; three other infected speci-
mens harbored similar strains like other multi-infected indi-
viduals from SW.Moreover, three belonging to supergroup A/
B populations were single infected with a distinct strain (not
detected in MLST database). Only the CM-67 specimen was
double infected with different strains of this supergroup.
Moreover, analysis of MLST allelic profiles (Table 1) indicat-
ed only two identical sequence types from the 87 obtained.
This testified to the very high variability of the Wolbachia-
analyzed genes.

Additionally, there were identified hosts harboring similar
strains of Wolbachia as P. spumarius, obtained from the
GenBank (Table 2). The strains of this bacterium in
P. spumarius were closely related to those in wasps
(Vespidae), flies (Drosophilidae), hemipterans (Aleyrodidae),
and also in beetles (Chrysomelidae, Curculionidae).

Phylogenetic Analysis of the WolbachiaMLST Sequences

The phylogenetic analysis results of the Wolbachia MLST
sequences from P. spumarius and P. italosignus are shown in
Fig. 2. The neighbor-joining analysis revealed two major

branches in the phylogenetic trees based onWolbachiaMLST
sequences separately for each gene (Fig. S1a-e) and collec-
tively for all MLST genes (Fig. 2). These two characteristic
branches clustered Wolbachia sequences from the
P. spumarius populations into two main supergroups
(Fig. 2). At the first branches are nearly 95 % of populations
which harbored strains belonging to the B supergroup. The
second branch includedWolbachia-infected populations from
the southern Carpathians, which suggested that approximately
5 % were infected from an alternative source by strains

Fig. 2 Neighbor-joining phylogenic tree of Wolbachia strains in
P. spumarius obtained with the use of MEGA5 for joined MLST genes
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belonging to supergroup A. Additionally, the possible rela-
tionships between the Wolbachia haplotypes were estimated
using the median-joining networks shown in Figs. 3 and S2a-e,
which show congruent patterns with neighbor-joining trees.
Additionally this network brought more information than tradi-
tional phylogenetic tree as it showed also multiple connections
among examinedWolbachia haplotypes (MLST strains) which
could correspond to, e.g., recombination events.

Moreover, the networks in Fig. 4 demonstrated results of
relations within the P. spumarius mtDNA clades and infec-
tions of Wolbachia bacteria. This figure clearly shows that
infections dominate in northeastern clade, and only in popu-
lation from Norway (belonging to this clade) we did not find
this microorganism. In the southwestern clade, the mtDNA
network the most infected populations were from the
Carpathian Mountains where the contact zone of the main
phylogenetic P. spumarius clades occurs. This is where spec-
imens can mix with the northeastern clade. Another single
exception of the infected populations belonging to the south-
western clade is from Portugal and the USA. About one fifth
of the infected individuals was in the population from Portu-
gal; in the USA, one-third of the examined individuals har-
bored the Wolbachia.

Recombination Analysis

The phi test executed by SplitsTree4 [35] indicated statistical-
ly significant evidence for recombination of three of five an-
alyzed MLST genes: gatB, coxA, and fbpA but not for hcpA

and ftsZ (Table 3). Moreover, recombination was detected
among joined sequences of all MLST genes (Table 3).

Discussion

This study provides the first evidence ofWolbachia infections
in Philaenus spittlebugs; moreover, it represents primary re-
search that includes distribution of these bacteria among
P. spumarius populations across almost the entire species
range and in the contact zone of the main phylogenetic line-
ages of this insect in the Carpathians.

Since first discovered in Culex pipiens [28], Wolbachia
have been described as a widespread and common bacteria
infecting insects all over the world (e.g., Neotropics [83],
Palaearctics [91], and Nearctics [89]). Most research on
Wolbachia focused on screens of species, but single represen-
tatives of each species were usually investigated. Due to
known effects of Wolbachia on reproduction of its hosts
(e.g., cytoplasmic incompatibility (CI) [10, 11, 45, 62–64],
parthenogenesis [3, 75, 76], male killing [23, 33] and feminiz-
ing of genetic males [30, 69]), it can be hypothesized that
these bacteria have influenced on diversification and specia-
tion of its hosts. Unfortunately, such studies are not easy to
perform due to problems with identifying contact zones of
species/phylogenetic lineages that harbor distinct strains or
when only one species/phylogenetic lineage is infected. Con-
sequently, there were only single studies dealing with infec-
tions in the contact zone. Example of such recent research
might be work done by Zabal-Aguirre et al. [92, 93], which

Fig. 3 Median-joining network ofWolbachia strains in P. spumarius obtained by SplitTree4 for joined MLST genes
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shows the genetic structure ofWolbachia infection in the Pyr-
enean contact zone of the widely investigated Meadow grass-
hopper C. parallelus subspecies: European C. p. parallelus
and C. p. erythropus.

In this study, we discovered that approximately 41 % spec-
imens of P. spumarius spittlebug across its entire range are
Wolbachia positive, but the infection rate differs significantly
betweenmembers of mitochondrial clades (c. 51% infected in
NE clades versus only c. 3 % in the SW clade) and in contact
zone (c. 93 % from the NE clade and c. 46 % from the SW
clade in this zone). These frequencies support the idea that
Wolbachia is widespread inP. spumarius just like in numerous
other arthropods [19, 29, 37, 64, 87], but that these bacteria are
not distributed uniformly. Moreover, the higher frequency of
infections in the contact zone compared with other parts of the
species range, especially noticeable for the SW clade, indi-
cates that Wolbachia could spread between members of both
mitochondrial clades in areas where they meet. This implies
that mitochondrial phylogenetic lineages of P. spumarius have
not yet formed sufficient reproductive barriers, which has also
recently been proven on the basis of population genetic studies

[48]. It is probable that some environmental factors (basically,
host plants that can mediate Wolbachia infection in phytoph-
agous insect populations [12, 16, 85]), could be responsible
for the observed pattern of these bacteria distribution and di-
versity in P. spumarius range. P. spumarius is a polyphagous
species, but it is possible that its populations from NE and SW
could feed on different plant species due to differences in
vegetation between the temperate flora of lowland central
and eastern Europe and north Asia compared with Mediterra-
nean flora of southern Europe (where most Philaenus species
feed exclusively on Asphodelus) [50]. The contact zone in the
Carpathians simultaneously forms a potential primary contact
zone for Wolbachia diffusion into the SW clade. Outside this
zone, an almost strict division was observed: infection in most
populations belonging to the NE clade and almost no infection
in populations belonging to the SW clade.

The increased level of infection in P. spumarius NE clade
and only isolated infections of these bacteria in the SW clade
indicates that the ancestors of the lineage were presumably
infected byWolbachia after the split of its main mitochondrial
lineages or during this split (which possibly has not finished

Fig. 4 Haplotype cytochrome B networks of P. spumarius and
association of Wolbachia infections with haplotypes belonging to the
NE and SW mitochondrial clades from the species range, including

contact zone in the Carpathians (symbols of populations like in
Table 1). White circles, not infected; gray circles, all population
infected; black circle, some individuals infected of population

Table 3 Recombination analysis
of MLST genes by PhiTest
executing in SplitTree4 software

PhiTest

Gene coxA gatB hcpA fbpa ftsZ MLST

Informative sites 66 50 60 56 4 238

Mean 0.032 0.041 0.001 0.092 0.333 0.083

Variance 2.204 5.516 1.006 9.790 0.037 1.703

Observed 0.021 0.025 0.0 0.030 0.333 0.022

P value 0.007093 0.01608 0.13 1.969E−10 0.5 0.0
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yet). The distribution of Wolbachia could also be associated
with the presence of some host plants in the P. spumarius
range (see explanation above). The demographic and spatial
expansion of this species may have occurred earlier than
Holocene [55, 68]. Also, high genetic diversity detected in
P. spumarius popula t ions from northern Europe
(Scandinavia) indicate that the north of Europe was colonized
by populations that may have survived in several extra-
Mediterranean glacial refugia in addition to the Bclassical^
Mediterranean refuges [68]. That may explain non-infected
populations from Norway; however, loss of infection in these
populations cannot be ruled out. Also interesting are the non-
infected populations from Crimea and southern Russia (be-
longing to distinct lineage within the SW clade), which appar-
ently avoided infection despite close proximity to populations
belonging to the infected NE clade. The possible source of the
infection is directed to the eastern locations (possibly from
Asia) and derived from there to the west, particularly to central
Europe but not to northern and southeastern Europe. This
infection wave has not invaded southern populations. Howev-
er, single infections in southwestern P. spumarius populations
from Portugal and probably descendent population in the
USA (according to mitochondrial studies [55]) can be ex-
plained by accidental human translocations. Moreover, lack
of infection in southern populations of P. spumarius is consis-
tent with lack of infection in other Philaenus species that
inhabit mostly Mediterranean regions. The single infection
in P. italosignusmight have come from feeding on plant phlo-
em [18], which could have mediated Wolbachia transmission
from P. spumarius or other infected insect.

It is probable that the observed pattern of Wolbacha
infection in the contact zone may have caused cytoplasmic
incompatibility between isolated populations from the north-
east and the southwest. In this study, we have a few
examples of populations where individuals from two main
mitochondrial clades were in one population collectively,
and infections were detected only in specimens from NE
clades. That support of cytoplasmic incompatibility may
have also occurred between infected and non-infected
P. spumarius individuals. Therefore, this phenomenon may
also play a role with allopatric speciation in P. spumarius.
This phenomenon needs further studies, including mating of
hosts belonging to distinct mitochondrial lineages and inves-
tigation of Wolbacha transmission to future generations.
Moreover, this phenomenon should also be tested with
respect to feeding preferences of P. spumarius, which are
only broadly known as polyphagous species, but no detailed
studies have been undertaken to verify differences in host
plant composition across its range, e.g., with the use of host
plant barcoding from insect guts (e.g., [42, 57]). Wolbachia
could be transmitted by means of plant phloem, so this route
of infection should also be considered in further studies on
P. spumarius.

As was described in the BResults,^ different infection types
show that P. spumarius were infected by more than one su-
pergroup of Wolbachia. Moreover, different strains were de-
tected in both B and A supergroups, which feature advanced
states of infection of this microorganism and a high degree of
recombination events. Supergroup B is a main group of
Wolbachia in P. spumarius populations, but local infections
of supergroup A in the southern Carpathians showed that in-
fections is not homogeneous in all populations. That state can
be explained by different sources of infections (e.g., from
other insect species) that occurred only locally in southern
Carpathians and have not spread to other populations of
P. spumarius. This local distribution of supergroup A could
additionally be explained by the cytoplasmic incompatibility
of individuals harboring this supergroup with bugs infected
(or not infected) by supergroup B. As we show in Table 2,
P. spumarius would have received Wolbachia from other in-
sect species. The main strain of these bacteria probably might
come from wasps (Vespidae), flies (Drosophilidae), or hemip-
terans (Aleyrodidae), so infection could be transmitted either
by predation (some injury, e.g., by wasp) or more probably by
parasitoids, which may function as a vector for Wolbachia
bacteria and transfer it to other arthropods [39, 60]. Instead
of supergroup A in the local area in the Carpathians, beetles
(Chrysomelidae, Curculionidae) were identified as the most
presumable donor of Wolbachia.

In this study, we acknowledge our main hypothesis that
Wolbachia infects in the majority the NE mitochondrial clade
of P. spumarius. Our results pointed out single infections in
SW clade, which could have been caused by man-made trans-
location of these bugs. Although, individuals from the
Carpathians belonging to the SW clade harbored different
supergroup of Wolbachia. There is very likely that between
two main mitochondrial P. spumarius clades, we are dealing
with cytoplasmic incompatibility. The presented results indi-
cate thatWolbachia may play a significant role in the mainte-
nance of the limited hybridization between genetically distinct
populations of the P. spumarius in the contact zone via prob-
able cytoplasmic incompatibility. This phenomenon in the
Carpathians should be considered to probably exist in the
other P. spumarius contact zones such as in the Alps, the
Pyrenees and the Caucasus. We also verified the correlation
of mitochondrial variability with Wolbachia infection
through this contact zone. Wolbachia are associated with
mtDNA, as both are maternally inherited within cytoplasm
in reproductive tissue and can therefore result in a homoge-
nization of mtDNA haplotypes (selective slippage [22, 72,
73]). Consequently, this would have implications for impor-
tant evolutionary processes along with speciation. There was
evidence presented in other research of Nasonia of repro-
ductive isolation among species driven by Wolbachia [92].
Our results clearly show the distribution of Wolbachia in the
P. spumarius range and reveal geographical patterns of
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distribution of the bacterial strains that may also appear in
other organisms. But our results do not represent complete
evidence that Wolbachia acts as a barrier to reproduction in
the contact zone of P. spumarius by inducting cytoplasmic
incompatibility, although overall they give a view that is
consistent with such a possibility.

Conclusions

This work presents the hypothesis thatWolbachia infection is
associated with limited hybridization between genetically dis-
tinct populations of the P. spumarius and also with allopatric
speciation in progress in the secondary contact zone in the
Carpathians. Yet, further study is also required for (i) infec-
tions in other contact zones in the Alps, the Pyrenees, and the
Caucasus, (ii) laboratory crossing of individuals from different
populations (mtDNA and infection) to detect signs of cyto-
plasmic incompatibility and reinforcement of reproductive
barriers, and (iii) artificial trials of infection of individuals
from uninfected populations and removal of bacteria from
infected populations to check influence of such experiments
on host survival and reproduction. This data overall supports
the hypothesis that Wolbachia infections are associated with
only one P. spumarius clade. Overall, this suggests ongoing
partial cytoplasmic incompatibility in the hybridization events
among the P. spumarius clades in the Carpathians and an
allopatric speciation in progress.
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